![2022年中考数学考前30天迅速提分专题04 函数(含答案)第1页](http://m.enxinlong.com/img-preview/2/3/13130367/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年中考数学考前30天迅速提分专题04 函数(含答案)第2页](http://m.enxinlong.com/img-preview/2/3/13130367/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年中考数学考前30天迅速提分专题04 函数(含答案)第3页](http://m.enxinlong.com/img-preview/2/3/13130367/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:2022年中考数学考前30天迅速提分专题(含答案)
2022年中考数学考前30天迅速提分专题04 函数(含答案)
展开
这是一份2022年中考数学考前30天迅速提分专题04 函数(含答案),共96页。试卷主要包含了4 函数,4m/s.等内容,欢迎下载使用。
2022年中考数学考前30天迅速提分复习方案(全国通用)
专题1.4 函数(全国中考58个考点真题训练)
1.点的坐标
(1)我们把有顺序的两个数a和b组成的数对,叫做有序数对,记作(a,b).
(2)平面直角坐标系的相关概念
①建立平面直角坐标系的方法:在同一平面内画;两条有公共原点且垂直的数轴.
②各部分名称:水平数轴叫x轴(横轴),竖直数轴叫y轴(纵轴),x轴一般取向右为正方向,y轴一般取象上为正方向,两轴交点叫坐标系的原点.它既属于x轴,又属于y轴.
(3)坐标平面的划分
建立了坐标系的平面叫做坐标平面,两轴把此平面分成四部分,分别叫第一象限,第二象限,第三象限,第四象限.坐标轴上的点不属于任何一个象限.
(4)坐标平面内的点与有序实数对是一一对应的关系.
2.规律型:点的坐标
规律型:点的坐标.
3.坐标确定位置
平面内特殊位置的点的坐标特征
(1)各象限内点P(a,b)的坐标特征:
①第一象限:a>0,b>0;②第二象限:a<0,b>0;③第三象限:a<0,b<0;④第四象限:a>0,b<0.
(2)坐标轴上点P(a,b)的坐标特征:
①x轴上:a为任意实数,b=0;②y轴上:b为任意实数,a=0;③坐标原点:a=0,b=0.
(3)两坐标轴夹角平分线上点P(a,b)的坐标特征:
①一、三象限:a=b;②二、四象限:a=﹣b.
4.坐标与图形性质
1、点到坐标轴的距离与这个点的坐标是有区别的,表现在两个方面:①到x轴的距离与纵坐标有关,到y轴的距离与横坐标有关;②距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.
2、有图形中一些点的坐标求面积时,过已知点向坐标轴作垂线,然后求出相关的线段长,是解决这类问题的基本方法和规律.
3、若坐标系内的四边形是非规则四边形,通常用平行于坐标轴的辅助线用“割、补”法去解决问题.
5.两点间的距离公式
两点间的距离公式:
设有两点A(x1,y1),B(x2,y2),则这两点间的距离为AB=.
说明:求直角坐标系内任意两点间的距离可直接套用此公式.
6.常量与变量
(1)变量和常量的定义:
在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量.
(2)方法:
①常量与变量必须存在于同一个变化过程中,判断一个量是常量还是变量,需要看两个方面:一是它是否在一个变化过程中;二是看它在这个变化过程中的取值情况是否发生变化;
②常量和变量是相对于变化过程而言的.可以互相转化;
③不要认为字母就是变量,例如π是常量.
7.函数的概念
函数的定义:设在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的函数,x是自变量.
说明:对于函数概念的理解:①有两个变量;②一个变量的数值随着另一个变量的数值的变化而发生变化;③对于自变量的每一个确定的值,函数值有且只有一个值与之对应,即单对应.
8.函数关系式
用来表示函数关系的等式叫做函数解析式,也称为函数关系式.
注意:
①函数解析式是等式.
②函数解析式中,通常等式的右边的式子中的变量是自变量,等式左边的那个字母表示自变量的函数.
③函数的解析式在书写时有顺序性,例如,y=x+9时表示y是x的函数,若写成x=﹣y+9就表示x是y的函数.
9.函数自变量的取值范围
自变量的取值范围必须使含有自变量的表达式都有意义.
①当表达式的分母不含有自变量时,自变量取全体实数.例如y=2x+13中的x.
②当表达式的分母中含有自变量时,自变量取值要使分母不为零.例如y=x+2x﹣1.
③当函数的表达式是偶次根式时,自变量的取值范围必须使被开方数不小于零.
④对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义.
10.函数值
函数值是指自变量在取值范围内取某个值时,函数与之对应唯一确定的值.
注意:①当已知函数解析式时,求函数值就是求代数式的值;当已知函数解析式,给出函数值时,求相应的自变量的值就是解方程;
②当自变量确定时,函数值是唯一确定的.但当函数值唯一确定时,对应的自变量可以是多个.
11.函数的图象
函数的图象定义
对于一个函数,如果把自变量与函数的每一对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形就是这个函数的图象.
注意:①函数图形上的任意点(x,y)都满足其函数的解析式;②满足解析式的任意一对x、y的值,所对应的点一定在函数图象上;③判断点P(x,y)是否在函数图象上的方法是:将点P(x,y)的x、y的值代入函数的解析式,若能满足函数的解析式,这个点就在函数的图象上;如果不满足函数的解析式,这个点就不在函数的图象上..
12.动点问题的函数图象
函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.
用图象解决问题时,要理清图象的含义即会识图.
13.函数的表示方法
函数的三种表示方法:列表法、解析式法、图象法.
其特点分别是:列表法能具体地反映自变量与函数的数值对应关系,在实际生活中应用非常广泛;解析式法准确地反映了函数与自变量之间的对应规律,根据它可以由自变量的取值求出相应的函数值,反之亦然;图象法直观地反映函数值随自变量的变化而变化的规律.
注意:①它们分别从数和形的角度反映了函数的本质;②它们之间可以互相转化.
14.分段函数
(1)一次函数与常函数组合的分段函数.
分段函数是在不同区间有不同对应方式的函数.(注意:在解决分段函数问题时,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际.)
(2)由文字图象信息确定分段函数.
根据图象读取信息时,要把握住以下三个方面:
①横、纵轴的意义,以及横、纵轴分别表示的量.
②关于某个具体点,要求向横、纵轴作垂线来求得该点的坐标.
③在实际问题中,要注意图象与x轴、y轴交点坐标代表的具体意义.
【规律方法】用图象描述分段函数的实际问题需要注意的四点
1.自变量变化而函数值不变化的图象用水平线段表示.
2.当两个阶段的图象都是一次函数(或正比例函数)时,自变量变化量相同,而函数值变化越大的图象与x轴的夹角就越大.
3.各个分段中,准确确定函数关系.
4.确定函数图象的最低点和最高点.
15.一次函数的定义
(1)一次函数的定义:
一般地,形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数.
(2)注意:
①又一次函数的定义可知:函数为一次函数⇔其解析式为y=kx+b(k≠0,k、b是常数)的形式.
②一次函数解析式的结构特征:k≠0;自变量的次数为1;常数项b可以为任意实数.
③一般情况下自变量的取值范围是任意实数.
④若k=0,则y=b(b为常数),此时它不是一次函数.
16.正比例函数的定义
(1)正比例函数的定义:
一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.
注意:正比例函数的定义是从解析式的角度出发的,注意定义中对比例系数的要求:k是常数,k≠0,k是正数也可以是负数.
(2)正比例函数图象的性质
正比例函数y=kx(k是常数,k≠0),我们通常称之为直线y=kx.
当k>0时,直线y=kx依次经过第三、一象限,从左向右上升,y随x的增大而增大;当k<0时,直线y=kx依次经过第二、四象限,从左向右下降,y随x的增大而减小.
(3)“两点法”画正比例函数的图象:经过原点与点(1,k)的直线是y=kx(k是常数,k≠0)的图象.
17.一次函数的图象
(1)一次函数的图象的画法:经过两点(0,b)、(﹣,0)或(1,k+b)作直线y=kx+b.
注意:①使用两点法画一次函数的图象,不一定就选择上面的两点,而要根据具体情况,所选取的点的横、纵坐标尽量取整数,以便于描点准确.②一次函数的图象是与坐标轴不平行的一条直线(正比例函数是过原点的直线),但直线不一定是一次函数的图象.如x=a,y=b分别是与y轴,x轴平行的直线,就不是一次函数的图象.
(2)一次函数图象之间的位置关系:直线y=kx+b,可以看做由直线y=kx平移|b|个单位而得到.
当b>0时,向上平移;b<0时,向下平移.
注意:①如果两条直线平行,则其比例系数相等;反之亦然;
②将直线平移,其规律是:上加下减,左加右减;
③两条直线相交,其交点都适合这两条直线.
18.正比例函数的图象
正比例函数的图象.
19.一次函数的性质
一次函数的性质:
k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.
由于y=kx+b与y轴交于(0,b),当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.
20.正比例函数的性质
正比例函数的性质.
21.一次函数图象与系数的关系
由于y=kx+b与y轴交于(0,b),当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.
①k>0,b>0⇔y=kx+b的图象在一、二、三象限;
②k>0,b<0⇔y=kx+b的图象在一、三、四象限;
③k<0,b>0⇔y=kx+b的图象在一、二、四象限;
④k<0,b<0⇔y=kx+b的图象在二、三、四象限.
22.一次函数图象上点的坐标特征
一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(﹣,0);与y轴的交点坐标是(0,b).
直线上任意一点的坐标都满足函数关系式y=kx+b.
23.一次函数图象与几何变换
直线y=kx+b,(k≠0,且k,b为常数)
①关于x轴对称,就是x不变,y变成﹣y:﹣y=kx+b,即y=﹣kx﹣b;
(关于X轴对称,横坐标不变,纵坐标是原来的相反数)
②关于y轴对称,就是y不变,x变成﹣x:y=k(﹣x)+b,即y=﹣kx+b;
(关于y轴对称,纵坐标不变,横坐标是原来的相反数)
③关于原点对称,就是x和y都变成相反数:﹣y=k(﹣x)+b,即y=kx﹣b.
(关于原点轴对称,横、纵坐标都变为原来的相反数)
24.待定系数法求一次函数解析式
待定系数法求一次函数解析式一般步骤是:
(1)先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;
(2)将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;
(3)解方程或方程组,求出待定系数的值,进而写出函数解析式.
注意:求正比例函数,只要一对x,y的值就可以,因为它只有一个待定系数;而求一次函数y=kx+b,则需要两组x,y的值.
25.待定系数法求正比例函数解析式
待定系数法求正比例函数的解析式.
26.一次函数与一元一次方程
一次函数与一元一次方程.
27.一次函数与一元一次不等式
(1)一次函数与一元一次不等式的关系
从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;
从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
(2)用画函数图象的方法解不等式kx+b>0(或<0)
对应一次函数y=kx+b,它与x轴交点为(﹣,0).
当k>0时,不等式kx+b>0的解为:x>,不等式kx+b<0的解为:x<;
当k<0,不等式kx+b>0的解为:x<,不等式kx+b<0的解为:x>.
28.一次函数与二元一次方程(组)
(1)一次函数与一元一次方程的关系:由于任何一元一次方程都可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值,从图象上看,这相当于已知直线y=kx+b确定它与x轴交点的横坐标值.
(2)二元一次方程(组)与一次函数的关系
(3)一次函数和二元一次方程(组)的关系在实际问题中的应用:要准确的将条件转化为二元一次方程(组),注意自变量取值范围要符合实际意义.
29.两条直线相交或平行问题
直线y=kx+b,(k≠0,且k,b为常数),当k相同,且b不相等,图象平行;当k不同,且b相等,图象相交;当k,b都相同时,两条线段重合.
(1)两条直线的交点问题
两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.
(2)两条直线的平行问题
若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.
例如:若直线y1=k1x+b1与直线y2=k2x+b2平行,那么k1=k2.
30.根据实际问题列一次函数关系式
根据实际问题确定一次函数关系式关键是读懂题意,建立一次函数的数学模型来解决问题.需要注意的是实例中的函数图象要根据自变量的取值范围来确定.
①描点猜想问题需要动手操作,这类问题需要真正的去描点,观察图象后再判断是一次函数还是其他函数,再利用待定系数法求解相关的问题.
②函数与几何知识的综合问题,有些是以函数知识为背景考查几何相关知识,关键是掌握数与形的转化;有些题目是以几何知识为背景,从几何图形中建立函数关系,关键是运用几何知识建立量与量的等式.
