2022年中考数学三轮复习:矩形(含答案)
展开
这是一份2022年中考数学三轮复习:矩形(含答案),共29页。
2022年中考数学三轮复习:矩形
一.选择题(共10小题)
1.如图,在矩形ABCD中,点E是边BC的中点,AE⊥BD,垂足为F,则tan∠BDE的值是( )
A. B. C. D.
2.如图,已知矩形ABCD的顶点A,D分别落在x轴、y轴上,OD=2OA=6,AD:AB=3:1,则点C的坐标是( )
A.(2,7) B.(3,7) C.(3,8) D.(4,8)
3.矩形ABCD与CEFG如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH=( )
A.1 B. C. D.
4.如图,在矩形ABCD中,对角线AC与BD相交于点O.点E、F分别是AB,AO的中点,且AC=8.则EF的长度为( )
A.2 B.4 C.6 D.8
5.如图,在平面直角坐标系xOy中,矩形ABCD的顶点A在x轴的正半轴上,矩形的另一个顶点D在y轴的正半轴上,矩形的边AB=a,BC=b,∠DAO=x,则点C到x轴的距离等于( )
A.acosx+bsinx B.acosx+bcosx
C.asinx+bcosx D.asinx+bsinx
6.如图,矩形ABCD的对角线AC,BD交于点O,AB=6,BC=8,过点O作OE⊥AC,交AD于点E,过点E作EF⊥BD,垂足为F,则OE+EF的值为( )
A. B. C. D.
7.如图,矩形ABCD的对角线AC、BD相交于点O,AB:BC=3:2,过点B作BE∥AC,过点C作CE∥DB,BE、CE交于点E,连接DE,则tan∠EDC=( )
A. B. C. D.
8.如图,在矩形ABCD中,对角线AC,BD相交于点O,AB=6,∠DAC=60°,点F在线段AO上从点A至点O运动,连接DF,以DF为边作等边三角形DFE,点E和点A分别位于DF两侧,下列结论:①∠BDE=∠EFC;②ED=EC;③∠ADF=∠ECF;④点E运动的路程是2,其中正确结论的序号为( )
A.①④ B.①②③ C.②③④ D.①②③④
9.在正方形ABCD中,AB=2,E是BC的中点,在BC延长线上取点F使EF=ED,过点F作FG⊥ED交ED于点M,交AB于点G,交CD于点N,以下结论中:①tan∠GFB=;②NM=NC;③;④S四边形GBEM=.正确的个数是( )
A.4个 B.3个 C.2个 D.1个
10.如图,在平面直角坐标系中,矩形OABC的OA边在x轴的正半轴上,OC边在y轴的正半轴上,点B的坐标为(4,2),反比例函数y=(x>0)的图象与BC交于点D,与对角线OB交于点E,与AB交于点F,连接OD,DE,EF,DF.下列结论:
①sin∠DOC=cos∠BOC;②OE=BE;③S△DOE=S△BEF;④OD:DF=2:3.
其中正确的结论有( )
A.4个 B.3个 C.2个 D.1个
二.填空题(共7小题)
11.如图,在矩形ABCD中,DE⊥AC,垂足为点E.若sin∠ADE=,AD=4,则AB的长为 .
12.如图,在矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为 .
13.如图,在矩形ABCD中,AD=AB,对角线相交于点O,动点M从点B向点A运动(到点A即停止),点N是AD上一动点,且满足∠MON=90°,连结MN.在点M、N运动过程中,则以下结论正确的是 .(写出所有正确结论的序号)
①点M、N的运动速度不相等;
②存在某一时刻使S△AMN=S△MON;
③S△AMN逐渐减小;
④MN2=BM2+DN2.
14.如图,在矩形ABCD中,BD是对角线,AE⊥BD,垂足为E,连接CE,若tan∠ADB=,则tan∠DEC的值是 .
15.如图,在Rt△ABC中,∠BAC=90°,且BA=3,AC=4,点D是斜边BC上的一个动点,过点D分别作DM⊥AB于点M,DN⊥AC于点N,连接MN,则线段MN的最小值为 .
