年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    专题10以椭圆为情景的探索性问题——备战2022年高考数学圆锥曲线部分必会十大基本题型

    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      专题10以椭圆为情景的探索性问题——备战2022年高考数学圆锥曲线部分必会十大基本题型 (原卷版).docx
    • 解析
      专题10以椭圆为情景的探索性问题——备战2022年高考数学圆锥曲线部分必会十大基本题型 (解析版).docx
    专题10以椭圆为情景的探索性问题——备战2022年高考数学圆锥曲线部分必会十大基本题型 (原卷版)第1页
    专题10以椭圆为情景的探索性问题——备战2022年高考数学圆锥曲线部分必会十大基本题型 (原卷版)第2页
    专题10以椭圆为情景的探索性问题——备战2022年高考数学圆锥曲线部分必会十大基本题型 (原卷版)第3页
    专题10以椭圆为情景的探索性问题——备战2022年高考数学圆锥曲线部分必会十大基本题型  (解析版)第1页
    专题10以椭圆为情景的探索性问题——备战2022年高考数学圆锥曲线部分必会十大基本题型  (解析版)第2页
    专题10以椭圆为情景的探索性问题——备战2022年高考数学圆锥曲线部分必会十大基本题型  (解析版)第3页
    还剩5页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题10以椭圆为情景的探索性问题——备战2022年高考数学圆锥曲线部分必会十大基本题型