31.一次函数的应用
1、分段函数问题
分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际.
2、函数的多变量问题
解决含有多变量问题时,可以分析这些变量的关系,选取其中一个变量作为自变量,然后根据问题的条件寻求可以反映实际问题的函数.
3、概括整合
(1)简单的一次函数问题:①建立函数模型的方法;②分段函数思想的应用.
(2)理清题意是采用分段函数解决问题的关键.
32.一次函数综合题
(1)一次函数与几何图形的面积问题
首先要根据题意画出草图,结合图形分析其中的几何图形,再求出面积.
(2)一次函数的优化问题
通常一次函数的最值问题首先由不等式找到x的取值范围,进而利用一次函数的增减性在前面范围内的前提下求出最值.
(3)用函数图象解决实际问题
从已知函数图象中获取信息,求出函数值、函数表达式,并解答相应的问题.
33.反比例函数的定义
(1)反比例函数的概念
形如y=(k为常数,k≠0)的函数称为反比例函数.其中x是自变量,y是函数,自变量x的取值范围是不等于0的一切实数.
(2)反比例函数的判断
判断一个函数是否是反比例函数,首先看看两个变量是否具有反比例关系,然后根据反比例函数的意义去判断,其形式为y=(k为常数,k≠0)或y=kx﹣1(k为常数,k≠0).
34.反比例函数的图象
用描点法画反比例函数的图象,步骤:列表﹣﹣﹣描点﹣﹣﹣连线.
(1)列表取值时,x≠0,因为x=0函数无意义,为了使描出的点具有代表性,可以以“0”为中心,向两边对称式取值,即正、负数各一半,且互为相反数,这样也便于求y值.
(2)由于函数图象的特征还不清楚,所以要尽量多取一些数值,多描一些点,这样便于连线,使画出的图象更精确.
(3)连线时要用平滑的曲线按照自变量从小到大的顺序连接,切忌画成折线.
(4)由于x≠0,k≠0,所以y≠0,函数图象永远不会与x轴、y轴相交,只是无限靠近两坐标轴.
35.反比例函数图象的对称性
反比例函数图象的对称性:
反比例函数图象既是轴对称图形又是中心对称图形,对称轴分别是:①二、四象限的角平分线Y=﹣X;②一、三象限的角平分线Y=X;对称中心是:坐标原点.
36.反比例函数的性质
反比例函数的性质
(1)反比例函数y=(k≠0)的图象是双曲线;
(2)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;
(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.
注意:反比例函数的图象与坐标轴没有交点.
37.反比例函数系数k的几何意义
比例系数k的几何意义
在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.
在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变.
38.反比例函数图象上点的坐标特征
反比例函数y=k/x(k为常数,k≠0)的图象是双曲线,
①图象上的点(x,y)的横纵坐标的积是定值k,即xy=k;
②双曲线是关于原点对称的,两个分支上的点也是关于原点对称;
③在y=k/x图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.
39.待定系数法求反比例函数解析式
用待定系数法求反比例函数的解析式要注意:
(1)设出含有待定系数的反比例函数解析式y=(k为常数,k≠0);
(2)把已知条件(自变量与函数的对应值)带入解析式,得到待定系数的方程;
(3)解方程,求出待定系数;
(4)写出解析式.
40.反比例函数与一次函数的交点问题
反比例函数与一次函数的交点问题
(1)求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.
(2)判断正比例函数y=k1x和反比例函数y=在同一直角坐标系中的交点个数可总结为:
①当k1与k2同号时,正比例函数y=k1x和反比例函数y=在同一直角坐标系中有2个交点;
②当k1与k2异号时,正比例函数y=k1x和反比例函数y=在同一直角坐标系中有0个交点.
41.根据实际问题列反比例函数关系式
根据实际问题列反比例函数关系式,注意分析问题中变量之间的联系,建立反比例函数的数学模型,在实际问题中,往往要结合题目的实际意义去分析.首先弄清题意,找出等量关系,再进行等式变形即可得到反比例函数关系式.
根据图象去求反比例函数的解析式或是知道一组自变量与函数值去求解析式,都是利用待定系数法去完成的.
注意:要根据实际意义确定自变量的取值范围.
42.反比例函数的应用
(1)利用反比例函数解决实际问题
①能把实际的问题转化为数学问题,建立反比例函数的数学模型.②注意在自变量和函数值的取值上的实际意义.③问题中出现的不等关系转化成相等的关系来解,然后在作答中说明.
(2)跨学科的反比例函数应用题
要熟练掌握物理或化学学科中的一些具有反比例函数关系的公式.同时体会数学中的转化思想.
(3)反比例函数中的图表信息题
正确的认识图象,找到关键的点,运用好数形结合的思想.
43.反比例函数综合题
(1)应用类综合题
能够从实际的问题中抽象出反比例函数这一数学模型,是解决实际问题的关键一步,培养了学生的建模能力和从实际问题向数学问题转化的能力.在解决这些问题的时候我们还用到了反比例函数的图象和性质、待定系数法和其他学科中的知识.
(2)数形结合类综合题
利用图象解决问题,从图上获取有用的信息,是解题的关键所在.已知点在图象上,那么点一定满足这个函数解析式,反过来如果这点满足函数的解析式,那么这个点也一定在函数图象上.还能利用图象直接比较函数值或是自变量的大小.将数形结合在一起,是分析解决问题的一种好方法.
44.二次函数的定义
(1)二次函数的定义:一般地,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数.其中x、y是变量,a、b、c是常量,a是二次项系数,b是一次项系数,c是常数项.y═ax2+bx+c(a、b、c是常数,a≠0)也叫做二次函数的一般形式.
判断函数是否是二次函数,首先是要看它的右边是否为整式,若是整式且仍能化简的要先将其化简,然后再根据二次函数的定义作出判断,要抓住二次项系数不为0这个关键条件.
(2)二次函数的取值范围:一般情况下,二次函数中自变量的取值范围是全体实数,对实际问题,自变量的取值范围还需使实际问题有意义.
45.二次函数的图象
(1)二次函数y=ax2(a≠0)的图象的画法:
①列表:先取原点(0,0),然后以原点为中心对称地选取x值,求出函数值,列表.
②描点:在平面直角坐标系中描出表中的各点.
③连线:用平滑的曲线按顺序连接各点.
④在画抛物线时,取的点越密集,描出的图象就越精确,但取点多计算量就大,故一般在顶点的两侧各取三四个点即可.连线成图象时,要按自变量从小到大(或从大到小)的顺序用平滑的曲线连接起来.画抛物线y=ax2(a≠0)的图象时,还可以根据它的对称性,先用描点法描出抛物线的一侧,再利用对称性画另一侧.
(2)二次函数y=ax2+bx+c(a≠0)的图象
二次函数y=ax2+bx+c(a≠0)的图象看作由二次函数y=ax2的图象向右或向左平移||个单位,再向上或向下平移||个单位得到的.
46.二次函数的性质
二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣,),对称轴直线x=﹣,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:
①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;x=﹣时,y取得最小值,即顶点是抛物线的最低点.
②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小;x=﹣时,y取得最大值,即顶点是抛物线的最高点.
③抛物线y=ax2+bx+c(a≠0)的图象可由抛物线y=ax2的图象向右或向左平移|﹣|个单位,再向上或向下平移||个单位得到的.
47.二次函数图象与系数的关系
二次函数y=ax2+bx+c(a≠0)
①二次项系数a决定抛物线的开口方向和大小.
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;|a|还可以决定开口大小,|a|越大开口就越小.
②一次项系数b和二次项系数a共同决定对称轴的位置.
当a与b同号时(即ab>0),对称轴在y轴左侧; 当a与b异号时(即ab<0),对称轴在y轴右侧.(简称:左同右异)
③.常数项c决定抛物线与y轴交点. 抛物线与y轴交于(0,c).
④抛物线与x轴交点个数.
△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.
48.二次函数图象上点的坐标特征
二次函数y=ax2+bx+c(a≠0)的图象是抛物线,顶点坐标是(﹣,).
①抛物线是关于对称轴x=﹣成轴对称,所以抛物线上的点关于对称轴对称,且都满足函数函数关系式.顶点是抛物线的最高点或最低点.
②抛物线与y轴交点的纵坐标是函数解析中的c值.
③抛物线与x轴的两个交点关于对称轴对称,设两个交点分别是(x1,0),(x2,0),则其对称轴为x=.
49.二次函数图象与几何变换
由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.
50.二次函数的最值
(1)当a>0时,抛物线在对称轴左侧,y随x的增大而减少;在对称轴右侧,y随x的增大而增大,因为图象有最低点,所以函数有最小值,当x=时,y=.
(2)当a<0时,抛物线在对称轴左侧,y随x的增大而增大;在对称轴右侧,y随x的增大而减少,因为图象有最高点,所以函数有最大值,当x=时,y=.
(3)确定一个二次函数的最值,首先看自变量的取值范围,当自变量取全体实数时,其最值为抛物线顶点坐标的纵坐标;当自变量取某个范围时,要分别求出顶点和函数端点处的函数值,比较这些函数值,从而获得最值.
51.待定系数法求二次函数解析式
(1)二次函数的解析式有三种常见形式:
①一般式:y=ax2+bx+c(a,b,c是常数,a≠0); ②顶点式:y=a(x﹣h)2+k(a,h,k是常数,a≠0),其中(h,k)为顶点坐标; ③交点式:y=a(x﹣x1)(x﹣x2)(a,b,c是常数,a≠0);
(2)用待定系数法求二次函数的解析式.
在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.
52.二次函数的三种形式
二次函数的解析式有三种常见形式:
①一般式:y=ax2+bx+c(a,b,c是常数,a≠0),该形式的优势是能直接根据解析式知道抛物线与y轴的交点坐标是(0,c);
②顶点式:y=a(x﹣h)2+k(a,h,k是常数,a≠0),其中(h,k)为顶点坐标,该形式的优势是能直接根据解析式得到抛物线的顶点坐标为(h,k);
③交点式:y=a(x﹣x1)(x﹣x2)(a,b,c是常数,a≠0),该形式的优势是能直接根据解析式得到抛物线与x轴的两个交点坐标(x1,0),(x2,0).
53.抛物线与x轴的交点
求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标,令y=0,即ax2+bx+c=0,解关于x的一元二次方程即可求得交点横坐标.
(1)二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的交点与一元二次方程ax2+bx+c=0根之间的关系.
△=b2﹣4ac决定抛物线与x轴的交点个数.
△=b2﹣4ac>0时,抛物线与x轴有2个交点;
△=b2﹣4ac=0时,抛物线与x轴有1个交点;
△=b2﹣4ac<0时,抛物线与x轴没有交点.
(2)二次函数的交点式:y=a(x﹣x1)(x﹣x2)(a,b,c是常数,a≠0),可直接得到抛物线与x轴的交点坐标(x1,0),(x2,0).
54.图象法求一元二次方程的近似根
利用二次函数图象求一元二次方程的近似根的步骤是:
(1)作出函数的图象,并由图象确定方程的解的个数;
(2)由图象与y=h的交点位置确定交点横坐标的范围;
(3)观察图象求得方程的根(由于作图或观察存在误差,由图象求得的根一般是近似的).
55.二次函数与不等式(组)
二次函数y=ax2+bx+c(a、b、c是常数,a≠0)与不等式的关系
①函数值y与某个数值m之间的不等关系,一般要转化成关于x的不等式,解不等式求得自变量x的取值范围.
②利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.
56.根据实际问题列二次函数关系式
根据实际问题确定二次函数关系式关键是读懂题意,建立二次函数的数学模型来解决问题.需要注意的是实例中的函数图象要根据自变量的取值范围来确定.
①描点猜想问题需要动手操作,这类问题需要真正的去描点,观察图象后再判断是二次函数还是其他函数,再利用待定系数法求解相关的问题.
②函数与几何知识的综合问题,有些是以函数知识为背景考查几何相关知识,关键是掌握数与形的转化;有些题目是以几何知识为背景,从几何图形中建立函数关系,关键是运用几何知识建立量与量的等式.
57.二次函数的应用
(1)利用二次函数解决利润问题
在商品经营活动中,经常会遇到求最大利润,最大销量等问题.解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值,实际问题中自变量x的取值要使实际问题有意义,因此在求二次函数的最值时,一定要注意自变量x的取值范围.