16.如图,在矩形ABCD中,点E在边AB上,△BEC与△FEC关于直线EC对称,点B的对称点F在边AD上,G为CD中点,连结BG分别与CE,CF交于M,N两点.若BM=BE,MG=1,则BN的长为 ,sin∠AFE的值为 .
17.如图,M为矩形ABCD中AD边中点,E、F分别为BC、CD上的动点,且BE=2DF,若AB=1,BC=2,则ME+2AF的最小值为 .
三.解答题(共4小题)
18.如图,在△ABC中,AB=AC,点D(不与点B重合)在BC上,点E是AB的中点,过点A作AF∥BC交DE延长线于点F,连接AD,BF.
(1)求证:△AEF≌△BED.
(2)若BD=CD,求证:四边形AFBD是矩形.
19.已知:如图,矩形ABCD的对角线AC,BD相交于点O,∠BOC=120°,AB=2.
(1)求矩形对角线的长;
(2)过O作OE⊥AD于点E,连结BE.记∠ABE=α,求tanα的值.
20.如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F分别为OB,OD的中点,延长AE至G,使EG=AE,连接CG.
(1)求证:△ABE≌△CDF;
(2)当AB与AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.
21.如图:在△ABC中,CE、CF分别平分∠ACB与它的邻补角∠ACD,AE⊥CE于E,AF⊥CF于F,直线EF分别交AB、AC于M、N.
(1)求证:四边形AECF为矩形;
(2)试猜想MN与BC的关系,并证明你的猜想;
(3)如果四边形AECF是菱形,试判断△ABC的形状,直接写出结果,不用说明理由.
2022年中考数学三轮复习:矩形
参考答案与试题解析
一.选择题(共10小题)
1.如图,在矩形ABCD中,点E是边BC的中点,AE⊥BD,垂足为F,则tan∠BDE的值是( )
A. B. C. D.
【解答】解:∵四边形ABCD是矩形,
∴AD=BC,AD∥BC,
∵点E是边BC的中点,
∴BE=BC=AD,
∴△BEF∽△DAF,
∴=,
∴EF=AF,
∴EF=AE,
∵点E是边BC的中点,
由矩形的对称性得:AE=DE,
∴EF=DE,设EF=x,则DE=3x,
∴DF==2x,
∴tan∠BDE===;
故选:A.
2.如图,已知矩形ABCD的顶点A,D分别落在x轴、y轴上,OD=2OA=6,AD:AB=3:1,则点C的坐标是( )
A.(2,7) B.(3,7) C.(3,8) D.(4,8)
【解答】解:过C作CE⊥y轴于E,
∵四边形ABCD是矩形,
∴CD=AB,∠ADC=90°,
∴∠ADO+∠CDE=∠CDE+∠DCE=90°,
∴∠DCE=∠ADO,
∴△CDE∽△ADO,
∴,
∵OD=2OA=6,AD:AB=3:1,
∴OA=3,CD:AD=,
∴CE=OD=2,DE=OA=1,
∴OE=7,
∴C(2,7),
故选:A.
3.矩形ABCD与CEFG如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH=( )
A.1 B. C. D.
【解答】解:如图,延长GH交AD于点P,
∵四边形ABCD和四边形CEFG都是矩形,
∴∠ADC=∠ADG=∠CGF=90°,AD=BC=2、GF=CE=1,
∴AD∥GF,
∴∠GFH=∠PAH,
又∵H是AF的中点,
∴AH=FH,
在△APH和△FGH中,
∵,
∴△APH≌△FGH(ASA),
∴AP=GF=1,GH=PH=PG,
∴PD=AD﹣AP=1,
∵CG=2、CD=1,
∴DG=1,
则GH=PG=×=,
故选:C.
4.如图,在矩形ABCD中,对角线AC与BD相交于点O.点E、F分别是AB,AO的中点,且AC=8.则EF的长度为( )
A.2 B.4 C.6 D.8
【解答】解:∵四边形ABCD是矩形,
∴AC=BD=8,BO=DO=BD,
∴BO=DO=BD=4,
∵点E、F是AB,AO的中点,
∴EF是△AOB的中位线,
∴EF=BO=2,
故选:A.
