终身会员
搜索
    上传资料 赚现金

    2022湖北省云学新高考联盟学校高一下学期5月联考数学试题(含答案)

    立即下载
    加入资料篮
    2022湖北省云学新高考联盟学校高一下学期5月联考数学试题(含答案)第1页
    2022湖北省云学新高考联盟学校高一下学期5月联考数学试题(含答案)第2页
    2022湖北省云学新高考联盟学校高一下学期5月联考数学试题(含答案)第3页
    还剩6页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022湖北省云学新高考联盟学校高一下学期5月联考数学试题(含答案)

    展开

    这是一份2022湖北省云学新高考联盟学校高一下学期5月联考数学试题(含答案),共9页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    2022年湖北云学新高考联盟学校高一年级5月联考数学试卷命题学校:洪湖一中  命题人:路明琴  审题人:洪湖一中  杨前军  嘉鱼一中  甘业明、郑世波考试时间:202253009501150一、选择题(本大题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。)1.下列命题正确的是(    A.有两个面平行,其余各面都是平行四边形的几何体是棱柱B.有一个面是平面多边形,其余各面都是三角形的几何体是棱锥C.等腰梯形绕它上、下底边中点的连线旋转180°可以得到一个圆台D.在圆柱的上、下底面的圆周上各取一个点,则这两点的连线是圆柱的母线2.已知向量,且,则    A.6 B. C. D.3.为两个不同的平面,则的一个充分条件是(    A.内有无数条直线与平行 B.平行于同一个平面C.平行于同一条直线 D.垂直于同一个平面4.顺次连接点所构成的图形是(    A.等腰梯形 B.平行四边形 C.菱形 D.矩形5.,则abc大小关系正确的是(    A. B. C. D.6.设函数,若,则函数的零点个数为(    A.1 B.2 C.3 D.47.中,设,则动点M的轨迹必通过的(    A.外心 B.内心 C.重心 D.垂心8.已知四面体的所有棱长均为2MN分别为棱的中点,F为棱上异于AB的动点.有下列结论:①线段的长度为②若点G为线段上的动点,则无论点FG如何运动,直线与直线都是异面直线;③异面直线所成的角为的最小值为2.其中正确的结论为(    A.①③④ B.②③ C.②③④ D.①④二、选择题(本大题共4小题,每小题5分,共20分。在每小题给出的四个选项中,有多项符合题目要求。全部选对的得5分,部分选对的得2分,有选错的得0分。)9.已知i为虚数单位,以下四个说法中正确的是(    A.B.C.,则复平面内对应的点位于第二象限D.已知复数z满足,则z在复平面内对应的点的轨迹为直线10.已知向量),则下列命题正确的是(    A.,则B.存在,使得C.若向量方向上的投影向量为,则向量的夹角为D.与向量共线的单位向量是11.已知正方体的棱长为1,下面选项正确的是(    A.直线与平面不垂直 B.四面体的体积为C.异面直线与直线所成角的为 D.直线与平面所成的角为12.已知正四棱台,下底面边长为4,上底面边长为2,侧棱长为2,则(    A.它的表面积是 B.它的外接球球心在该四棱台的内部C.侧棱与下底面所成的角为 D.它的体积比半径为的球的体积小三、填空题(本大题共4小题,每小题5分,共20分)13.已知虚数z的实部不为0,模为2,则符合要求的一个虚数_______________.14.已知四棱锥中,侧棱平面,底面是矩形,则该四棱锥的4个侧面中直角三角形的个数是______________.15.如图,矩形是水平放置的一个平面图形由斜二测画法得到的直观图,其中,则原四边形的周长是16.已知一圆锥底面直径是,圆锥的高是,在该圆锥内放置一个棱长为a的正四面体,且正四面体可以在该圆锥内任意转动,则a的最大值为_____________.四、解答题(本大题共6小题,共70分。解答应写出文字说明、证明过程或演算步骤。)17.(本小题满分10分)平行四边形中,点M上,且,点N上,且,记1)以为基底表示2)求证:MNC三点共线.18.(本小题满分12分)已知关于x的不等式的解集为.1)求ab的值;2)当,且满足时,有恒成立,求k的取值范围.19.(本小题满分12分)某科技企业生产一种电子设备的年固定成本为600万元,除此之外每台机器的额外生产成本与产量满足一定的关系式.设年产量为x)台,若年产量不足70台,则每台设备的额外成本为万元;若年产量大于等于70台不超过200台,则每台设备的额外成本为万元.每台设备售价为100万元,通过市场分析,该企业生产的电子设备能全部售完.1)写出年利润W(万元)关于年产量x(台)的关系式;2)当年产量为多少台时,年利润最大,最大值为多少?20.(本小题满分12分)设函数.(Ⅰ)求函数的周期及图象的对称轴;(Ⅱ)在锐角中,若,且能盖住的最小圆的面积为,求的取值范围.21.(本小题满分12分)已知四棱锥的底面是菱形,平面FG分别为中点,.(Ⅰ)求证:平面(Ⅱ)求三棱锥的体积;(Ⅲ)求证:不垂直.22.(本小题满分12分)对于函数,若在定义域内存在实数x,满足,则称为“局部奇函数”.1)已知二次函数),试判断是否为“局部奇函数”,并说明理由;2)若是定义在区间上的“局部奇函数”,求实数m的取值范围;3)若为定义在R上的“局部奇函数”,求实数m的取值范围.              2022年湖北云学新高考联盟学校高一年级5月联考数学评分细则一、单选题1.C  2.D  3.B  4.B  5.C  6.B  7.A  8.A二、多选题9.BD  10.AC  11.BCD  12.AD三、填空题13.(答案不唯一)  14.4  15.  16.4四、解答题17.1)解:······································································52)证明:∵Mb有公共点M所以MNC三点共线.····················································1018.解:(1)因为不等式的解集为),所以1a是方程的两个实数根且··············································2所以,解得.·······························································42)由(1)知,且····································································7当且仅当,即时,等号成立.