(2)几何图形中的最值问题
几何图形中的二次函数问题常见的有:几何图形中面积的最值,用料的最佳方案以及动态几何中的最值的讨论.
(3)构建二次函数模型解决实际问题
利用二次函数解决抛物线形的隧道、大桥和拱门等实际问题时,要恰当地把这些实际问题中的数据落实到平面直角坐标系中的抛物线上,从而确定抛物线的解析式,通过解析式可解决一些测量问题或其他问题.
58.二次函数综合题
(1)二次函数图象与其他函数图象相结合问题
解决此类问题时,先根据给定的函数或函数图象判断出系数的符号,然后判断新的函数关系式中系数的符号,再根据系数与图象的位置关系判断出图象特征,则符合所有特征的图象即为正确选项.
(2)二次函数与方程、几何知识的综合应用
将函数知识与方程、几何知识有机地结合在一起.这类试题一般难度较大.解这类问题关键是善于将函数问题转化为方程问题,善于利用几何图形的有关性质、定理和二次函数的知识,并注意挖掘题目中的一些隐含条件.
(3)二次函数在实际生活中的应用题
从实际问题中分析变量之间的关系,建立二次函数模型.关键在于观察、分析、创建,建立直角坐标系下的二次函数图象,然后数形结合解决问题,需要我们注意的是自变量及函数的取值范围要使实际问题有意义.
【真题训练】
一.点的坐标(共1小题)
1.(2021•遵义)数经历了从自然数到有理数,到实数,再到复数的发展过程,数学中把形如a+bi(a,b为实数)的数叫做复数,用z=a+bi表示,任何一个复数z=a+bi在平面直角坐标系中都可以用有序数对Z(a,b)表示,如:z=1+2i表示为Z(1,2),则z=2﹣i可表示为( )
A.Z(2,0) B.Z(2,﹣1) C.Z(2,1) D.Z(﹣1,2)
二.规律型:点的坐标(共1小题)
2.(2021•德阳)如图,边长为1的正六边形ABCDEF放置于平面直角坐标系中,边AB在x轴正半轴上,顶点F在y轴正半轴上,将正六边形ABCDEF绕坐标原点O顺时针旋转,每次旋转60°,那么经过第2025次旋转后,顶点D的坐标为( )
A.(﹣,﹣) B.(,﹣) C.(﹣,) D.(﹣,﹣)
三.坐标确定位置(共1小题)
3.(2021•山西)如图是一片枫叶标本,其形状呈“掌状五裂型”,裂片具有少数突出的齿,将其放在平面直角坐标系中,表示叶片“顶部”A,B两点的坐标分别为(﹣2,2),(﹣3,0),则叶杆“底部”点C的坐标为 .
四.坐标与图形性质(共1小题)
4.(2021•湘西州)已知点M(x,y)在第一象限,且x+y=12,点A(10,0)在x轴上,当△OMA为直角三角形时,点M的坐标为( )
A.(10,2),(8,4)或(6,6) B.(8,4),(9,3)或(5,7)
C.(8,4),(9,3)或(10,2) D.(10,2),(9,3)或(7,5)
五.两点间的距离公式(共1小题)
5.(2009•滨州)根据题意,解答下列问题:
(1)如图①,已知直线y=2x+4与x轴、y轴分别交于A、B两点,求线段AB的长;
(2)如图②,类比(1)的求解过程,请你通过构造直角三角形的方法,求出两点M(3,4),N(﹣2,﹣1)之间的距离;
(3)如图③,P1(x1,y1),P2(x1,y2)是平面直角坐标系内的两点.求证:.
六.常量与变量(共1小题)
6.(1999•杭州)圆的半径为r,圆的面积S与半径r之间有如下关系:S=πr2.在这关系中,常量是 .
七.函数的概念(共1小题)
7.(2021•嘉兴)根据数学家凯勒的“百米赛跑数学模型”,前30米称为“加速期”,30米~80米为“中途期”,80米~100米为“冲刺期”.市田径队把运动员小斌某次百米跑训练时速度y(m/s)与路程x(m)之间的观测数据,绘制成曲线如图所示.
(1)y是关于x的函数吗?为什么?
(2)“加速期”结束时,小斌的速度为多少?
(3)根据如图提供的信息,给小斌提一条训练建议.
八.函数关系式(共1小题)
8.(2021•大连)如图,在正方形ABCD中,AB=2,点E在边BC上,点F在边AD的延长线上,AF=EF,设BE=x,AF=y,当0<x<2时,y关于x的函数解析式为 .
九.函数自变量的取值范围(共1小题)
9.(2021•黄石)函数y=+(x﹣2)0的自变量x的取值范围是( )
A.x≥﹣1 B.x>2 C.x>﹣1且x≠2 D.x≠﹣1且x≠2
一十.函数值(共1小题)
10.(2021•铜仁市)如图所示:是一个运算程序示意图,若第一次输入1,则输出的结果是 .
一十一.函数的图象(共1小题)
11.(2021•巴中)小风在1000米中长跑训练时,已跑路程s(米)与所用时间t(秒)之间的函数图象如图所示,下列说法错误的是( )
A.小风的成绩是220秒
B.小风最后冲刺阶段的速度是5米/秒
C.小风第一阶段与最后冲刺阶段速度相等
D.小风的平均速度是4米/秒
一十二.动点问题的函数图象(共1小题)
12.(2021•西宁)如图1,动点P从矩形ABCD的顶点A出发,在边AB,BC上沿A→B→C的方向,以1cm/s的速度匀速运动到点C,△APC的面积S(cm2)随运动时间t(s)变化的函数图象如图2所示,则AB的长是( )
A.cm B.3cm C.4cm D.6cm
一十三.函数的表示方法(共1小题)
13.(2020•威海)下表中y与x的数据满足我们初中学过的某种函数关系.其函数表达式为 .
x
…
﹣1
0
1
3
…
y
…
0
3
4
0
…
一十四.分段函数(共1小题)
14.(2021•永州)已知函数y=,若y=2,则x= .
一十五.一次函数的定义(共1小题)
15.(2008•丽水)已知一次函数y=2x+1,当x=0时,函数y的值是 .
一十六.正比例函数的定义(共1小题)
16.(2019•梧州)下列函数中,正比例函数是( )
A.y=﹣8x B.y= C.y=8x2 D.y=8x﹣4
一十七.一次函数的图象(共1小题)
17.(2021•西藏)已知第一象限点P(x,y)在直线y=﹣x+5上,点A的坐标为(4,0),设△AOP的面积为S.
(1)当点P的横坐标为2时,求△AOP的面积;
(2)当S=4时,求点P的坐标;
(3)求S关于x的函数解析式,写出x的取值范围,并在图中画出函数S的图象.
一十八.正比例函数的图象(共1小题)
18.(2014•湘西州)正比例函数y=x的大致图象是( )
A. B.
C. D.
一十九.一次函数的性质(共1小题)
19.(2021•宁夏)已知点A(x1,y1)、B(x2,y2)在直线y=kx+b(k≠0)上,当x1<x2时,y2>y1,且kb>0,则在平面直角坐标系内,它的图象大致是( )
A. B.
C. D.
二十.正比例函数的性质(共1小题)
20.(2021•河南)请写出一个图象经过原点的函数的解析式 .
二十一.一次函数图象与系数的关系(共1小题)
21.(2021•柳州)若一次函数y=kx+b的图象如图所示,则下列说法正确的是( )
A.k>0 B.b=2
C.y随x的增大而增大 D.x=3时,y=0
二十二.一次函数图象上点的坐标特征(共1小题)
22.(2021•黔东南州)已知直线y=﹣x+1与x轴、y轴分别交于A、B两点,点P是第一象限内的点,若△PAB为等腰直角三角形,则点P的坐标为( )
A.(1,1)
B.(1,1)或(1,2)
C.(1,1)或(1,2)或(2,1)
D.(0,0)或(1,1)或(1,2)或(2,1)
二十三.一次函数图象与几何变换(共1小题)
23.在平面直角坐标系中,将直线y=﹣2x向上平移3个单位,平移后的直线经过点(﹣1,m),则m的值为( )
A.﹣1 B.1 C.﹣5 D.5
二十四.待定系数法求一次函数解析式(共1小题)
24.(2021•呼和浩特)在平面直角坐标系中,点A(3,0),B(0,4).以AB为一边在第一象限作正方形ABCD,则对角线BD所在直线的解析式为( )
A.y=﹣x+4 B.y=﹣x+4 C.y=﹣x+4 D.y=4
二十五.待定系数法求正比例函数解析式(共1小题)
25.(2019•陕西)A′是点A(1,2)关于x轴的对称点.若一个正比例函数的图象经过点A′,则该函数的表达式为( )
A.y=x B.y=2x C.y=﹣x D.y=﹣2x
二十六.一次函数与一元一次方程(共1小题)
26.(2021•抚顺)如图,直线y=2x与y=kx+b相交于点P(m,2),则关于x的方程kx+b=2的解是( )
A.x= B.x=1 C.x=2 D.x=4
二十七.一次函数与一元一次不等式(共1小题)
27.(2021•娄底)如图,直线y=x+b和y=kx+4与x轴分别相交于点A(﹣4,0),点B(2,0),则解集为( )
A.﹣4<x<2 B.x<﹣4 C.x>2 D.x<﹣4或x>2
二十八.一次函数与二元一次方程(组)(共1小题)
28.(2021•德阳)关于x,y的方程组的解为,若点P(a,b)总在直线y=x上方,那么k的取值范围是( )
A.k>1 B.k>﹣1 C.k<1 D.k<﹣1
二十九.两条直线相交或平行问题(共1小题)
29.(2021•贵阳)小星在“趣味数学”社团活动中探究了直线交点个数的问题.现有7条不同的直线y=knx+bn(n=1,2,3,4,5,6,7),其中k1=k2,b3=b4=b5,则他探究这7条直线的交点个数最多是( )
A.17个 B.18个 C.19个 D.21个
三十.根据实际问题列一次函数关系式(共1小题)
30.(2018•绍兴)实验室里有一个水平放置的长方体容器,从内部量得它的高是15cm,底面的长是30cm,宽是20cm,容器内的水深为xcm.现往容器内放入如图的长方体实心铁块(铁块一面平放在容器底面),过顶点A的三条棱的长分别10cm,10cm,ycm(y≤15),当铁块的顶部高出水面2cm时,x,y满足的关系式是 .
三十一.一次函数的应用(共1小题)
31.(2021•赤峰)甲、乙两人在一条长400米的直线跑道上同起点、同终点、同方向匀速跑步,先到终点的人原地休息.已知甲先出发3秒,在跑步过程中,甲、乙两人间的距离y(米)与乙出发的时间x(秒)之间的函数关系如图所示,则下列结论正确的个数是( )
①乙的速度为5米/秒;
②离开起点后,甲、乙两人第一次相遇时,距离起点12米;
③甲、乙两人之间的距离超过32米的时间范围是44<x<89;
④乙到达终点时,甲距离终点还有68米.
A.4 B.3 C.2 D.1
三十二.一次函数综合题(共1小题)
32.(2021•宁夏)如图,已知直线y=kx+3与x轴的正半轴交于点A,与y轴交于点B,sin∠OAB=.
(1)求k的值;
(2)D、E两点同时从坐标原点O出发,其中点D以每秒1个单位长度的速度,沿O→A→B的路线运动,点E以每秒2个单位长度的速度,沿O→B→A的路线运动.当D,E两点相遇时,它们都停止运动,设运动时间为t秒.
①在D、E两点运动过程中,是否存在DE∥OB?若存在,求出t的值,若不存在,请说明理由;
②若设△OED的面积为S,求S关于t的函数关系式,并求出t为多少时,S的值最大?
三十三.反比例函数的定义(共1小题)
33.(2018•柳州)已知反比例函数的解析式为y=,则a的取值范围是( )
A.a≠2 B.a≠﹣2 C.a≠±2 D.a=±2
三十四.反比例函数的图象(共1小题)
34.(2021•青岛)已知反比例函数y=的图象如图所示,则一次函数y=cx+a和二次函数y=ax2+bx+c在同一平面直角坐标系中的图象可能是( )
A. B.
C. D.
三十五.反比例函数图象的对称性(共1小题)
35.(2015•扬州)已知一个正比例函数的图象与一个反比例函数的一个交点坐标为(1,3),则另一个交点坐标是 .