5.如图,在平面直角坐标系xOy中,矩形ABCD的顶点A在x轴的正半轴上,矩形的另一个顶点D在y轴的正半轴上,矩形的边AB=a,BC=b,∠DAO=x,则点C到x轴的距离等于( )
A.acosx+bsinx B.acosx+bcosx
C.asinx+bcosx D.asinx+bsinx
【解答】解:作CE⊥y轴于E,如图:
∵四边形ABCD是矩形,
∴CD=AB=a,AD=BC=b,∠ADC=90°,
∴∠CDE+∠ADO=90°,
∵∠AOD=90°,
∴∠DAO+∠ADO=90°,
∴∠CDE=∠DAO=x,
∵sin∠DAO=,cos∠CDE=,
∴OD=AD×sin∠DAO=bsinx,DE=CD×cos∠CDE=acosx,
∴OE=DE+OD=acosx+bsinx,
∴点C到x轴的距离等于acosx+bsinx;
故选:A.
6.如图,矩形ABCD的对角线AC,BD交于点O,AB=6,BC=8,过点O作OE⊥AC,交AD于点E,过点E作EF⊥BD,垂足为F,则OE+EF的值为( )
A. B. C. D.
【解答】解:∵AB=6,BC=8,
∴矩形ABCD的面积为48,AC==10,
∴AO=DO=AC=5,
∵对角线AC,BD交于点O,
∴△AOD的面积为12,
∵EO⊥AO,EF⊥DO,
∴S△AOD=S△AOE+S△DOE,即12=AO×EO+DO×EF,
∴12=×5×EO+×5×EF,
∴5(EO+EF)=24,
∴EO+EF=,
故选:C.
7.如图,矩形ABCD的对角线AC、BD相交于点O,AB:BC=3:2,过点B作BE∥AC,过点C作CE∥DB,BE、CE交于点E,连接DE,则tan∠EDC=( )
A. B. C. D.
【解答】解:∵矩形ABCD的对角线AC、BD相交于点O,AB:BC=3:2,
∴设AB=3x,BC=2x.
如图,过点E作EF⊥直线DC交线段DC延长线于点F,连接OE交BC于点G.
∵BE∥AC,CE∥BD,
∴四边形BOCE是平行四边形,
∵四边形ABCD是矩形,
∴OB=OC,
∴四边形BOCE是菱形.
∴OE与BC垂直平分,
∴EF=AD==x,OE∥AB,
∴四边形AOEB是平行四边形,
∴OE=AB,
∴CF=OE=AB=x.
∴tan∠EDC===.
故选:A.
8.如图,在矩形ABCD中,对角线AC,BD相交于点O,AB=6,∠DAC=60°,点F在线段AO上从点A至点O运动,连接DF,以DF为边作等边三角形DFE,点E和点A分别位于DF两侧,下列结论:①∠BDE=∠EFC;②ED=EC;③∠ADF=∠ECF;④点E运动的路程是2,其中正确结论的序号为( )
A.①④ B.①②③ C.②③④ D.①②③④
【解答】解:①∵∠DAC=60°,OD=OA,
∴△OAD为等边三角形,
∴∠DOA=∠DAO=∠ODA=60°,AD=OD,
∵△DFE为等边三角形,
∴∠EDF=∠EFD=∠DEF=60°,DF=DE,
∵∠BDE+∠FDO=∠ADF+∠FDO=60°,
∴∠BDE=∠ADF,
∵∠ADF+∠AFD+∠DAF=180°,
∴∠ADF+∠AFD=180°﹣∠DAF=120°,
∵∠EFC+∠AFD+∠DFE=180°,
∴∠EFC+∠AFD=180°﹣∠DFE=120°,
∴∠ADF=∠EFC,
∴∠BDE=∠EFC,
故结论①正确;
②如图,连接OE,
在△DAF和△DOE中,
,
∴△DAF≌△DOE(SAS),
∴∠DOE=∠DAF=60°,
∵∠COD=180°﹣∠AOD=120°,
∴∠COE=∠COD﹣∠DOE=120°﹣60°=60°,
∴∠COE=∠DOE,
在△ODE和△OCE中,
,
∴△ODE≌△OCE(SAS),
∴ED=EC,∠OCE=∠ODE,
故结论②正确;
③∵∠ODE=∠ADF,
∴∠ADF=∠OCE,即∠ADF=∠ECF,
故结论③正确;
④如图,延长OE至E′,使OE′=OD,连接DE′,
∵△DAF≌△DOE,∠DOE=60°,
∴点F在线段AO上从点A至点O运动时,点E从点O沿线段OE′运动到E′,
∵OE′=OD=AD=AB•tan∠ABD=6•tan30°=2,
∴点E运动的路程是2,
故结论④正确;
故选:D.
