![2022湖北省云学新高考联盟学校高一下学期5月联考数学试题(含答案)第1页](http://m.enxinlong.com/img-preview/3/3/13259688/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022湖北省云学新高考联盟学校高一下学期5月联考数学试题(含答案)第2页](http://m.enxinlong.com/img-preview/3/3/13259688/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022湖北省云学新高考联盟学校高一下学期5月联考数学试题(含答案)第3页](http://m.enxinlong.com/img-preview/3/3/13259688/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:2022湖北省云学新高考联盟学校高一下学期5月联考及答案(九科)
2022湖北省云学新高考联盟学校高一下学期5月联考数学试题(含答案)
展开
这是一份2022湖北省云学新高考联盟学校高一下学期5月联考数学试题(含答案),共9页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2022年湖北云学新高考联盟学校高一年级5月联考数学试卷命题学校:洪湖一中 命题人:路明琴 审题人:洪湖一中 杨前军 嘉鱼一中 甘业明、郑世波考试时间:2022年5月30日09:50—11:50一、选择题(本大题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。)1.下列命题正确的是( )A.有两个面平行,其余各面都是平行四边形的几何体是棱柱B.有一个面是平面多边形,其余各面都是三角形的几何体是棱锥C.等腰梯形绕它上、下底边中点的连线旋转180°可以得到一个圆台D.在圆柱的上、下底面的圆周上各取一个点,则这两点的连线是圆柱的母线2.已知向量,,且,则( )A.6 B. C. D.3.设,为两个不同的平面,则的一个充分条件是( )A.内有无数条直线与平行 B.,平行于同一个平面C.,平行于同一条直线 D.,垂直于同一个平面4.顺次连接点,,,所构成的图形是( )A.等腰梯形 B.平行四边形 C.菱形 D.矩形5.设,,,则a,b,c大小关系正确的是( )A. B. C. D.6.设函数,若,,则函数的零点个数为( )A.1 B.2 C.3 D.47.在中,设,则动点M的轨迹必通过的( )A.外心 B.内心 C.重心 D.垂心8.已知四面体的所有棱长均为2,M,N分别为棱,的中点,F为棱上异于A,B的动点.有下列结论:①线段的长度为;②若点G为线段上的动点,则无论点F与G如何运动,直线与直线都是异面直线;③异面直线和所成的角为;④的最小值为2.其中正确的结论为( )A.①③④ B.②③ C.②③④ D.①④二、选择题(本大题共4小题,每小题5分,共20分。在每小题给出的四个选项中,有多项符合题目要求。全部选对的得5分,部分选对的得2分,有选错的得0分。)9.已知i为虚数单位,以下四个说法中正确的是( )A.B.C.若,则复平面内对应的点位于第二象限D.已知复数z满足,则z在复平面内对应的点的轨迹为直线10.已知向量,(),则下列命题正确的是( )A.若,则B.存在,使得C.若向量在方向上的投影向量为,则向量与的夹角为D.与向量共线的单位向量是11.已知正方体的棱长为1,下面选项正确的是( )A.直线与平面不垂直 B.四面体的体积为C.异面直线与直线所成角的为 D.直线与平面所成的角为12.已知正四棱台,下底面边长为4,上底面边长为2,侧棱长为2,则( )A.它的表面积是 B.它的外接球球心在该四棱台的内部C.侧棱与下底面所成的角为 D.它的体积比半径为的球的体积小三、填空题(本大题共4小题,每小题5分,共20分)13.已知虚数z的实部不为0,模为2,则符合要求的一个虚数_______________.14.已知四棱锥中,侧棱平面,底面是矩形,则该四棱锥的4个侧面中直角三角形的个数是______________.15.如图,矩形是水平放置的一个平面图形由斜二测画法得到的直观图,其中,,则原四边形的周长是16.已知一圆锥底面直径是,圆锥的高是,在该圆锥内放置一个棱长为a的正四面体,且正四面体可以在该圆锥内任意转动,则a的最大值为_____________.四、解答题(本大题共6小题,共70分。解答应写出文字说明、证明过程或演算步骤。)17.(本小题满分10分)平行四边形中,点M在上,且,点N在上,且,记,(1)以,为基底表示;(2)求证:M、N、C三点共线.18.(本小题满分12分)已知关于x的不等式的解集为().(1)求a,b的值;(2)当,,且满足时,有恒成立,求k的取值范围.19.(本小题满分12分)某科技企业生产一种电子设备的年固定成本为600万元,除此之外每台机器的额外生产成本与产量满足一定的关系式.设年产量为x(,)台,若年产量不足70台,则每台设备的额外成本为万元;若年产量大于等于70台不超过200台,则每台设备的额外成本为万元.每台设备售价为100万元,通过市场分析,该企业生产的电子设备能全部售完.(1)写出年利润W(万元)关于年产量x(台)的关系式;(2)当年产量为多少台时,年利润最大,最大值为多少?20.(本小题满分12分)设函数.(Ⅰ)求函数的周期及图象的对称轴;(Ⅱ)在锐角中,若,且能盖住的最小圆的面积为,求的取值范围.21.(本小题满分12分)已知四棱锥的底面是菱形,平面,,,F,G分别为,中点,.(Ⅰ)求证:平面;(Ⅱ)求三棱锥的体积;(Ⅲ)求证:与不垂直.22.(本小题满分12分)对于函数,若在定义域内存在实数x,满足,则称为“局部奇函数”.(1)已知二次函数(),试判断是否为“局部奇函数”,并说明理由;(2)若是定义在区间上的“局部奇函数”,求实数m的取值范围;(3)若为定义在R上的“局部奇函数”,求实数m的取值范围. 2022年湖北云学新高考联盟学校高一年级5月联考数学评分细则一、单选题1.C 2.D 3.B 4.B 5.C 6.B 7.A 8.A二、多选题9.BD 10.AC 11.BCD 12.AD三、填空题13.(答案不唯一) 14.4 15. 16.4四、解答题17.(1)解:;······································································5分(2)证明:∵Mb,,∴,∴且与有公共点M,所以M、N、C三点共线.····················································10分18.