三十六.反比例函数的性质(共1小题)
36.(2021•黔西南州)对于反比例函数y=,下列说法错误的是( )
A.图象经过点(1,﹣5)
B.图象位于第二、第四象限
C.当x<0时,y随x的增大而减小
D.当x>0时,y随x的增大而增大
三十七.反比例函数系数k的几何意义(共1小题)
37.(2021•兰州)如图,点A在反比例函数y=(x>0)的图象上,AB⊥x轴于点B,C是OB的中点,连接AO,AC,若△AOC的面积为4,则k=( )
A.16 B.12 C.8 D.4
三十八.反比例函数图象上点的坐标特征(共1小题)
38.(2021•内江)如图,菱形ABCD的顶点分别在反比例函数y=和y=的图象上,若∠BCD=60°,则的值为( )
A. B. C. D.
三十九.待定系数法求反比例函数解析式(共1小题)
39.(2021•鄂尔多斯)如图,矩形ABCD的两边AB,BC的长分别为3,8,C,D在y轴上,E是AD的中点,反比例函数y=(k≠0)的图象经过点E,与BC交于点F,且CF﹣BE=1.
(1)求反比例函数的解析式;
(2)在y轴上找一点P,使得S△CEP=S矩形ABCD,求此时点P的坐标.
四十.反比例函数与一次函数的交点问题(共1小题)
40.(2021•南通)平面直角坐标系xOy中,直线y=2x与双曲线y=(k>2)相交于A,B两点,其中点A在第一象限.设M(m,2)为双曲线y=(k>2)上一点,直线AM,BM分别交y轴于C,D两点,则OC﹣OD的值为( )
A.2 B.4 C.6 D.8
四十一.根据实际问题列反比例函数关系式(共1小题)
41.(2016•广州)一司机驾驶汽车从甲地去乙地,他以平均80千米/小时的速度用了4个小时到达乙地,当他按原路匀速返回时.汽车的速度v千米/小时与时间t小时的函数关系是( )
A.v=320t B.v= C.v=20t D.v=
四十二.反比例函数的应用(共1小题)
42.(2021•娄底)根据反比例函数的性质、联系化学学科中的溶质质量分数的求法以及生活体验等,判定下列有关函数y=(a为常数且a>0,x>0)的性质表述中,正确的是( )
①y随x的增大而增大
②y随x的增大而减小
③0<y<1
④0≤y≤1
A.①③ B.①④ C.②③ D.②④
四十三.反比例函数综合题(共1小题)
43.(2021•罗湖区)以矩形OABC的顶点O为坐标原点建立平面直角坐标系,使点A、C分别在x、y轴的正半轴上,双曲线y=(x>0)的图象经过BC的中点D,且与AB交于点E,过OC边上一点F,把△BCF沿直线BF翻折,使点C落在矩形内部的一点C′处,且C′E∥BC,若点C′的坐标为(2,4),则tan∠CBF的值为 .
四十四.二次函数的定义(共1小题)
44.(2015•兰州)下列函数解析式中,一定为二次函数的是( )
A.y=3x﹣1 B.y=ax2+bx+c C.s=2t2﹣2t+1 D.y=x2+
四十五.二次函数的图象(共1小题)
45.(2021•阜新)如图,二次函数y=a(x+2)2+k的图象与x轴交于A,B(﹣1,0)两点,则下列说法正确的是( )
A.a<0
B.点A的坐标为(﹣4,0)
C.当x<0时,y随x的增大而减小
D.图象的对称轴为直线x=﹣2
四十六.二次函数的性质(共1小题)
46.(2021•阿坝州)二次函数y=ax2+bx+c的图象如图所示,下列说法错误的是( )
A.a<0,b>0
B.b2﹣4ac>0
C.方程ax2+bx+c=0的解是x1=5,x2=﹣1
D.不等式ax2+bx+c>0的解集是0<x<5
四十七.二次函数图象与系数的关系(共1小题)
47.(2021•攀枝花)如图,二次函数y=ax2+bx+c的图象的对称轴为x=﹣,且经过点(﹣2,0),下列说法错误的是( )
A.bc<0
B.a=b
C.当x1>x2≥﹣时,y1>y2
D.不等式ax2+bx+c<0的解集是﹣2<x<
四十八.二次函数图象上点的坐标特征(共1小题)
48.(2021•济南)新定义:在平面直角坐标系中,对于点P(m,n)和点P′(m,n′),若满足m≥0时,n′=n﹣4;m<0时,n′=﹣n,则称点P′(m,n′)是点P(m,n)的限变点.例如:点P1(2,5)的限变点是P1′(2,1),点P2(﹣2,3)的限变点是P2′(﹣2,﹣3).若点P(m,n)在二次函数y=﹣x2+4x+2的图象上,则当﹣1≤m≤3时,其限变点P′的纵坐标n'的取值范围是( )
A.﹣2≤n′≤2 B.1≤n′≤3 C.1≤n′≤2 D.﹣2≤n′≤3
四十九.二次函数图象与几何变换(共1小题)
49.(2021•西藏)将抛物线y=(x﹣1)2+2向左平移3个单位长度,再向下平移4个单位长度所得到的抛物线的解析式为( )
A.y=x2﹣8x+22 B.y=x2﹣8x+14 C.y=x2+4x+10 D.y=x2+4x+2
五十.二次函数的最值(共1小题)
50.(2021•广东)我国南宋时期数学家秦九韶曾提出利用三角形的三边求面积的公式,此公式与古希腊几何学家海伦提出的公式如出一辙,即三角形的三边长分别为a,b,c,记p=,则其面积S=.这个公式也被称为海伦﹣秦九韶公式.若p=5,c=4,则此三角形面积的最大值为( )
A. B.4 C.2 D.5
五十一.待定系数法求二次函数解析式(共1小题)
51.(2021•无锡)如图,在平面直角坐标系中,O为坐标原点,点C为y轴正半轴上的一个动点,过点C的直线与二次函数y=x2的图象交于A、B两点,且CB=3AC,P为CB的中点,设点P的坐标为P(x,y)(x>0),写出y关于x的函数表达式为: .
五十二.二次函数的三种形式(共1小题)
52.(2018•山西)用配方法将二次函数y=x2﹣8x﹣9化为y=a(x﹣h)2+k的形式为( )
A.y=(x﹣4)2+7 B.y=(x﹣4)2﹣25
C.y=(x+4)2+7 D.y=(x+4)2﹣25
五十三.抛物线与x轴的交点(共1小题)
53.(2021•巴中)已知二次函数y=ax2+bx+c的自变量x与函数y的部分对应值见表格,则下列结论:①c=2;②b2﹣4ac>0;③方程ax2+bx=0的两根为x1=﹣2,x2=0;④7a+c<0.其中正确的有( )
x
…
﹣3
﹣2
﹣1
1
2
…
y
…
1.875
3
m
1.875
0
…
A.①④ B.②③ C.③④ D.②④
五十四.图象法求一元二次方程的近似根(共1小题)
54.(2021•黄石)二次函数y=ax2+bx+c(a、b、c是常数,且a≠0)的自变量x与函数值y的部分对应值如下表:
x
…
﹣1
0
1
2
…
y
…
m
2
2
n
…
且当x=时,对应的函数值y<0.有以下结论:
①abc>0;②m+n<﹣;③关于x的方程ax2+bx+c=0的负实数根在﹣和0之间;④P1(t﹣1,y1)和P2(t+1,y2)在该二次函数的图象上,则当实数t>时,y1>y2.
其中正确的结论是( )
A.①② B.②③ C.③④ D.②③④
五十五.二次函数与不等式(组)(共1小题)
55.(2021•大庆)已知函数y=ax2﹣(a+1)x+1,则下列说法不正确的个数是( )
①若该函数图象与x轴只有一个交点,则a=1;
②方程ax2﹣(a+1)x+1=0至少有一个整数根;
③若<x<1,则y=ax2﹣(a+1)x+1的函数值都是负数;
④不存在实数a,使得ax2﹣(a+1)x+1≤0对任意实数x都成立.
A.0 B.1 C.2 D.3
五十六.根据实际问题列二次函数关系式(共1小题)
56.(2019•山西)北中环桥是省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱组成,通过吊桥,拉索与主梁相连,最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象﹣抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A,B两点.拱高为78米(即最高点O到AB的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为x轴建立平面直角坐标系,则此抛物线钢拱的函数表达式为( )
A.y=x2 B.y=﹣x2
C.y=x2 D.y=﹣x2
五十七.二次函数的应用(共1小题)
57.某景点的“喷水巨龙”口中C处的水流呈抛物线形,该水流喷出的高度y(m)与水平距离x(m)之间的关系如图所示,D为该水流的最高点,DA⊥OB,垂足为A.已知OC=OB=8m,OA=2m,则该水流距水平面的最大高度AD的长度为( )
A.9m B.10m C.11m D.12m
五十八.二次函数综合题(共1小题)
58.(2021•赤峰)如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣3,0)、B(1,0)两点,与y轴交于点C,对称轴l与x轴交于点F,直线m∥AC,点E是直线AC上方抛物线上一动点,过点E作EH⊥m,垂足为H,交AC于点G,连接AE、EC、CH、AH.
(1)抛物线的解析式为 ;
(2)当四边形AHCE面积最大时,求点E的坐标;
(3)在(2)的条件下,连接EF,点P是x轴上一动点,在抛物线上是否存在点Q,使得以F、E、P、Q为顶点,以EF为一边的四边形是平行四边形.若存在,请直接写出点Q的坐标;若不存在,说明理由.
2022年中考数学考前30天迅速提分复习方案(全国通用)
专题1.4 函数(全国中考58个考点真题训练)
1.点的坐标
(1)我们把有顺序的两个数a和b组成的数对,叫做有序数对,记作(a,b).
(2)平面直角坐标系的相关概念
①建立平面直角坐标系的方法:在同一平面内画;两条有公共原点且垂直的数轴.
②各部分名称:水平数轴叫x轴(横轴),竖直数轴叫y轴(纵轴),x轴一般取向右为正方向,y轴一般取象上为正方向,两轴交点叫坐标系的原点.它既属于x轴,又属于y轴.
(3)坐标平面的划分
建立了坐标系的平面叫做坐标平面,两轴把此平面分成四部分,分别叫第一象限,第二象限,第三象限,第四象限.坐标轴上的点不属于任何一个象限.
(4)坐标平面内的点与有序实数对是一一对应的关系.
2.规律型:点的坐标
规律型:点的坐标.
3.坐标确定位置
平面内特殊位置的点的坐标特征
(1)各象限内点P(a,b)的坐标特征:
①第一象限:a>0,b>0;②第二象限:a<0,b>0;③第三象限:a<0,b<0;④第四象限:a>0,b<0.
(2)坐标轴上点P(a,b)的坐标特征:
①x轴上:a为任意实数,b=0;②y轴上:b为任意实数,a=0;③坐标原点:a=0,b=0.
(3)两坐标轴夹角平分线上点P(a,b)的坐标特征:
①一、三象限:a=b;②二、四象限:a=﹣b.
4.坐标与图形性质
1、点到坐标轴的距离与这个点的坐标是有区别的,表现在两个方面:①到x轴的距离与纵坐标有关,到y轴的距离与横坐标有关;②距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.
2、有图形中一些点的坐标求面积时,过已知点向坐标轴作垂线,然后求出相关的线段长,是解决这类问题的基本方法和规律.
3、若坐标系内的四边形是非规则四边形,通常用平行于坐标轴的辅助线用“割、补”法去解决问题.
5.两点间的距离公式
两点间的距离公式:
设有两点A(x1,y1),B(x2,y2),则这两点间的距离为AB=.
说明:求直角坐标系内任意两点间的距离可直接套用此公式.
6.常量与变量
(1)变量和常量的定义:
在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量.
(2)方法:
①常量与变量必须存在于同一个变化过程中,判断一个量是常量还是变量,需要看两个方面:一是它是否在一个变化过程中;二是看它在这个变化过程中的取值情况是否发生变化;
②常量和变量是相对于变化过程而言的.可以互相转化;
③不要认为字母就是变量,例如π是常量.
7.函数的概念
函数的定义:设在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的函数,x是自变量.
说明:对于函数概念的理解:①有两个变量;②一个变量的数值随着另一个变量的数值的变化而发生变化;③对于自变量的每一个确定的值,函数值有且只有一个值与之对应,即单对应.