9.在正方形ABCD中,AB=2,E是BC的中点,在BC延长线上取点F使EF=ED,过点F作FG⊥ED交ED于点M,交AB于点G,交CD于点N,以下结论中:①tan∠GFB=;②NM=NC;③;④S四边形GBEM=.正确的个数是( )
A.4个 B.3个 C.2个 D.1个
【解答】解:∵四边形ABCD是正方形,
∴AB=BC=CD=AD,
∵AB=2,点E是BC边的中点,
∴CE=1,
∵∠DNM=∠FCN,
∵FG⊥DE,
∴∠DMN=90°,
∴∠DMN=∠NCF=90°,∠GFB=∠EDC,
tan∠GFB=tan∠EDC==,①正确;
②∵∠DMN=∠NCF=90°,∠MND=∠FNC,
∴∠MDN=∠CFN
∵∠ECD=∠EMF,EF=ED,∠MDN=∠CFN
∴△DEC≌△FEM(AAS)
∴EM=EC,
∴DM=FC,
∠MDN=∠CFN,∠MND=∠FNC,DM=FC,
∴△DMN≌△FCN(AAS),
∴MN=NC,故②正确;
③∵BE=EC,ME=EC,
∴BE=ME,
在Rt△GBE和Rt△GME中,BE=ME,GE=GE,
∴Rt△GBE≌Rt△GME(HL),
∴∠BEG=∠MEG,
∵ME=EC,∠EMC=∠ECM,
∵∠EMC+∠ECM=∠BEG+∠MEG,
∴∠GEB=∠MCE,
∴MC∥GE,
∴,
∵EF=DE=,
CF=EF﹣EC=﹣1,
∴,故③错误;
④由上述可知:BE=EC=1,CF=﹣1,
∴BF=+1,
∵tanF=tan∠EDC=,
∴GB=BF=,
∴S四边形GBEM=.故④正确,
故选:B.
10.如图,在平面直角坐标系中,矩形OABC的OA边在x轴的正半轴上,OC边在y轴的正半轴上,点B的坐标为(4,2),反比例函数y=(x>0)的图象与BC交于点D,与对角线OB交于点E,与AB交于点F,连接OD,DE,EF,DF.下列结论:
①sin∠DOC=cos∠BOC;②OE=BE;③S△DOE=S△BEF;④OD:DF=2:3.
其中正确的结论有( )
A.4个 B.3个 C.2个 D.1个
【解答】解:①矩形OABC中,
∵B(4,2),
∴OA=4,OC=2,
由勾股定理得:OB==2,
当y=2时,2=,
∴x=1,
∴D(1,2),
∴CD=1,
由勾股定理得:OD==,
∴sin∠DOC===,
cos∠BOC==,
∴sin∠DOC=cos∠BOC,
故①正确;
②设OB的解析式为:y=kx(k≠0),
把(4,2)代入得:4k=2,
∴k=,
∴y=x,
当x=时,x=±2,
∴E(2,1),
∴E是OB的中点,
∴OE=BE,
故②正确;
③当x=4时,y=,
∴F(4,),
∴BF=2﹣=,
∴S△BEF=×(4﹣2)=,
S△DOE=﹣﹣
=4﹣1﹣
=,
∴S△DOE=S△BEF,
故③正确;
④由勾股定理得:DF==,
∵OD=,
∴=,
即OD:DF=2:3.
故④正确;
其中正确的结论有①②③④,共4个.
故选:A.
二.填空题(共7小题)
11.如图,在矩形ABCD中,DE⊥AC,垂足为点E.若sin∠ADE=,AD=4,则AB的长为 3 .
