所属成套资源:2022高三高考数学真题分类汇编及答案(九科)
- 2022高考数学真题分类汇编08计数原理 试卷 1 次下载
- 2022高考数学真题分类汇编07三角函数与解三角形 试卷 1 次下载
- 2022高考数学真题分类汇编05函数与导数 试卷 2 次下载
- 2022高考数学真题分类汇编04平面向量 试卷 1 次下载
- 2022高考数学真题分类汇编03不等式 试卷 1 次下载
2022高考数学真题分类汇编06数列
展开
这是一份2022高考数学真题分类汇编06数列,共14页。试卷主要包含了数列,选择题,填空题,解答题等内容,欢迎下载使用。
2022高考数学真题分类汇编六、数列一、选择题1.(2022·全国乙(文)T10)已知等比数列的前3项和为168,,则( )A. 14 B. 12 C. 6 D. 3【答案】D【解析】【分析】设等比数列的公比为,易得,根据题意求出首项与公比,再根据等比数列的通项即可得解.【详解】解:设等比数列的公比为,若,则,与题意矛盾,所以,则,解得,所以.故选:D. 2.(2022·全国乙(理)T8) 已知等比数列的前3项和为168,,则( )A. 14 B. 12 C. 6 D. 3【答案】D【解析】【分析】设等比数列的公比为,易得,根据题意求出首项与公比,再根据等比数列的通项即可得解.【详解】解:设等比数列的公比为,若,则,与题意矛盾,所以,则,解得,所以.故选:D.3.(2022·全国乙(理)T4) 嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行人造行星,为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列:,,,…,依此类推,其中.则( )A B. C. D. 【答案】D【解析】【分析】根据,再利用数列与的关系判断中各项的大小,即可求解.【详解】解:因为,所以,,得到,同理,可得,又因为,故,;以此类推,可得,,故A错误;,故B错误;,得,故C错误;,得,故D正确.故选:D. 4.(2022·新高考Ⅱ卷T3) 中国的古建筑不仅是挡风遮雨的住处,更是美学和哲学的体现.如图是某古建筑物的剖面图,是举, 是相等的步,相邻桁的举步之比分别为,若是公差为0.1的等差数列,且直线的斜率为0.725,则( )A. 0.75 B. 0.8 C. 0.85 D. 0.9【答案】D【解析】【分析】设,则可得关于的方程,求出其解后可得正确的选项.【详解】设,则,依题意,有,且,所以,故,故选:D5.(2022·浙江卷T10) 已知数列满足,则( )A. B. C. D. 【答案】B【解析】【分析】先通过递推关系式确定除去,其他项都在范围内,再利用递推公式变形得到,累加可求出,得出,再利用,累加可求出,再次放缩可得出.【详解】∵,易得,依次类推可得由题意,,即,∴,即,,,…,,累加可得,即,∴,即,,又,∴,,,…,,累加可得,∴,即,∴,即;综上:.故选:B.【点睛】关键点点睛:解决本题的关键是利用递推关系进行合理变形放缩. 二、填空题1.(2022·全国乙(文)T13)记为等差数列的前n项和.若,则公差_______.【答案】2【解析】【分析】转化条件为,即可得解.【详解】由可得,化简得,即,解得.故答案为:2.2.(2022·北京卷T15) 己知数列各项均为正数,其前n项和满足.给出下列四个结论:①的第2项小于3; ②为等比数列;③为递减数列; ④中存在小于的项.其中所有正确结论的序号是__________.【答案】①③④【解析】【分析】推导出,求出、的值,可判断①;利用反证法可判断②④;利用数列单调性的定义可判断③.【详解】由题意可知,,,当时,,可得;当时,由可得,两式作差可得,所以,,则,整理可得,因为,解得,①对;假设数列为等比数列,设其公比为,则,即,所以,,可得,解得,不合乎题意,故数列不等比数列,②错;当时,,可得,所以,数列为递减数列,③对;假设对任意,,则,所以,,与假设矛盾,假设不成立,④对.故答案为:①③④.【点睛】关键点点睛:本题在推断②④的正误时,利用正面推理较为复杂时,可采用反证法来进行推导. 三、解答题1.(2022·全国甲(文T18)(理T17)记为数列的前n项和.已知.(1)证明:是等差数列;(2)若成等比数列,求的最小值.【答案】(1)证明见解析; (2).【解析】【分析】(1)依题意可得,根据,作差即可得到,从而得证;(2)由(1)及等比中项的性质求出,即可得到的通项公式与前项和,再根据二次函数的性质计算可得.