8.函数关系式
用来表示函数关系的等式叫做函数解析式,也称为函数关系式.
注意:
①函数解析式是等式.
②函数解析式中,通常等式的右边的式子中的变量是自变量,等式左边的那个字母表示自变量的函数.
③函数的解析式在书写时有顺序性,例如,y=x+9时表示y是x的函数,若写成x=﹣y+9就表示x是y的函数.
9.函数自变量的取值范围
自变量的取值范围必须使含有自变量的表达式都有意义.
①当表达式的分母不含有自变量时,自变量取全体实数.例如y=2x+13中的x.
②当表达式的分母中含有自变量时,自变量取值要使分母不为零.例如y=x+2x﹣1.
③当函数的表达式是偶次根式时,自变量的取值范围必须使被开方数不小于零.
④对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义.
10.函数值
函数值是指自变量在取值范围内取某个值时,函数与之对应唯一确定的值.
注意:①当已知函数解析式时,求函数值就是求代数式的值;当已知函数解析式,给出函数值时,求相应的自变量的值就是解方程;
②当自变量确定时,函数值是唯一确定的.但当函数值唯一确定时,对应的自变量可以是多个.
11.函数的图象
函数的图象定义
对于一个函数,如果把自变量与函数的每一对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形就是这个函数的图象.
注意:①函数图形上的任意点(x,y)都满足其函数的解析式;②满足解析式的任意一对x、y的值,所对应的点一定在函数图象上;③判断点P(x,y)是否在函数图象上的方法是:将点P(x,y)的x、y的值代入函数的解析式,若能满足函数的解析式,这个点就在函数的图象上;如果不满足函数的解析式,这个点就不在函数的图象上..
12.动点问题的函数图象
函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.
用图象解决问题时,要理清图象的含义即会识图.
13.函数的表示方法
函数的三种表示方法:列表法、解析式法、图象法.
其特点分别是:列表法能具体地反映自变量与函数的数值对应关系,在实际生活中应用非常广泛;解析式法准确地反映了函数与自变量之间的对应规律,根据它可以由自变量的取值求出相应的函数值,反之亦然;图象法直观地反映函数值随自变量的变化而变化的规律.
注意:①它们分别从数和形的角度反映了函数的本质;②它们之间可以互相转化.
14.分段函数
(1)一次函数与常函数组合的分段函数.
分段函数是在不同区间有不同对应方式的函数.(注意:在解决分段函数问题时,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际.)
(2)由文字图象信息确定分段函数.
根据图象读取信息时,要把握住以下三个方面:
①横、纵轴的意义,以及横、纵轴分别表示的量.
②关于某个具体点,要求向横、纵轴作垂线来求得该点的坐标.
③在实际问题中,要注意图象与x轴、y轴交点坐标代表的具体意义.
【规律方法】用图象描述分段函数的实际问题需要注意的四点
1.自变量变化而函数值不变化的图象用水平线段表示.
2.当两个阶段的图象都是一次函数(或正比例函数)时,自变量变化量相同,而函数值变化越大的图象与x轴的夹角就越大.
3.各个分段中,准确确定函数关系.
4.确定函数图象的最低点和最高点.
15.一次函数的定义
(1)一次函数的定义:
一般地,形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数.
(2)注意:
①又一次函数的定义可知:函数为一次函数⇔其解析式为y=kx+b(k≠0,k、b是常数)的形式.
②一次函数解析式的结构特征:k≠0;自变量的次数为1;常数项b可以为任意实数.
③一般情况下自变量的取值范围是任意实数.
④若k=0,则y=b(b为常数),此时它不是一次函数.
16.正比例函数的定义
(1)正比例函数的定义:
一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.
注意:正比例函数的定义是从解析式的角度出发的,注意定义中对比例系数的要求:k是常数,k≠0,k是正数也可以是负数.
(2)正比例函数图象的性质
正比例函数y=kx(k是常数,k≠0),我们通常称之为直线y=kx.
当k>0时,直线y=kx依次经过第三、一象限,从左向右上升,y随x的增大而增大;当k<0时,直线y=kx依次经过第二、四象限,从左向右下降,y随x的增大而减小.
(3)“两点法”画正比例函数的图象:经过原点与点(1,k)的直线是y=kx(k是常数,k≠0)的图象.
17.一次函数的图象
(1)一次函数的图象的画法:经过两点(0,b)、(﹣,0)或(1,k+b)作直线y=kx+b.
注意:①使用两点法画一次函数的图象,不一定就选择上面的两点,而要根据具体情况,所选取的点的横、纵坐标尽量取整数,以便于描点准确.②一次函数的图象是与坐标轴不平行的一条直线(正比例函数是过原点的直线),但直线不一定是一次函数的图象.如x=a,y=b分别是与y轴,x轴平行的直线,就不是一次函数的图象.
(2)一次函数图象之间的位置关系:直线y=kx+b,可以看做由直线y=kx平移|b|个单位而得到.
当b>0时,向上平移;b<0时,向下平移.
注意:①如果两条直线平行,则其比例系数相等;反之亦然;
②将直线平移,其规律是:上加下减,左加右减;
③两条直线相交,其交点都适合这两条直线.
18.正比例函数的图象
正比例函数的图象.
19.一次函数的性质
一次函数的性质:
k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.
由于y=kx+b与y轴交于(0,b),当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.
20.正比例函数的性质
正比例函数的性质.
21.一次函数图象与系数的关系
由于y=kx+b与y轴交于(0,b),当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.
①k>0,b>0⇔y=kx+b的图象在一、二、三象限;
②k>0,b<0⇔y=kx+b的图象在一、三、四象限;
③k<0,b>0⇔y=kx+b的图象在一、二、四象限;
④k<0,b<0⇔y=kx+b的图象在二、三、四象限.
22.一次函数图象上点的坐标特征
一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(﹣,0);与y轴的交点坐标是(0,b).
直线上任意一点的坐标都满足函数关系式y=kx+b.
23.一次函数图象与几何变换
直线y=kx+b,(k≠0,且k,b为常数)
①关于x轴对称,就是x不变,y变成﹣y:﹣y=kx+b,即y=﹣kx﹣b;
(关于X轴对称,横坐标不变,纵坐标是原来的相反数)
②关于y轴对称,就是y不变,x变成﹣x:y=k(﹣x)+b,即y=﹣kx+b;
(关于y轴对称,纵坐标不变,横坐标是原来的相反数)
③关于原点对称,就是x和y都变成相反数:﹣y=k(﹣x)+b,即y=kx﹣b.
(关于原点轴对称,横、纵坐标都变为原来的相反数)
24.待定系数法求一次函数解析式
待定系数法求一次函数解析式一般步骤是:
(1)先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;
(2)将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;
(3)解方程或方程组,求出待定系数的值,进而写出函数解析式.
注意:求正比例函数,只要一对x,y的值就可以,因为它只有一个待定系数;而求一次函数y=kx+b,则需要两组x,y的值.
25.待定系数法求正比例函数解析式
待定系数法求正比例函数的解析式.
26.一次函数与一元一次方程
一次函数与一元一次方程.
27.一次函数与一元一次不等式
(1)一次函数与一元一次不等式的关系
从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;
从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
(2)用画函数图象的方法解不等式kx+b>0(或<0)
对应一次函数y=kx+b,它与x轴交点为(﹣,0).
当k>0时,不等式kx+b>0的解为:x>,不等式kx+b<0的解为:x<;
当k<0,不等式kx+b>0的解为:x<,不等式kx+b<0的解为:x>.
28.一次函数与二元一次方程(组)
(1)一次函数与一元一次方程的关系:由于任何一元一次方程都可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值,从图象上看,这相当于已知直线y=kx+b确定它与x轴交点的横坐标值.
(2)二元一次方程(组)与一次函数的关系
(3)一次函数和二元一次方程(组)的关系在实际问题中的应用:要准确的将条件转化为二元一次方程(组),注意自变量取值范围要符合实际意义.
29.两条直线相交或平行问题
直线y=kx+b,(k≠0,且k,b为常数),当k相同,且b不相等,图象平行;当k不同,且b相等,图象相交;当k,b都相同时,两条线段重合.
(1)两条直线的交点问题
两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.
(2)两条直线的平行问题
若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.
例如:若直线y1=k1x+b1与直线y2=k2x+b2平行,那么k1=k2.
30.根据实际问题列一次函数关系式
根据实际问题确定一次函数关系式关键是读懂题意,建立一次函数的数学模型来解决问题.需要注意的是实例中的函数图象要根据自变量的取值范围来确定.
①描点猜想问题需要动手操作,这类问题需要真正的去描点,观察图象后再判断是一次函数还是其他函数,再利用待定系数法求解相关的问题.
②函数与几何知识的综合问题,有些是以函数知识为背景考查几何相关知识,关键是掌握数与形的转化;有些题目是以几何知识为背景,从几何图形中建立函数关系,关键是运用几何知识建立量与量的等式.
31.一次函数的应用
1、分段函数问题
分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际.
2、函数的多变量问题
解决含有多变量问题时,可以分析这些变量的关系,选取其中一个变量作为自变量,然后根据问题的条件寻求可以反映实际问题的函数.
3、概括整合
(1)简单的一次函数问题:①建立函数模型的方法;②分段函数思想的应用.
(2)理清题意是采用分段函数解决问题的关键.
32.一次函数综合题
(1)一次函数与几何图形的面积问题
首先要根据题意画出草图,结合图形分析其中的几何图形,再求出面积.
(2)一次函数的优化问题
通常一次函数的最值问题首先由不等式找到x的取值范围,进而利用一次函数的增减性在前面范围内的前提下求出最值.
(3)用函数图象解决实际问题
从已知函数图象中获取信息,求出函数值、函数表达式,并解答相应的问题.
33.反比例函数的定义
(1)反比例函数的概念
形如y=(k为常数,k≠0)的函数称为反比例函数.其中x是自变量,y是函数,自变量x的取值范围是不等于0的一切实数.
(2)反比例函数的判断
判断一个函数是否是反比例函数,首先看看两个变量是否具有反比例关系,然后根据反比例函数的意义去判断,其形式为y=(k为常数,k≠0)或y=kx﹣1(k为常数,k≠0).
34.反比例函数的图象
用描点法画反比例函数的图象,步骤:列表﹣﹣﹣描点﹣﹣﹣连线.
(1)列表取值时,x≠0,因为x=0函数无意义,为了使描出的点具有代表性,可以以“0”为中心,向两边对称式取值,即正、负数各一半,且互为相反数,这样也便于求y值.
(2)由于函数图象的特征还不清楚,所以要尽量多取一些数值,多描一些点,这样便于连线,使画出的图象更精确.
(3)连线时要用平滑的曲线按照自变量从小到大的顺序连接,切忌画成折线.
(4)由于x≠0,k≠0,所以y≠0,函数图象永远不会与x轴、y轴相交,只是无限靠近两坐标轴.
35.反比例函数图象的对称性
反比例函数图象的对称性:
反比例函数图象既是轴对称图形又是中心对称图形,对称轴分别是:①二、四象限的角平分线Y=﹣X;②一、三象限的角平分线Y=X;对称中心是:坐标原点.
36.反比例函数的性质
反比例函数的性质
(1)反比例函数y=(k≠0)的图象是双曲线;
(2)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;
(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.
注意:反比例函数的图象与坐标轴没有交点.
37.反比例函数系数k的几何意义
比例系数k的几何意义
在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.
在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变.
38.反比例函数图象上点的坐标特征
反比例函数y=k/x(k为常数,k≠0)的图象是双曲线,
①图象上的点(x,y)的横纵坐标的积是定值k,即xy=k;
②双曲线是关于原点对称的,两个分支上的点也是关于原点对称;
③在y=k/x图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.
39.待定系数法求反比例函数解析式
用待定系数法求反比例函数的解析式要注意:
(1)设出含有待定系数的反比例函数解析式y=(k为常数,k≠0);
(2)把已知条件(自变量与函数的对应值)带入解析式,得到待定系数的方程;
(3)解方程,求出待定系数;
(4)写出解析式.
40.反比例函数与一次函数的交点问题
反比例函数与一次函数的交点问题
(1)求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.
(2)判断正比例函数y=k1x和反比例函数y=在同一直角坐标系中的交点个数可总结为:
①当k1与k2同号时,正比例函数y=k1x和反比例函数y=在同一直角坐标系中有2个交点;
②当k1与k2异号时,正比例函数y=k1x和反比例函数y=在同一直角坐标系中有0个交点.