【解答】解:∵DE⊥AC,
∴∠ADE+∠CAD=90°,
∵∠ACD+∠CAD=90°,
∴∠ACD=∠ADE,
∵矩形ABCD的对边AB∥CD,
∴∠BAC=∠ACD,
∵sin∠ADE=,
∴=,
∴AC===5,
由勾股定理得,AB===3,
故答案为:3.
12.如图,在矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为 3 .
【解答】解:∵四边形ABCD是矩形,
∴OB=OD,OA=OC,AC=BD,
∴OA=OB,
∵AE垂直平分OB,
∴AB=AO,
∴OA=AB=OB=3,
∴BD=2OB=6,
∴AD===3;
故答案为:3.
13.如图,在矩形ABCD中,AD=AB,对角线相交于点O,动点M从点B向点A运动(到点A即停止),点N是AD上一动点,且满足∠MON=90°,连结MN.在点M、N运动过程中,则以下结论正确的是 ①②③④ .(写出所有正确结论的序号)
①点M、N的运动速度不相等;
②存在某一时刻使S△AMN=S△MON;
③S△AMN逐渐减小;
④MN2=BM2+DN2.
【解答】解:如图,当M与B点重合时,此时NO⊥BD,
∵在矩形ABCD中,AD=AB,
∴∠ADB=∠DAC=30°,
∴∠AOD=180°﹣30°﹣30°=120°,
∴∠NAO=∠AOD﹣∠NOD=120°﹣90°=30°,
∴∠DAO=∠NOA=30°,
∴AN=ON=DN•sin30°=DN,
∵AN+DN=AD,
∴AN=AD,
当M点运动到M'位置时,此时OM'⊥AB,N点运动到了N',
∵AC和BD是矩形ABCD的对角线,
∴M点运动的距离是MM'=AB,
N点运动的距离是NN'===AD,
又∵AD=AB,
∴NN'=×AB=AB=MM',
∴N点的运动速度是M点的,
故①正确,
当M在M'位置时,
∵∠OM'A=90°,∠N'AB=90°,∠M'ON'=90°,
∴四边形AM'ON'是矩形,
∴此时S△AMN=S△MON,
故②正确,
令AB=1,则AD=,设BM=x,则N点运动的距离为x,
∴AN=AD+x=+x,
∴S△AMN=AM•AN=(AB﹣BM)•AN=(1﹣x)(+x)=﹣x2,
∵0≤x≤1,在x的取值范围内函数﹣x2的图象随x增加而减小,
∴S△AMN逐渐减小,
故③正确,
∵MN2=(AB﹣BM)2+(AD﹣DN)2=AB2﹣2AB•BM+BM2+AD2﹣2AD•DN+DN2=(AB2﹣2AB•BM+3AB2﹣2•DN)+BM2+DN2=(4AB2﹣2AB•BM﹣2AB•DN)+BM2+DN2,
∵AN=AD+BM=AB+BM,
∴DN=AD﹣AN=AB﹣(AB+BM)=AB﹣BM,
∵2AB•DN=2AB×(AB﹣BM)=4AB2﹣2AB•BM,
∴MN2=(4AB2﹣2AB•BM﹣2AB•DN)+BM2+DN2=BM2+DN2,
故④正确,
方法二判定④:如图2,延长MO交CD于M',
∵∠MOB=∠M'OD,OB=OD,∠DBA=∠BDC,
∴△OMB≌△OM'D(ASA),
∴BM=DM',OM=OM',
连接NM',
∵NO⊥MM',
则MN=NM',
∵NM'2=DN2+DM'2,
∴MN2=BM2+DN2,
故④正确,
故答案为:①②③④.
14.如图,在矩形ABCD中,BD是对角线,AE⊥BD,垂足为E,连接CE,若tan∠ADB=,则tan∠DEC的值是 .
【解答】解:如图,过点C作CF⊥BD于点F,
在△ABE与△CDF中,
,
∴△ABE≌△CDF(AAS),
∴AE=CF,BE=FD,
∵AE⊥BD,tan∠ADB==,
设AB=a,则AD=2a,
∴BD=a,
∵S△ABD=BD•AE=AB•AD,
∴AE=CF=a,
∴BE=FD=a,
∴EF=BD﹣2BE=a﹣a=a,
∴tan∠DEC==,
故答案为:.