解:(1)因为不等式的解集为(),所以1和a是方程的两个实数根且,··············································2分所以,解得.·······························································4分(2)由(1)知,且,故,····································································7分当且仅当,即时,等号成立.··················································8分依题意有,即,得,···································································11分所以k的取值范围为.························································12分19.解:(1)当,时,;······································································3分当,时,.∴.······································································6分(2)①当,时,,∴当时,y取得最大值,最大值为1200万元.·······································8分②当,时,,·····································································10分当且仅当,即时,y取得最大值1320,··········································11分∵,∴当年产量为80台时,年利润最大,最大值为1320万元.····························12分20.解:(Ⅰ)因为,······································································2分所以函数的周期····························································3分令(),解得()所以函数的周期是,对称轴方程是().·········································5分(Ⅱ)因为,所以.又因为为锐角三角形,所以,.所以,故有.·······························································6分已知能盖住的最小圆为的外接圆,而其面积为,设半径为。所以,得,·······························································7分的角A,B,C所对的边分别为a,b,c.由正弦定理.所以,,,······································································9分因为为锐角三角形,所以.···················································10所以,则,故,···································································11分所以的取值范围是.·························································12分21.(Ⅰ)证明:如图,连接,,∵O是中点,F是中点,∴,平面,平面,则平面.∵O是中点,G是中点,∴,平面,平面,则平面.又,,平面,∴平面平面,又平面,则平面.··································································4分(注:也可构造线线平行证明.)(Ⅱ)解:∵底面,底面,∴,又四边形为菱形,∴,又,、平面,∴平面,且,·····························································6分而F为的中点,∴;····································································8分(Ⅲ)证明:假设,又,且,,平面,∴平面,而平面,则,与矛盾.∴假设错误,故与不垂直.···················································12分22.解:为“局部奇函数”等价于关于x的方程有解.(1)当()时,方程,即有解,而,所以,从而为“局部奇函数”.······································2分(2)当时,可化为.·························································3分因为的定义域为,所以方程在上有解.令,则,上式化为.·························································4分设,则在上为单调减函数;在上为单调增函数.因为,,,所以时,.所以,即.································································7分(3)当时,······························································8分可化为.设,则,则,从而只需要关于t的方程在上有解即可.···········································9分令.① 当时,在上有解,由,即,解得;② 当时,在上有解等价于,解得.·································································11分(注:也可转化为大根不小于2求解)综上,所求实数m的取值范围为.···············································12分
相关试卷
这是一份2022-2023学年湖北省云学新高考联盟学校高一下学期5月联考数学试题含答案,共8页。试卷主要包含了下列各式中,值是的是等内容,欢迎下载使用。
这是一份湖北省云学新高考联盟学校2022-2023学年高一下学期5月联考数学试题及答案,共8页。试卷主要包含了下列各式中,值是的是等内容,欢迎下载使用。
这是一份湖北省云学新高考联盟学校2022-2023学年高一下学期5月联考数学试题及答案,共7页。