41.根据实际问题列反比例函数关系式
根据实际问题列反比例函数关系式,注意分析问题中变量之间的联系,建立反比例函数的数学模型,在实际问题中,往往要结合题目的实际意义去分析.首先弄清题意,找出等量关系,再进行等式变形即可得到反比例函数关系式.
根据图象去求反比例函数的解析式或是知道一组自变量与函数值去求解析式,都是利用待定系数法去完成的.
注意:要根据实际意义确定自变量的取值范围.
42.反比例函数的应用
(1)利用反比例函数解决实际问题
①能把实际的问题转化为数学问题,建立反比例函数的数学模型.②注意在自变量和函数值的取值上的实际意义.③问题中出现的不等关系转化成相等的关系来解,然后在作答中说明.
(2)跨学科的反比例函数应用题
要熟练掌握物理或化学学科中的一些具有反比例函数关系的公式.同时体会数学中的转化思想.
(3)反比例函数中的图表信息题
正确的认识图象,找到关键的点,运用好数形结合的思想.
43.反比例函数综合题
(1)应用类综合题
能够从实际的问题中抽象出反比例函数这一数学模型,是解决实际问题的关键一步,培养了学生的建模能力和从实际问题向数学问题转化的能力.在解决这些问题的时候我们还用到了反比例函数的图象和性质、待定系数法和其他学科中的知识.
(2)数形结合类综合题
利用图象解决问题,从图上获取有用的信息,是解题的关键所在.已知点在图象上,那么点一定满足这个函数解析式,反过来如果这点满足函数的解析式,那么这个点也一定在函数图象上.还能利用图象直接比较函数值或是自变量的大小.将数形结合在一起,是分析解决问题的一种好方法.
44.二次函数的定义
(1)二次函数的定义:一般地,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数.其中x、y是变量,a、b、c是常量,a是二次项系数,b是一次项系数,c是常数项.y═ax2+bx+c(a、b、c是常数,a≠0)也叫做二次函数的一般形式.
判断函数是否是二次函数,首先是要看它的右边是否为整式,若是整式且仍能化简的要先将其化简,然后再根据二次函数的定义作出判断,要抓住二次项系数不为0这个关键条件.
(2)二次函数的取值范围:一般情况下,二次函数中自变量的取值范围是全体实数,对实际问题,自变量的取值范围还需使实际问题有意义.
45.二次函数的图象
(1)二次函数y=ax2(a≠0)的图象的画法:
①列表:先取原点(0,0),然后以原点为中心对称地选取x值,求出函数值,列表.
②描点:在平面直角坐标系中描出表中的各点.
③连线:用平滑的曲线按顺序连接各点.
④在画抛物线时,取的点越密集,描出的图象就越精确,但取点多计算量就大,故一般在顶点的两侧各取三四个点即可.连线成图象时,要按自变量从小到大(或从大到小)的顺序用平滑的曲线连接起来.画抛物线y=ax2(a≠0)的图象时,还可以根据它的对称性,先用描点法描出抛物线的一侧,再利用对称性画另一侧.
(2)二次函数y=ax2+bx+c(a≠0)的图象
二次函数y=ax2+bx+c(a≠0)的图象看作由二次函数y=ax2的图象向右或向左平移||个单位,再向上或向下平移||个单位得到的.
46.二次函数的性质
二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣,),对称轴直线x=﹣,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:
①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;x=﹣时,y取得最小值,即顶点是抛物线的最低点.
②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小;x=﹣时,y取得最大值,即顶点是抛物线的最高点.
③抛物线y=ax2+bx+c(a≠0)的图象可由抛物线y=ax2的图象向右或向左平移|﹣|个单位,再向上或向下平移||个单位得到的.
47.二次函数图象与系数的关系
二次函数y=ax2+bx+c(a≠0)
①二次项系数a决定抛物线的开口方向和大小.
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;|a|还可以决定开口大小,|a|越大开口就越小.
②一次项系数b和二次项系数a共同决定对称轴的位置.
当a与b同号时(即ab>0),对称轴在y轴左侧; 当a与b异号时(即ab<0),对称轴在y轴右侧.(简称:左同右异)
③.常数项c决定抛物线与y轴交点. 抛物线与y轴交于(0,c).
④抛物线与x轴交点个数.
△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.
48.二次函数图象上点的坐标特征
二次函数y=ax2+bx+c(a≠0)的图象是抛物线,顶点坐标是(﹣,).
①抛物线是关于对称轴x=﹣成轴对称,所以抛物线上的点关于对称轴对称,且都满足函数函数关系式.顶点是抛物线的最高点或最低点.
②抛物线与y轴交点的纵坐标是函数解析中的c值.
③抛物线与x轴的两个交点关于对称轴对称,设两个交点分别是(x1,0),(x2,0),则其对称轴为x=.
49.二次函数图象与几何变换
由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.
50.二次函数的最值
(1)当a>0时,抛物线在对称轴左侧,y随x的增大而减少;在对称轴右侧,y随x的增大而增大,因为图象有最低点,所以函数有最小值,当x=时,y=.
(2)当a<0时,抛物线在对称轴左侧,y随x的增大而增大;在对称轴右侧,y随x的增大而减少,因为图象有最高点,所以函数有最大值,当x=时,y=.
(3)确定一个二次函数的最值,首先看自变量的取值范围,当自变量取全体实数时,其最值为抛物线顶点坐标的纵坐标;当自变量取某个范围时,要分别求出顶点和函数端点处的函数值,比较这些函数值,从而获得最值.
51.待定系数法求二次函数解析式
(1)二次函数的解析式有三种常见形式:
①一般式:y=ax2+bx+c(a,b,c是常数,a≠0); ②顶点式:y=a(x﹣h)2+k(a,h,k是常数,a≠0),其中(h,k)为顶点坐标; ③交点式:y=a(x﹣x1)(x﹣x2)(a,b,c是常数,a≠0);
(2)用待定系数法求二次函数的解析式.
在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.
52.二次函数的三种形式
二次函数的解析式有三种常见形式:
①一般式:y=ax2+bx+c(a,b,c是常数,a≠0),该形式的优势是能直接根据解析式知道抛物线与y轴的交点坐标是(0,c);
②顶点式:y=a(x﹣h)2+k(a,h,k是常数,a≠0),其中(h,k)为顶点坐标,该形式的优势是能直接根据解析式得到抛物线的顶点坐标为(h,k);
③交点式:y=a(x﹣x1)(x﹣x2)(a,b,c是常数,a≠0),该形式的优势是能直接根据解析式得到抛物线与x轴的两个交点坐标(x1,0),(x2,0).
53.抛物线与x轴的交点
求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标,令y=0,即ax2+bx+c=0,解关于x的一元二次方程即可求得交点横坐标.
(1)二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的交点与一元二次方程ax2+bx+c=0根之间的关系.
△=b2﹣4ac决定抛物线与x轴的交点个数.
△=b2﹣4ac>0时,抛物线与x轴有2个交点;
△=b2﹣4ac=0时,抛物线与x轴有1个交点;
△=b2﹣4ac<0时,抛物线与x轴没有交点.
(2)二次函数的交点式:y=a(x﹣x1)(x﹣x2)(a,b,c是常数,a≠0),可直接得到抛物线与x轴的交点坐标(x1,0),(x2,0).
54.图象法求一元二次方程的近似根
利用二次函数图象求一元二次方程的近似根的步骤是:
(1)作出函数的图象,并由图象确定方程的解的个数;
(2)由图象与y=h的交点位置确定交点横坐标的范围;
(3)观察图象求得方程的根(由于作图或观察存在误差,由图象求得的根一般是近似的).
55.二次函数与不等式(组)
二次函数y=ax2+bx+c(a、b、c是常数,a≠0)与不等式的关系
①函数值y与某个数值m之间的不等关系,一般要转化成关于x的不等式,解不等式求得自变量x的取值范围.
②利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.
56.根据实际问题列二次函数关系式
根据实际问题确定二次函数关系式关键是读懂题意,建立二次函数的数学模型来解决问题.需要注意的是实例中的函数图象要根据自变量的取值范围来确定.
①描点猜想问题需要动手操作,这类问题需要真正的去描点,观察图象后再判断是二次函数还是其他函数,再利用待定系数法求解相关的问题.
②函数与几何知识的综合问题,有些是以函数知识为背景考查几何相关知识,关键是掌握数与形的转化;有些题目是以几何知识为背景,从几何图形中建立函数关系,关键是运用几何知识建立量与量的等式.
57.二次函数的应用
(1)利用二次函数解决利润问题
在商品经营活动中,经常会遇到求最大利润,最大销量等问题.解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值,实际问题中自变量x的取值要使实际问题有意义,因此在求二次函数的最值时,一定要注意自变量x的取值范围.
(2)几何图形中的最值问题
几何图形中的二次函数问题常见的有:几何图形中面积的最值,用料的最佳方案以及动态几何中的最值的讨论.
(3)构建二次函数模型解决实际问题
利用二次函数解决抛物线形的隧道、大桥和拱门等实际问题时,要恰当地把这些实际问题中的数据落实到平面直角坐标系中的抛物线上,从而确定抛物线的解析式,通过解析式可解决一些测量问题或其他问题.
58.二次函数综合题
(1)二次函数图象与其他函数图象相结合问题
解决此类问题时,先根据给定的函数或函数图象判断出系数的符号,然后判断新的函数关系式中系数的符号,再根据系数与图象的位置关系判断出图象特征,则符合所有特征的图象即为正确选项.
(2)二次函数与方程、几何知识的综合应用
将函数知识与方程、几何知识有机地结合在一起.这类试题一般难度较大.解这类问题关键是善于将函数问题转化为方程问题,善于利用几何图形的有关性质、定理和二次函数的知识,并注意挖掘题目中的一些隐含条件.
(3)二次函数在实际生活中的应用题
从实际问题中分析变量之间的关系,建立二次函数模型.关键在于观察、分析、创建,建立直角坐标系下的二次函数图象,然后数形结合解决问题,需要我们注意的是自变量及函数的取值范围要使实际问题有意义.
【真题训练】
一.点的坐标(共1小题)
1.(2021•遵义)数经历了从自然数到有理数,到实数,再到复数的发展过程,数学中把形如a+bi(a,b为实数)的数叫做复数,用z=a+bi表示,任何一个复数z=a+bi在平面直角坐标系中都可以用有序数对Z(a,b)表示,如:z=1+2i表示为Z(1,2),则z=2﹣i可表示为( )
A.Z(2,0) B.Z(2,﹣1) C.Z(2,1) D.Z(﹣1,2)
【分析】根据题中的新定义解答即可.
【解答】解:由题意,得z=2﹣i可表示为Z(2,﹣1).
故选:B.
【点评】本题考查了点的坐标,弄清题中的新定义是解本题的关键.
二.规律型:点的坐标(共1小题)
2.(2021•德阳)如图,边长为1的正六边形ABCDEF放置于平面直角坐标系中,边AB在x轴正半轴上,顶点F在y轴正半轴上,将正六边形ABCDEF绕坐标原点O顺时针旋转,每次旋转60°,那么经过第2025次旋转后,顶点D的坐标为( )
A.(﹣,﹣) B.(,﹣) C.(﹣,) D.(﹣,﹣)
【分析】如图,连接AD,BD.首先确定点D的坐标,再根据6次一个循环,由2025÷6=337•••3,推出经过第2025次旋转后,顶点D的坐标与第三次旋转得到的D3的坐标相同,由此即可解决问题.
【解答】解:如图,连接AD,BD.
在正六边形ABCDEF中,AB=1,AD=2,∠ABD=90°,
∴BD===,
在Rt△AOF中,AF=1,∠OAF=60°,
∴∠OFA=30°,
∴OA=AF=,
∴OB=OA+AB=,
∴D(,),
∵将正六边形ABCDEF绕坐标原点O顺时针旋转,每次旋转60°,
∴6次一个循环,
∵2025÷6=337……3,
∴经过第2025次旋转后,顶点D的坐标与第三次旋转得到的D3的坐标相同,
∵D与D3关于原点对称,
∴D3(﹣,﹣),
∴经过第2025次旋转后,顶点D的坐标(﹣,﹣),
故选:A.