    展开

    这是一份专题10以椭圆为情景的探索性问题——备战2022年高考数学圆锥曲线部分必会十大基本题型,文件包含专题10以椭圆为情景的探索性问题备战2022年高考数学圆锥曲线部分必会十大基本题型解析版docx、专题10以椭圆为情景的探索性问题备战2022年高考数学圆锥曲线部分必会十大基本题型原卷版docx等2份试卷配套教学资源,其中试卷共37页, 欢迎下载使用。
    椭圆必会十大基本题型讲与练10   以椭圆为情景的探索性问题典例分析   角度一、以探索多边形形状为情景的问题1已知椭圆C(),直线不过原点O且不平行于坐标轴,lC有两个交点AB,线段AB的中点为M)证明:直线OM的斜率与的斜率的乘积为定值;)若l过点,延长线段OMC交于点P,四边形OAPB能否为平行四边行?若能,求此时l的斜率;若不能,说明理由2.已知椭圆的一个焦点在直线上,且离心率.1)求该椭圆的方程;2)若是该椭圆上不同的两点,且线段的中点在直线上,试证: 轴上存在定点,对于所有满足条件的,恒有3)在(2)的条件下, 能否为等腰直角三角形?并证明你的结论.角度二、以探索定点存在性为情景的问题1如图,椭圆的离心率是,过点的动直线与椭圆相交于两点,当直线平行与轴时,直线被椭圆截得的线段长为1)求椭圆的方程;2)在平面直角坐标系中,是否存在与点不同的定点,使得恒成立?若存在,求出点的坐标;若不存在,请说明理由.角度三、以探索直线与圆锥曲线位置关系为情景的问题1椭圆的左、右焦点分别为,右顶点为,上顶点为,且满足向量.1)若,求椭圆的标准方程;2)设为椭圆上异于顶点的点,以线段为直径的圆经过,问是否存在过的直线与该圆相切?若存在,求出其斜率;若不存在,说明理由.2已知抛物线与过点的直线交于两点.1)若,求直线的方程;2)若轴,垂足为,探究:以为直径的圆是否过定点?若是,求出该定点的坐标;若不是,请说明理由.角度四、以探索定值存在性为情景的问题1已知定点,直线相交于点,且它们的斜率之积为,记动点的轨迹为曲线1)求曲线的方程;2)过点的直线与曲线交于两点,是否存在定点,使得直线斜率之积为定值,若存在,求出坐标;若不存在,请说明理由。角度五、以探索最值存在性为情景的问题1已知椭圆C1(a>b>0)的左、右焦点分别为F1F2,以F2为圆心、过椭圆左顶点M的圆与直线3x4y120相切于点N,且满足.(1)求椭圆C的标准方程.(2)过椭圆C右焦点F2的直线l与椭圆C交于不同的AB两点,问:F1AB内切圆的面积是否有最大值?若有,求出最大值;若没有,请说明理由.角度六、以探索直线存在性为情景的问题1如图,已知分别为的外心,重心,.1)求点的轨迹的方程;2)是否存在过的直线交曲线两点且满足,若存在求出的方程,若不存在请说明理由.2设经过点的直线与抛物线相交于两点,经过点的直线与抛物线相切于点.1)当时,求的取值范围;2)问是否存在直线使得成立,若存在,求出的取值范围;若不存在,请说明理由.方法点拨1、探索性问题:此类问题一般分为探究条件、探究结论两种。若探究条件,则可先假设条件成立,再验证结论是否成立,成立则存在,否则不存在;若探究结论,则应先求出结论的表达式,再针对其表达式进行讨论,往往涉及对参数的讨论。2.圆锥曲线中存在性问题的求解方法(1)存在性问题通常采用肯定顺推法,将不确定性问题明朗化.其步骤为:假设满足条件的元素(点、直线、曲线或参数)存在,用待定系数法设出,列出关于待定系数的方程组,若方程组有实数解,则元素(点、直线、曲线或参数)存在;否则,元素(点、直线、曲线或参数)不存在.(2)反证法与验证法也是求解存在性问题常用的方法.(3)当条件和结论不唯一时要分类讨论.(4)当给出结论而要推导出存在的条件时,先假设成立,再推出条件.(5)当条件和结论都不知,按常规方法解题很难时,要思维开放,采取另外的途径.巩固练习  1如图,在平面直角坐标系中,己知是椭圆的右焦点,是椭圆上位于轴上方的任意一点,过作垂直于的直线交其右准线于点.1)求椭圆的方程;2)若,求证:直线与椭圆相切;3)在椭圆上是否存在点,使四边形是平行四边形?若存在,求出所有符合条件的点的坐标:若不存在,请说明理由.2已知椭圆的一个焦点与抛物线的焦点重合,且此抛物线的准线被椭圆截得的弦长为.1)求椭圆的标准方程;2)直线交椭圆两点,线段的中点为,直线是线段的垂直平分线,试问直线是否过定点?若是,请求出该定点的坐标;若不是,请说明理由.3已知椭圆C1(a>b>0)的两个焦点与短轴的一个端点连线构成等边三角形,且椭圆C的短轴长为2.(1)求椭圆C的标准方程.(2)是否存在过点P(0,2)的直线l与椭圆C相交于不同的两点MN,且满足·2(O为坐标原点)?若存在,求出直线l的方程;若不存在,请说明理由.4已知椭圆C1(a>b>0)的离心率为,直线xy10被圆x2y2b2截得的弦长为.(1)求椭圆C的方程.(2)过点(1,0)的直线l交椭圆CAB两点,在x轴上是否存在定点P,使得 ·为定值?若存在,求出点P的坐标和·的值;若不存在,请说明理由.5已知椭圆C1(ab0)的右焦点F2与抛物线y24x的焦点重合,且其离心率为.(1)求椭圆C的方程.(2)已知与坐标轴不垂直的直线lC交于MN两点,线段MN中点为P,问:kMN·kOP(O为坐标原点)是否为定值?请说明理由.6.已知点A(0,-2),椭圆E1(a>b>0)的离心率为F是椭圆E的右焦点,直线AF的斜率为O为坐标原点.设过点A的动直线lE相交于PQ两点.(1)求椭圆E的方程.(2)是否存在直线l,使得OPQ的面积为?若存在,求出l的方程;若不存在,请说明理由.7.在平角坐标系中,椭圆的离心率,且过点,椭圆的长轴的两端点为,点为椭圆上异于的动点,定直线与直线分别交于两点.1)求椭圆的方程;2)在轴上是否存在定点经过以为直径的圆,若存在,求定点坐标;若不存在,说明理由.8. 已知椭圆的离心率为,点和点都在椭圆上,直线轴于点)求椭圆的方程,并求点的坐标(用表示);)设为原点,点与点关于轴对称,直线轴于点.问:轴上是否存在点,使得?若存在,求点的坐标;若不存在,说明理由.9已知椭圆C(),直线不过原点O且不平行于坐标轴,lC有两个交点AB,线段AB的中点为M)证明:直线OM的斜率与的斜率的乘积为定值;)若l过点,延长线段OMC交于点P,四边形OAPB能否为平行四边行?若能,求此时l的斜率;若不能,说明理由10如图所示,在平面直角坐标系中,已知椭圆,过点的动直线与椭圆相交于两点,是否存在与点不同的定点,使得恒成立?若存在,求出点的坐标;若不存在,请说明理由.11、在平面直角坐标系中,已知椭圆的离心率,且椭圆上的点到的距离的最大值为3(Ⅰ)求椭圆的方程;(Ⅱ)在椭圆上,是否存在点使得直线与圆O 相交于不同的两点,且的面积最大?若存在,求出点的坐标及相对应的的面积;若不存在,请说明理由.12一种作图工具如图1所示.是滑槽的中点,短杆ON可绕O转动,长杆MN通过N处铰链与ON连接,MN上的栓子D可沿滑槽AB滑动.当栓子D在滑槽AB内作往复运动时,带动N转动一周(D不动时,N也不动M处的笔尖画出的曲线记为C.以为原点,所在的直线为轴建立如图2所示的平面直角坐标系.(Ⅰ)求曲线C的方程;(Ⅱ)设动直线与两定直线分别交于两点.若直线 总与曲线有且只有一个公共点,试探究:△OPQ的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由13已知椭圆的离心率为短轴长为.1)求椭圆的方程;2)设过点的直线与椭圆交于两点,是椭圆的上焦点.问:是否存在直线使得?若存在,求出直线的方程;若不存在,请说明理由.14.在平面直角坐标系中,已知椭圆的焦距为2,且过点.1)求椭圆的方程;2)设椭圆的上顶点为,右焦点为,直线与椭圆交于两点,问是否存在直线,使得的垂心,若存在,求出直线的方程:若不存在,说明理由.15.已如椭圆E)的离心率为,点E.1)求E的方程:2)斜率不为0的直线l经过点,且与E交于PQ两点,试问:是否存在定点C,使得?若存在,求C的坐标:若不存在,请说明理由 
     