【小问1详解】解:因为,即①,当时,②,①②得,,即,即,所以,且,所以是以为公差的等差数列.【小问2详解】解:由(1)可得,,,又,,成等比数列,所以,即,解得,所以,所以,所以,当或时.2.(2022·新高考Ⅰ卷T17) 记为数列的前n项和,已知是公差为的等差数列.(1)求的通项公式;(2)证明:.【答案】(1) (2)见解析【解析】【分析】(1)利用等差数列的通项公式求得,得到,利用和与项的关系得到当时,,进而得:,利用累乘法求得,检验对于也成立,得到的通项公式;(2)由(1)的结论,利用裂项求和法得到,进而证得.【小问1详解】∵,∴,∴,又∵是公差为的等差数列,∴,∴,∴当时,,∴,整理得:,即,∴,显然对于也成立,∴的通项公式;【小问2详解】 ∴ 3.(2022·新高考Ⅱ卷T17)已知为等差数列,是公比为2的等比数列,且.(1)证明:;(2)求集合中元素个数.【答案】(1)证明见解析; (2).【解析】【分析】(1)设数列的公差为,根据题意列出方程组即可证出;(2)根据题意化简可得,即可解出.【小问1详解】设数列的公差为,所以,,即可解得,,所以原命题得证.【小问2详解】由(1)知,,所以,即,亦即,解得,所以满足等式的解,故集合中的元素个数为. 4.(2022·北京卷T21) 已知为有穷整数数列.给定正整数m,若对任意的,在Q中存在,使得,则称Q为连续可表数列.(1)判断是否为连续可表数列?是否为连续可表数列?说明理由;(2)若为连续可表数列,求证:k的最小值为4;(3)若为连续可表数列,且,求证:.【答案】(1)是连续可表数列;不是连续可表数列. (2)证明见解析. (3)证明见解析.【解析】【分析】(1)直接利用定义验证即可;(2)先考虑不符合,再列举一个合题即可;(3)时,根据和的个数易得显然不行,再讨论时,由可知里面必然有负数,再确定负数只能是,然后分类讨论验证不行即可.【小问1详解】,,,,,所以是连续可表数列;易知,不存在使得,所以不是连续可表数列.【小问2详解】若,设为,则至多,6个数字,没有个,矛盾;当时,数列,满足,,,,,,,, .【小问3详解】,若最多有种,若,最多有种,所以最多有种,若,则至多可表个数,矛盾,从而若,则,至多可表个数,而,所以其中有负的,从而可表1~20及那个负数(恰 21个),这表明中仅一个负的,没有0,且这个负的在中绝对值最小,同时中没有两数相同,设那个负数为 ,则所有数之和,,,再考虑排序,排序中不能有和相同,否则不足个, (仅一种方式),与2相邻,若不在两端,则形式,若,则(有2种结果相同,方式矛盾),, 同理 ,故在一端,不妨为形式,若,则 (有2种结果相同,矛盾),同理不行,,则 (有2种结果相同,矛盾),从而,由于,由表法唯一知3,4不相邻,、故只能,①或,②这2种情形,对①:,矛盾,对②:,也矛盾,综上 .【点睛】关键点睛,先理解题意,是否为可表数列核心就是是否存在连续的几项(可以是一项)之和能表示从到中间的任意一个值.本题第二问时,通过和值可能个数否定;第三问先通过和值的可能个数否定,再验证时,数列中的几项如果符合必然是的一个排序,可验证这组数不合题.
5.(2022·浙江卷T20) 已知等差数列的首项,公差.记的前n项和为.(1)若,求;(2)若对于每个,存在实数,使成等比数列,求d的取值范围.【答案】(1) (2)【解析】【分析】(1)利用等差数列通项公式及前项和公式化简条件,求出,再求;(2)由等比数列定义列方程,结合一元二次方程有解的条件求的范围.【小问1详解】因为,所以,所以,又,所以,所以,所以,【小问2详解】因为,,成等比数列,所以,,,由已知方程的判别式大于等于0,所以,所以对于任意的恒成立,所以对于任意的恒成立,当时,,当时,由,可得当时,,又所以
相关试卷
这是一份专题06 数列解答题-【2023高考必备】2013-2022十年全国高考数学真题分类汇编(全国通用版)(原卷版),共4页。
这是一份专题06 数列解答题【2023高考必备】2013-2022十年全国高考数学真题分类汇编(全国通用版)(解析版),共16页。
这是一份2022高考数学真题分类汇编06 数列(学生与教师版),文件包含2022高考数学真题分类汇编06数列教师版docx、2022高考数学真题分类汇编06数列学生版docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。