【点评】本题考查正多边形与圆,规律型问题,坐标与图形变化﹣旋转等知识,解题的关键是学会探究规律的方法,属于中考常考题型.
三.坐标确定位置(共1小题)
3.(2021•山西)如图是一片枫叶标本,其形状呈“掌状五裂型”,裂片具有少数突出的齿,将其放在平面直角坐标系中,表示叶片“顶部”A,B两点的坐标分别为(﹣2,2),(﹣3,0),则叶杆“底部”点C的坐标为 (2,﹣3) .
【分析】根据A,B的坐标确定出坐标轴的位置,点C的坐标可得.
【解答】解:∵A,B两点的坐标分别为(﹣2,2),(﹣3,0),
∴得出坐标轴如下图所示位置:
∴点C的坐标为(2,﹣3).
故答案为:(2,﹣3).
【点评】本题主要考查了用坐标确定位置,和由点的位置得到点的坐标.依据已知点的坐标确定出坐标轴的位置是解题的关键.
四.坐标与图形性质(共1小题)
4.(2021•湘西州)已知点M(x,y)在第一象限,且x+y=12,点A(10,0)在x轴上,当△OMA为直角三角形时,点M的坐标为( )
A.(10,2),(8,4)或(6,6) B.(8,4),(9,3)或(5,7)
C.(8,4),(9,3)或(10,2) D.(10,2),(9,3)或(7,5)
【分析】分情况讨论:①若O为直角顶点,则点M在y轴上,不合题意舍去;
②若A为直角顶点,则MA⊥x轴,所以点M的横坐标为10,代入y=﹣x+12中,得y=2,求出点M坐标为(10,2);
③若M为直角顶点,作MB⊥x轴,可得△OMB∽△MAB,根据相似三角形的性质求出M点横坐标,进而得到M点坐标.
【解答】解:分情况讨论:
①若O为直角顶点,则点M在y轴上,不合题意舍去;
②若A为直角顶点,则MA⊥x轴,
∴点M的横坐标为10,
把x=10代入y=﹣x+12中,得y=2,
∴点M坐标为(10,2);
③若M为直角顶点,如图,作MB⊥x轴,
则∠OBM=∠MBA=90°,∠OMB+∠AMB=90°,
∵∠AMB+∠MAB=90°,
∴∠OMB=∠MAB,
∴△OMB∽△MAB,
∴=,
∴MB2=OB•AB,
∴(﹣x+12)2=x(10﹣x),
解得x=8或9,
∴点M坐标为(8,4)或(9,3),
综上所述,当△OMA为直角三角形时,点M的坐标为(10,2)、(8,4)、(9,3),
故选:C.
【点评】本题考查了相似三角形的判定与性质,图形与坐标性质,熟悉一次函数的性质和直角三角形的性质是解题的关键.
五.两点间的距离公式(共1小题)
5.(2009•滨州)根据题意,解答下列问题:
(1)如图①,已知直线y=2x+4与x轴、y轴分别交于A、B两点,求线段AB的长;
(2)如图②,类比(1)的求解过程,请你通过构造直角三角形的方法,求出两点M(3,4),N(﹣2,﹣1)之间的距离;
(3)如图③,P1(x1,y1),P2(x1,y2)是平面直角坐标系内的两点.求证:.
【分析】(1)根据直线y=2x+4与x轴、y轴交点的特点:与x轴相交时,y=0,求得x的值;与y轴相交时,x=0,求得y的值;
(2)、(3)通过构造直角三角形的方法,解得MN与P1P2的值.
【解答】(1)解:由y=0,得x=﹣2,所以点A的坐标为(﹣2,0),故OA=2.
同理可得OB=4.
所以在Rt△AOB中,AB=;
(2)解:作MP⊥x轴,NP⊥y轴,MP交NP于点P.
则MP⊥NP,P点坐标为(3,﹣1).
故PM=4﹣(﹣1)=5,PN=3﹣(﹣2)=5.
所以在Rt△MPN中,MN=;
(注:若直接运用了(3)的结论不得分.)
(3)证明:作P2P⊥x轴,P1P⊥y轴,P2P交P1P于点P.
则P2P⊥P1P,点P的坐标为(x2,y1).
故P2P=y2﹣y1,P1P=x2﹣x1.(不加绝对值符号此处不扣分)
所以在Rt△P2P1P中,.
【点评】本题主要考查一次函数图象与x轴、y轴交点的特点与解直角三角形,同时考查了数形结合思想,综合性很强,值得学生去思考.
六.常量与变量(共1小题)
6.(1999•杭州)圆的半径为r,圆的面积S与半径r之间有如下关系:S=πr2.在这关系中,常量是 π .
【分析】根据题意可知S,r是两个变量,π是一个常数(圆周率),是常量.
【解答】解:在S=πr2中π是一个常数(圆周率),即π是常量,S,r是两个变量.
故填π.
【点评】函数的定义:设x和y是两个变量,D是实数集的某个子集,若对于D中的每个值x,变量y按照一定的法则有一个确定的值y与之对应,称变量y为变量x的函数,变量是指在程序的运行过程中随时可以发生变化的量.
七.函数的概念(共1小题)
7.(2021•嘉兴)根据数学家凯勒的“百米赛跑数学模型”,前30米称为“加速期”,30米~80米为“中途期”,80米~100米为“冲刺期”.市田径队把运动员小斌某次百米跑训练时速度y(m/s)与路程x(m)之间的观测数据,绘制成曲线如图所示.
(1)y是关于x的函数吗?为什么?
(2)“加速期”结束时,小斌的速度为多少?
(3)根据如图提供的信息,给小斌提一条训练建议.
【分析】(1)根据函数的定义,可直接判断;
(2)由图象可知,“加速期”结束时,即跑30米时,小斌的速度为10.4m/s.
(3)答案不唯一.建议合理即可.
【解答】解:(1)y是x的函数,在这个变化过程中,对于x的每一个确定的值,y都有唯一确定的值与之对应.
(2)“加速期”结束时,小斌的速度为10.4m/s.
(3)答案不唯一.例如:根据图象信息,小斌在80米左右时速度下降明显,建议增加耐力训练,提高成绩.
【点评】本题主要考查函数图象的应用,结合题干中“百米赛跑数学模型”读出图中的数据是解题关键.
八.函数关系式(共1小题)
8.(2021•大连)如图,在正方形ABCD中,AB=2,点E在边BC上,点F在边AD的延长线上,AF=EF,设BE=x,AF=y,当0<x<2时,y关于x的函数解析式为 y=(0<x<2) .
【分析】由勾股定理表示AE,通过作垂线构造直角三角形,由等腰三角形的性质得出AM=ME,分别用含有x、y的代数式表示AM,AE,再根据相似三角形对应边成比例即可得出y与x之间的函数关系式.
【解答】解:过点F作FM⊥AE,垂足为M,
∵AF=EF,
∴AM=ME,
在Rt△ABE中,
AE==,
∴AM=,
∵∠B=∠AMF=90°,∠FAM=∠AEB,
∴△ABE∽△FMA,
∴=,
即=,
∴xy=,
即y=(0<x<2),
故答案为:y=(0<x<2).
【点评】本题考查函数关系式,掌握等腰三角形的性质,相似三角形的判定和性质是解决问题的关键.
九.函数自变量的取值范围(共1小题)
9.(2021•黄石)函数y=+(x﹣2)0的自变量x的取值范围是( )
A.x≥﹣1 B.x>2 C.x>﹣1且x≠2 D.x≠﹣1且x≠2
【分析】根据二次根式成立的条件,分式成立的条件,零指数幂的概念列不等式组求解.
【解答】解:由题意可得:,
解得:x>﹣1且x≠2,
故选:C.
【点评】本题考查函数中自变量的取值范围,二次根式成立的条件及零指数幂的概念,掌握分母不能为零,二次根式的被开方数为非负数,a0=1(a≠0)是解题关键.
一十.函数值(共1小题)
10.(2021•铜仁市)如图所示:是一个运算程序示意图,若第一次输入1,则输出的结果是 11 .
【分析】第一次输入x的值为1,计算出y=6,选择否的程序;第二次输入x的值为2,计算出y=11,选择是的程序,输出即可.
【解答】解:当x=1时,y=1+2+3=6,
∵6<9,
∴选择否的程序,
当x=2时,y=4+4+3=11,
∵11>9,
∴选择是的程序,
故答案为:11.
【点评】本题考查了函数值,体现了分类讨论的数学思想,看懂程序图是解题的关键,注意第2次输入的x为2.
一十一.函数的图象(共1小题)
11.(2021•巴中)小风在1000米中长跑训练时,已跑路程s(米)与所用时间t(秒)之间的函数图象如图所示,下列说法错误的是( )
A.小风的成绩是220秒
B.小风最后冲刺阶段的速度是5米/秒
C.小风第一阶段与最后冲刺阶段速度相等
D.小风的平均速度是4米/秒
【分析】根据函数图象上的数据,求出相应阶段的速度即可得到正确的结论.
【解答】解:A、小风的成绩是220秒,本选项正确,不符合题意;
B、小风最后冲刺阶段的速度是=5(米/秒),本选项正确,不符合题意;
C、小风第一阶段的速度是=5(米/秒),即小风第一阶段与最后冲刺阶段速度相等,本选项正确,不符合题意;
D、=(米/秒),故本选项错误,符合题意;
故选:D.
【点评】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.
一十二.动点问题的函数图象(共1小题)
12.(2021•西宁)如图1,动点P从矩形ABCD的顶点A出发,在边AB,BC上沿A→B→C的方向,以1cm/s的速度匀速运动到点C,△APC的面积S(cm2)随运动时间t(s)变化的函数图象如图2所示,则AB的长是( )
A.cm B.3cm C.4cm D.6cm
【分析】由图2可知,AB=acm,BC=4cm,当点P到达点B时,△APC的面积为6cm2,可得出等式•a•4=6,求出a的值,即线段AB的长.
【解答】解:由图2可知,AB=acm,BC=4 cm,当点P到达点B时,△APC的面积为6cm2,
∴•AB•BC=6,即•a•4=6,
解得a=3 cm.
即AB的长为3cm.
故选:B.
【点评】本题主要考查动点问题中三角形的面积,函数图象与点的运动相结合,注意转折点,即表示面积发生改变的点的含义是解题关键.
一十三.函数的表示方法(共1小题)
13.(2020•威海)下表中y与x的数据满足我们初中学过的某种函数关系.其函数表达式为 y=﹣x2+2x+3 .
x
…
﹣1
0
1
3
…
y
…
0
3
4
0
…
【分析】根据表中y与x的数据设函数关系式为:y=ax2+bx+c,将表中(1,4)、(﹣1,0)、(0,3)代入函数关系式,即可得结论.
【解答】解:根据表中y与x的数据设函数关系式为:y=ax2+bx+c,
将表中(1,4)、(﹣1,0)、(0,3)代入函数关系式,得
,
解得,
∴函数表达式为y=﹣x2+2x+3.
当x=3时,代入y=﹣x2+2x+3=0,
∴(3,0)也适合所求得的函数关系式.
故答案为:y=﹣x2+2x+3.
【点评】本题考查了函数的表示方法,解决本题的关键是掌握函数的三种表示方法:列表法、解析式法、图象法.
一十四.分段函数(共1小题)
14.(2021•永州)已知函数y=,若y=2,则x= 2 .
【分析】根据题意,进行分类解答,即可求值.
【解答】解:∵y=2.
∴当x2=2时,x=.
∵0≤x<1.
∴x=(舍去).
当2x﹣2=2时,x=2.
故答案为:2.
【点评】本题考查根据函数值,求自变量的值.关键在于求出自变量的值一定要符合取值范围.
一十五.一次函数的定义(共1小题)
15.(2008•丽水)已知一次函数y=2x+1,当x=0时,函数y的值是 1 .
【分析】把x=0代入解析式即可求得y的值.
【解答】解:把x=0时代入一次函数y=2x+1,
得到:y=2×0+1=1.
【点评】将已知自变量的值代入一次函数y=2x+1,化作解一元一次方程的问题.
一十六.正比例函数的定义(共1小题)
16.(2019•梧州)下列函数中,正比例函数是( )
A.y=﹣8x B.y= C.y=8x2 D.y=8x﹣4
【分析】直接利用正比例函数以及反比例函数、二次函数、一次函数的定义分别分析得出答案.