··················································8依题意有,即···································································11所以k的取值范围为.························································1219.解:(1)当时,······································································3时,..······································································62)①当时,∴当时,y取得最大值,最大值为1200万元.·······································8②当时,·····································································10当且仅当,即时,y取得最大值1320··········································11∴当年产量为80台时,年利润最大,最大值为1320万元.····························1220.解:(Ⅰ)因为······································································2所以函数的周期····························································3),解得所以函数的周期是,对称轴方程是.·········································5(Ⅱ)因为,所以.又因为为锐角三角形,所以.所以,故有.·······························································6已知能盖住的最小圆为的外接圆,而其面积为,设半径为所以,得·······························································7的角ABC所对的边分别为abc.由正弦定理.所以······································································9因为为锐角三角形,所以.···················································10所以,则···································································11所以的取值范围是.·························································1221.(Ⅰ)证明:如图,连接O中点,F中点,∴平面平面,则平面.O中点,G中点,∴平面平面,则平面.平面∴平面平面,又平面平面.··································································4(注:也可构造线线平行证明.(Ⅱ)解:∵底面底面,∴又四边形为菱形,∴平面平面,且·····························································6F的中点,····································································8(Ⅲ)证明:假设,且平面平面,而平面,与矛盾.∴假设错误,故不垂直.···················································1222.解:为“局部奇函数”等价于关于x的方程有解.1)当)时,方程有解,而,所以,从而为“局部奇函数”.······································22)当时,可化为.·························································3因为的定义域为,所以方程上有解.,则,上式化为.·························································4,则上为单调减函数;在上为单调增函数.因为所以时,.所以,即.································································73)当时,······························································8可化为.,则,则从而只需要关于t的方程上有解即可.···········································9.       时,上有解,,即,解得       时,上有解等价于,解得.·································································11(注:也可转化为大根不小于2求解)综上,所求实数m的取值范围为.···············································12 

    相关试卷

    2022-2023学年湖北省云学新高考联盟学校高一下学期5月联考数学试题含答案:

    这是一份2022-2023学年湖北省云学新高考联盟学校高一下学期5月联考数学试题含答案,共8页。试卷主要包含了下列各式中,值是的是等内容,欢迎下载使用。

    湖北省云学新高考联盟学校2022-2023学年高一下学期5月联考数学试题及答案:

    这是一份湖北省云学新高考联盟学校2022-2023学年高一下学期5月联考数学试题及答案,共8页。试卷主要包含了下列各式中,值是的是等内容,欢迎下载使用。

    湖北省云学新高考联盟学校2022-2023学年高一下学期5月联考数学试题及答案:

    这是一份湖北省云学新高考联盟学校2022-2023学年高一下学期5月联考数学试题及答案,共7页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map