15.如图,在Rt△ABC中,∠BAC=90°,且BA=3,AC=4,点D是斜边BC上的一个动点,过点D分别作DM⊥AB于点M,DN⊥AC于点N,连接MN,则线段MN的最小值为 .
【解答】解:连接AD,
∵∠BAC=90°,且BA=3,AC=4,
∴BC==5,
∵DM⊥AB,DN⊥AC,
∴∠DMA=∠DNA=∠BAC=90°,
∴四边形DMAN是矩形,
∴MN=AD,
∴当AD⊥BC时,AD的值最小,
此时,△ABC的面积=AB×AC=BC×AD,
∴AD==,
∴MN的最小值为;
故答案为:.
16.如图,在矩形ABCD中,点E在边AB上,△BEC与△FEC关于直线EC对称,点B的对称点F在边AD上,G为CD中点,连结BG分别与CE,CF交于M,N两点.若BM=BE,MG=1,则BN的长为 2 ,sin∠AFE的值为 ﹣1 .
【解答】解:∵BM=BE,
∴∠BEM=∠BME,
∵AB∥CD,
∴∠BEM=∠GCM,
又∵∠BME=∠GMC,
∴∠GCM=∠GMC,
∴MG=GC=1,
∵G为CD中点,
∴CD=AB=2.
连接BF,FM,
由翻折可得∠FEM=∠BEM,BE=EF,
∴BM=EF,
∵∠BEM=∠BME,
∴∠FEM=∠BME,
∴EF∥BM,
∴四边形BEFM为平行四边形,
∵BM=BE,
∴四边形BEFM为菱形,
∵∠EBC=∠EFC=90°,EF∥BG,
∴∠BNF=90°,
∵BF平分∠ABN,
∴FA=FN,
∴Rt△ABF≌Rt△NBF(HL),
∴BN=AB=2.
∵FE=FM,FA=FN,∠A=∠BNF=90°,
∴Rt△AEF≌Rt△NMF(HL),
∴AE=NM,
设AE=NM=x,
则BE=FM=2﹣x,NG=MG﹣NM=1﹣x,
∵FM∥GC,
∴△FMN∽△CGN,
∴=,
即=,
解得x=2+(舍)或x=2﹣,
∴EF=BE=2﹣x=,
∴sin∠AFE===﹣1.
故答案为:2;﹣1.
17.如图,M为矩形ABCD中AD边中点,E、F分别为BC、CD上的动点,且BE=2DF,若AB=1,BC=2,则ME+2AF的最小值为 .
【解答】解:如图,过点M作MH⊥BC于H.设DF=x,则BE=2x.
∵四边形ABCD是矩形,
∴∠BAD=∠B=∠D=90°,
∵MH⊥BC,
∴∠MHB=90°,
∴四边形ABHM是矩形,
∴AM=DM=BH=1,AB=MH=1,
∴EH=1﹣2x,
∴ME+2AF=+2=+,
欲求ME+2AF的最小值,相当于在x轴上找一点Q(2x,0),使得点Q到J(0,4),和K(1,1)的距离之和最小(如下图),
作点J关于x轴的对称点J′,连接KJ′交x轴于Q,连接JQ,此时JQ+QK的值最小,最小值=KJ′,
∵J′(0,﹣4),K(1,1),
∴KJ′==,
∴ME+2AF的最小值为,
故答案为.
三.解答题(共4小题)
18.如图,在△ABC中,AB=AC,点D(不与点B重合)在BC上,点E是AB的中点,过点A作AF∥BC交DE延长线于点F,连接AD,BF.
(1)求证:△AEF≌△BED.
(2)若BD=CD,求证:四边形AFBD是矩形.
【解答】证明:(1)∵AF∥BC,
∴∠AFE=∠EDB,
∵E为AB的中点,
∴EA=EB,
在△AEF和△BED中,
,
∴△AEF≌△BED(ASA);
(2)∵△AEF≌△BED,
∴AF=BD,
∵AF∥BD,
∴四边形AFBD是平行四边形,
∵AB=AC,BD=CD,
∴AD⊥BD,
∴四边形AFBD是矩形.
