所属成套资源:2022山西大学附属中学高三5月模考诊断考试卷
山西省山西大学附中高三5月三模三模诊断考试 理科数学 word版含答案
展开
这是一份山西省山西大学附中高三5月三模三模诊断考试 理科数学 word版含答案,文件包含59理科答案修改版docx、59理科题修改版docx、山西大学附中2021~2022学年高三第二学期5月诊断考试数学试题理pdf等3份试卷配套教学资源,其中试卷共14页, 欢迎下载使用。
5月数学理科答案1.【详解】因,则故选:A2.【详解】由,即,解得,所以,又,所以;故选:A3.【详解】由于,所以,由于与的夹角为,所以,在上的投影为.故选:C4.【详解】因为,所以,又因为,所以公差,所以,故选:.5.【详解】因为,,即,所以,则.故选:C.6.【详解】甲和乙必须安装不同的吉祥物,则有种情况,剩余3人分两组,一组1人,一组2人,有,然后分配到参与两个吉祥物的安装,有,则共有种,故选:. 7.【详解】抛物线的焦点,准线为过点作准线于点,故△PAF的周长为,,可知当三点共线时周长最小,为故选:C 8.【详解】棱长为1的正方形的面积为,正六边形的面积为,又正方形有4个顶点,正六边形有6个顶点,该多面体共有24个顶点,所以最多有6个正方形,最少有4个正六边形,1个正六边形与3个正方形相连,所以该多面体有6个正方形,正六边形有个,所以该多面体的表面积为,故选:C.9.【详解】因为,所以,所以,所以或.又A为锐角,所以.因为,所以,所以,又,所以,所以为锐角,所以,又,所以,所以△ABC的面积,故选:D.10.【详解】由双曲线的性质可得,由双曲线的对称性,不妨设点P在第一象限,因为,所以,即,设,因为双曲线的渐近线方程为,所以,所以,因为,所以,所以的横坐标为,纵坐标为,即点的坐标为,所以,设,则,在中,由余弦定理可得,所以,得,所以,所以,所以,所以,所以,所以,所以离心率为,故选:B11.【详解】由题意得:;令,则,当时,;当时,;在上的单调递减,在上单调递增;;又,当时,;方程有两个不等解,,;,又,,,;又,,;综上所述:.故选:D.12.【详解】因为函数的图象关于点对称,所以函数是奇函数,因为,所以.令,则在R上单调递增.又,,所以,.因为,所以,即,所以,所以.故选:C.13.【详解】∵双曲线的焦点在x轴上∴,即.∵双曲线的两条渐近线互相垂直∴,即,解得(负值舍去).故答案为:1.14.【详解】由题意令,得,即,解得,则中含的项为,故展开式中的系数是,故答案为:-6315.【详解】为中点,,,又、、三点共线,,又,,化简可得,,又数列是首项为4、公比为2的等比数列.,.16.【详解】对①:当H为DE的中点时,取中点为,连接,如下所示:因为分别为的中点,故可得//,,根据已知条件可知://,故//,故四边形为平行四边形,则//,又面面,故//面,故①正确;对②:因为面面,故,又四边形为矩形,故,则两两垂直,以为坐标原点,建立空间直角坐标系如下所示:则,设,,若GH⊥AE,则,即,解得,不满足题意,故②错误;对③:,因为均为定点,故为定值,又//面面,故//面,又点在上运动,故点到面的距离是定值,故三棱锥的体积为定值,则③正确;对④:取△的外心为,过作平面的垂线,则三棱锥的外接球的球心一定在上因为面,面面,则,又,面,故面,又面,则//,故在同一个平面,则过作,连接如图所示.在△中,容易知,则由余弦定理可得,故,则由正弦定理可得;设三棱锥的外接球半径为,则,在△中,,,又,故由勾股定理可知:,即,解得:,则该棱锥外接球的表面积,故④正确.故答案为:①③④.17.【详解】(1)选①②,由可知数列是以公差的等差数列,又得,故选②③,由可知数列是以公差的等差数列,由可知,选①③,无法确定数列.(2),其中,当,时,当,时,数列是从第三项开始,以公差的等差数列.18.【详解】(1)由,得, ∴平均数为(岁),设中位数为岁,则,解得(岁),即中位数约为岁;(2)由频率分布直方图可得第、组的频率比为3:1;所以从第、组中抽取的人数比为3:1,又两组共抽取8人,所以第、组抽取的人数分别为人、人, 设从人中随机抽取人进行访谈且第组恰好抽到人为事件,则; (3)从众多参与调查的人中任意选出人,能自觉隔离防控新型冠状病毒肺炎的概率为,可取、、、,服从, 则,, ,, 则的分布列为:∴.19.【详解】(1)设(),由题意知,∴.∵点,且,解得,∴,,因此C的方程为.(2)由题意可知,直线l的方程为.由得,设,,则,.∵轴,∴,∴直线,令,得.∵轴,∴.∴,∴B,M,E三点共线.20.【详解】(1)证明:如图,作的中点,连接,,在等腰梯形中,,为,的中点,∴,在正中,为的中点,∴,∵,,,,平面,∴平面,又平面,∴.(2)解:∵平面,在平面内作,以为坐标原点,以,,,分别为,,,轴正向,如图建立空间直角坐标系,∵,,∴为二面角的平面角,即,,,,,,,设平面的法向量为,,,则有,即,则可取,又,设直线与平面所成角为,∴,∵,∴,∴.21.【详解】(1)由题意知,令,得,令,得,所以在上单调递减,在上单调递增,所以,无极大值.(2)由题意知恒成立,设,则.①当时,,与恒成立矛盾,不合题意.②当时,在上单调递减,又因为,且时,,所以,使得,即,且当时,,单调递增,当时,,单调递减,所以,.由恒成立知,又因为,所以.所以,即,解得.设,,则,所以在上单词递增,所以,即m的最小值是.22.【详解】(1)当时,所以,则,即,因为,,所以,又,所以;当时,所以,则,即,因为,所以 ,所以,,所以;所以曲线的图形如下所示:所以曲线与坐标轴所围成图形的面积为;(2)因为点,在曲线C上,所以,所以的面积所以当,即时;23.【详解】(1)由题意,时,即,则,即 ,解得 或 ,故不等式解集为 或 ;(2)证明:,当 时,,当时,,由于 ,故,当 时,,综合以上,.
相关试卷
这是一份泸州2023届高三第三次教学质量诊断性考试(三模)理科数学试题,共4页。
这是一份2022届山西省山西大学附中高三5月三模(总第七次模块)诊断考试数学文试题PDF版含答案,文件包含59文科答案修改docx、59文科题修改版pdf、山西大学附中2021~2022学年高三第二学期5月诊断考试数学试题文pdf等3份试卷配套教学资源,其中试卷共12页, 欢迎下载使用。
这是一份2022届山西省山西大学附中高三5月三模(总第七次模块)诊断考试数学理试题PDF版含答案,文件包含59理科答案修改版docx、59理科题修改版pdf、山西大学附中2021~2022学年高三第二学期5月诊断考试数学试题理pdf等3份试卷配套教学资源,其中试卷共12页, 欢迎下载使用。