    相关试卷

    专题08以椭圆为情景的几何证明问题——备战2022年高考数学圆锥曲线部分必会十大基本题型:

    这是一份专题08以椭圆为情景的几何证明问题——备战2022年高考数学圆锥曲线部分必会十大基本题型,文件包含专题08以椭圆为情景的几何证明问题备战2022年高考数学圆锥曲线部分必会十大基本题型解析版docx、专题08以椭圆为情景的几何证明问题备战2022年高考数学圆锥曲线部分必会十大基本题型原卷版docx等2份试卷配套教学资源,其中试卷共30页, 欢迎下载使用。

    专题07以椭圆为情景的定点问题——备战2022年高考数学圆锥曲线部分必会十大基本题型:

    这是一份专题07以椭圆为情景的定点问题——备战2022年高考数学圆锥曲线部分必会十大基本题型,文件包含专题07以椭圆为情景的定点问题备战2022年高考数学圆锥曲线部分必会十大基本题型解析版docx、专题07以椭圆为情景的定点问题备战2022年高考数学圆锥曲线部分必会十大基本题型原卷版docx等2份试卷配套教学资源,其中试卷共27页, 欢迎下载使用。

    专题06以椭圆为情景的定值问题——备战2022年高考数学圆锥曲线部分必会十大基本题型:

    这是一份专题06以椭圆为情景的定值问题——备战2022年高考数学圆锥曲线部分必会十大基本题型,文件包含专题06以椭圆为情景的定值问题备战2022年高考数学圆锥曲线部分必会十大基本题型解析版docx、专题06以椭圆为情景的定值问题备战2022年高考数学圆锥曲线部分必会十大基本题型原卷版docx等2份试卷配套教学资源,其中试卷共29页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map