19.已知:如图,矩形ABCD的对角线AC,BD相交于点O,∠BOC=120°,AB=2.
(1)求矩形对角线的长;
(2)过O作OE⊥AD于点E,连结BE.记∠ABE=α,求tanα的值.
【解答】解:(1)∵∠BOC=120°,
∴∠AOB=60°,
∵四边形ABCD是矩形,
∴∠BAD=90°,AC=BD,AO=OC,BO=DO,
∴AO=BO,
∴△AOB是等边三角形,
∴AB=AO=BO,
∵AB=2,
∴BO=2,
∴BD=2BO=4,
∴矩形对角线的长为4;
(2)由勾股定理得:AD===2,
∵OA=OD,OE⊥AD于点E,
∴AE=DE=AD=,
∴tanα==.
20.如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F分别为OB,OD的中点,延长AE至G,使EG=AE,连接CG.
(1)求证:△ABE≌△CDF;
(2)当AB与AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.
【解答】(1)证明:∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD,OB=OD,OA=OC,
∴∠ABE=∠CDF,
∵点E,F分别为OB,OD的中点,
∴BE=OB,DF=OD,
∴BE=DF,
在△ABE和△CDF中,
,
∴△ABE≌△CDF(SAS);
(2)解:当AC=2AB时,四边形EGCF是矩形;理由如下:
∵AC=2OA,AC=2AB,
∴AB=OA,
∵E是OB的中点,
∴AG⊥OB,
∴∠OEG=90°,
同理:CF⊥OD,
∴AG∥CF,
∴EG∥CF,
由(1)得:△ABE≌△CDF,
∴AE=CF,
∵EG=AE,
∴EG=CF,
∴四边形EGCF是平行四边形,
∵∠OEG=90°,
∴四边形EGCF是矩形.
21.如图:在△ABC中,CE、CF分别平分∠ACB与它的邻补角∠ACD,AE⊥CE于E,AF⊥CF于F,直线EF分别交AB、AC于M、N.
(1)求证:四边形AECF为矩形;
(2)试猜想MN与BC的关系,并证明你的猜想;
(3)如果四边形AECF是菱形,试判断△ABC的形状,直接写出结果,不用说明理由.
【解答】(1)证明:∵AE⊥CE于E,AF⊥CF于F,
∴∠AEC=∠AFC=90°,
又∵CE、CF分别平分∠ACB与它的邻补角∠ACD,
∴∠BCE=∠ACE,∠ACF=∠DCF,
∴∠ACE+∠ACF=(∠BCE+∠ACE+∠ACF+∠DCF)=×180°=90°,
∴三个角为直角的四边形AECF为矩形.
(2)结论:MN∥BC且MN=BC.
证明:∵四边形AECF为矩形,
∴对角线相等且互相平分,
∴NE=NC,
∴∠NEC=∠ACE=∠BCE,
∴MN∥BC,
又∵AN=CN(矩形的对角线相等且互相平分),
∴N是AC的中点,
若M不是AB的中点,则可在AB取中点M1,连接M1N,
则M1N是△ABC的中位线,MN∥BC,
而MN∥BC,M1即为点M,
所以MN是△ABC的中位线(也可以用平行线等分线段定理,证明AM=BM)
∴MN=BC;
法二:延长MN至K,使NK=MN,
因为对角线互相平分,
所以AMCK是平行四边形,KC∥MA,KC=AM因为MN∥BC,
所以MBCK是平行四边形,MK=BC,
所以MN=BC
(3)解:△ABC是直角三角形(∠ACB=90°).
理由:∵四边形AECF是菱形,
∴AC⊥EF,
∵EF∥BC,
∴AC⊥CB,
∴∠ACB=90°.即△ABC是直角三角形.
相关试卷
这是一份2023年中考数学三轮冲刺考前查漏补缺《矩形、菱形与正方形》(提高版)(含答案),共12页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年中考数学三轮冲刺考前查漏补缺《矩形、菱形和正方形》(基础版)(含答案),共14页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份中考数学专题复习 专题24 矩形,文件包含中考数学专题复习专题24矩形教师版含解析docx、中考数学专题复习专题24矩形学生版docx等2份试卷配套教学资源,其中试卷共41页, 欢迎下载使用。