【解答】解:A、y=﹣8x,是正比例函数,符合题意;
B、y=,是反比例函数,不合题意;
C、y=8x2,是二次函数,不合题意;
D、y=8x﹣4,是一次函数,不合题意;
故选:A.
【点评】此题主要考查了正比例函数以及反比例函数、二次函数、一次函数的定义,正确把握相关定义是解题关键.
一十七.一次函数的图象(共1小题)
17.(2021•西藏)已知第一象限点P(x,y)在直线y=﹣x+5上,点A的坐标为(4,0),设△AOP的面积为S.
(1)当点P的横坐标为2时,求△AOP的面积;
(2)当S=4时,求点P的坐标;
(3)求S关于x的函数解析式,写出x的取值范围,并在图中画出函数S的图象.
【分析】(1)求出点P坐标,再根据三角形面积公式进行计算即可;
(2)当S=4时求出点P的纵坐标,进而确定其横坐标;
(3)根据三角形的面积计算方法以及一次函数关系式得出答案.
【解答】解:(1)把点P的横坐标为2代入得,y=﹣2+5=3,
∴点P(2,3),
∴S△AOP=×4×3=6;
(2)当S=4时,即×4×|y|=4,
∴y=2或y=﹣2(舍去),
当y=2时,即2=﹣x+5,
解得x=3,
∴点P(3,2),
∴点P的坐标为(3,2);
(3)由题意得,
S=OA•|y|=2y(y>0),
当y>0时,即0<x<5时,S=2(﹣x+5)=﹣2x+10,
∴S关于x的函数解析式为S=﹣2x+10(0<x<5),画出的图象如图所示.
【点评】本题考查一次函数图象上点的坐标特征,将坐标转化为线段的长,利用三角形的面积公式得出关系式是解决问题的关键.
一十八.正比例函数的图象(共1小题)
18.(2014•湘西州)正比例函数y=x的大致图象是( )
A. B.
C. D.
【分析】正比例函数的图象是一条经过原点的直线,且当k>0时,经过一、三象限.
【解答】解:因为正比例函数的图象是一条经过原点的直线,且当k>0时,经过一、三象限.
故正比例函数y=x的大致图象是C.
故选:C.
【点评】此题比较简单,主要考查了正比例函数的图象特点:是一条经过原点的直线.
一十九.一次函数的性质(共1小题)
19.(2021•宁夏)已知点A(x1,y1)、B(x2,y2)在直线y=kx+b(k≠0)上,当x1<x2时,y2>y1,且kb>0,则在平面直角坐标系内,它的图象大致是( )
A. B.
C. D.
【分析】根据点A(x1,y1)、B(x2,y2)在直线y=kx+b(k≠0)上,当x1<x2时,y2>y1,且kb>0,可以得到k、b的正负情况,然后根据一次函数的性质,即可得到直线y=kx+b经过哪几个象限.
【解答】解:∵点A(x1,y1)、B(x2,y2)在直线y=kx+b(k≠0)上,当x1<x2时,y2>y1,且kb>0,
∴k>0,b>0,
∴直线y=kx+b经过第一、二、三象限,
故选:A.
【点评】本题考查一次函数的性质,解答本题的关键是求出k、b的正负.
二十.正比例函数的性质(共1小题)
20.(2021•河南)请写出一个图象经过原点的函数的解析式 y=x(答案不唯一) .
【分析】图象经过原点,要求解析式中,当x=0时,y=0.
【解答】解:依题意,正比例函数的图象经过原点,
如y=x(答案不唯一).
故答案为:y=x (答案不唯一).
【点评】本题考查了正比例函数的性质和二次函数的性质,正比例函数的图象经过原点,二次函数的图象也可能经过原点,写出一个即可.
二十一.一次函数图象与系数的关系(共1小题)
21.(2021•柳州)若一次函数y=kx+b的图象如图所示,则下列说法正确的是( )
A.k>0 B.b=2
C.y随x的增大而增大 D.x=3时,y=0
【分析】根据一次函数的性质结合图象即可得出结论.
【解答】解:观察一次函数图象发现,图象过第一、二、四象限,
∴k<0,A错误;
∴函数值y随x的增大而减小,C错误;
∵图象与y轴的交点为(0,2)
∴b=2,B正确;
∵图象与x轴的交点为(4,0)
∴x=4时,y=0,D错误.
故选:B.
【点评】本题考查了一次函数的图象和性质,一次函数图象上点的坐标特征,熟练掌握一次函数的性质是解题的关键.
二十二.一次函数图象上点的坐标特征(共1小题)
22.(2021•黔东南州)已知直线y=﹣x+1与x轴、y轴分别交于A、B两点,点P是第一象限内的点,若△PAB为等腰直角三角形,则点P的坐标为( )
A.(1,1)
B.(1,1)或(1,2)
C.(1,1)或(1,2)或(2,1)
D.(0,0)或(1,1)或(1,2)或(2,1)
【分析】先根据一次函数解析式求出A、B两点的坐标,然后根据已知条件,进行分类讨论分别求出点P的坐标.
【解答】解:直线y=﹣x+1与x轴、y轴分别交于A、B两点,
当y=0时,x=1,当x=0时,y=1;
故A、B两点坐标分别为A(1,0),B(0,1),
∵点P是第一象限内的点且△PAB为等腰直角三角形,
①当∠PAB=90°时,P点坐标为(2,1);
②当∠PBA=90°时,P点坐标为(1,2);
③当∠APB=90°时,P点坐标为(1,1);
故选:C.
【点评】本题主要考查了一次函数的应用,数形结合思想和分类讨论思想的运用是解题的关键.
二十三.一次函数图象与几何变换(共1小题)
23.在平面直角坐标系中,将直线y=﹣2x向上平移3个单位,平移后的直线经过点(﹣1,m),则m的值为( )
A.﹣1 B.1 C.﹣5 D.5
【分析】先根据平移规律求出直线y=﹣2x向上平移3个单位的直线解析式,再把点(﹣1,m)代入,即可求出m的值.
【解答】解:将直线y=﹣2x向上平移3个单位,得到直线y=﹣2x+3,
把点(﹣1,m)代入,得m=﹣2×(﹣1)+3=5.
故选:D.
【点评】本题考查了一次函数图象与几何变换,一次函数图象上点的坐标特征,正确求出平移后的直线解析式是解题的关键.
二十四.待定系数法求一次函数解析式(共1小题)
24.(2021•呼和浩特)在平面直角坐标系中,点A(3,0),B(0,4).以AB为一边在第一象限作正方形ABCD,则对角线BD所在直线的解析式为( )
A.y=﹣x+4 B.y=﹣x+4 C.y=﹣x+4 D.y=4
【分析】过D点作DH⊥x轴于H,如图,证明△ABO≌△DAH得到AH=OB=4,DH=OA=3,则D(7,3),然后利用待定系数法求直线BD的解析式.
【解答】解:过D点作DH⊥x轴于H,如图,
∵点A(3,0),B(0,4).
∴OA=3,OB=4,
∵四边形ABCD为正方形,
∴AB=AD,∠BAD=90°,
∵∠OBA+∠OAB=90°,∠OAB+∠DAH=90°,
∴∠ABO=∠DAH,
在△ABO和△DAH中,
,
∴△ABO≌△DAH(AAS),
∴AH=OB=4,DH=OA=3,
∴D(7,3),
设直线BD的解析式为y=kx+b,
把D(7,3),B(0,4)代入得,解得,
∴直线BD的解析式为y=﹣x+4.
故选:A.
【点评】本题考查了待定系数法求一次函数解析式:求一次函数y=kx+b,需要两组x,y的值.利用全等三角形的性质求出D点坐标是解决问题的关键.
二十五.待定系数法求正比例函数解析式(共1小题)
25.(2019•陕西)A′是点A(1,2)关于x轴的对称点.若一个正比例函数的图象经过点A′,则该函数的表达式为( )
A.y=x B.y=2x C.y=﹣x D.y=﹣2x
【分析】先求得A′的坐标,然后设该正比例函数的解析式为y=kx(k≠0),再把点A′的坐标代入求出k的值即可.
【解答】解:∵A′是点A(1,2)关于x轴的对称点.
∴A′(1,﹣2),
设该正比例函数的解析式为y=kx(k≠0),
∵正比例函数的图象经过点A′(1,﹣2),
∴﹣2=k,解得k=﹣2,
∴这个正比例函数的表达式是y=﹣2x.
故选:D.
【点评】本题考查的是待定系数法求正比例函数的解析式,熟知正比例函数图象上点的坐标一定适合此函数的解析式是解答此题的关键.
二十六.一次函数与一元一次方程(共1小题)
26.(2021•抚顺)如图,直线y=2x与y=kx+b相交于点P(m,2),则关于x的方程kx+b=2的解是( )
A.x= B.x=1 C.x=2 D.x=4
【分析】首先利用函数解析式y=2x求出m的值,然后再根据两函数图象的交点横坐标就是关于x的方程kx+b=2的解可得答案.
【解答】解:∵直线y=2x与y=kx+b相交于点P(m,2),
∴2=2m,
∴m=1,
∴P(1,2),
∴当x=1时,y=kx+b=2,
∴关于x的方程kx+b=2的解是x=1,
故选:B.
【点评】此题主要考查了一次函数与一元一次方程,关键是求得两函数图象的交点坐标.
二十七.一次函数与一元一次不等式(共1小题)
27.(2021•娄底)如图,直线y=x+b和y=kx+4与x轴分别相交于点A(﹣4,0),点B(2,0),则解集为( )
A.﹣4<x<2 B.x<﹣4 C.x>2 D.x<﹣4或x>2
【分析】结合图象,写出两个函数图象在x轴上方所对应的自变量的范围即可.
【解答】解:∵当x>﹣4时,y=x+b>0,
当x<2时,y=kx+4>0,
∴解集为﹣4<x<2,
故选:A.
【点评】本题考查了一次函数与一元一次不等式的知识,解题的关键是能够结合图象作出判断.
二十八.一次函数与二元一次方程(组)(共1小题)
28.(2021•德阳)关于x,y的方程组的解为,若点P(a,b)总在直线y=x上方,那么k的取值范围是( )
A.k>1 B.k>﹣1 C.k<1 D.k<﹣1
【分析】将k看作常数,解方程组得到x,y的值,根据P在直线上方可得到b>a,列出不等式求解即可.
【解答】解:解方程组可得,
,
∵点P(a,b)总在直线y=x上方,
∴b>a,
∴>﹣k﹣1,
解得k>﹣1,
故选:B.
【点评】本题考查了解二元一次方程组,一次函数上点的坐标特征,解本题的关键是将k看作常数,根据点在一次函数上方列出不等式求解.
二十九.两条直线相交或平行问题(共1小题)
29.(2021•贵阳)小星在“趣味数学”社团活动中探究了直线交点个数的问题.现有7条不同的直线y=knx+bn(n=1,2,3,4,5,6,7),其中k1=k2,b3=b4=b5,则他探究这7条直线的交点个数最多是( )
A.17个 B.18个 C.19个 D.21个
【分析】由k1=k2得前两条直线无交点,b3=b4=b5得第三到五条有1个交点,然后第6条线与前5条线最多有5个交点,第7条线与前6条线最多有6个交点求解.
【解答】解:∵k1=k2,b3=b4=b5,
∴直线y=knx+bn(n=1,2,3,4,5)中,
直线y=k1x+b1与y=k2x+b2无交点,y=k3x+b3与y=k4x+b4与y=k5x+b5有1个交点,
∴直线y=knx+bn(n=1,2,3,4,5)最多有交点2×3+1=7个,
第6条线与前5条线最多有5个交点,
第7条线与前6条线最多有6个交点,
∴交点个数最多为7+5+6=18.
故选:B.
【点评】本题考查直线相交问题,解题关键是掌握一次函数y=kx+b中,k与b对直线的影响.
三十.根据实际问题列一次函数关系式(共1小题)
30.(2018•绍兴)实验室里有一个水平放置的长方体容器,从内部量得它的高是15cm,底面的长是30cm,宽是20cm,容器内的水深为xcm.现往容器内放入如图的长方体实心铁块(铁块一面平放在容器底面),过顶点A的三条棱的长分别10cm,10cm,ycm(y≤15),当铁块的顶部高出水面2cm时,x,y满足的关系式是 y=(0<x≤)或y=(6≤x<8) .
【分析】分两种情况:利用实心铁块浸在水中的体积等于容器中水位增加后的体积减去原来水的体积建立方程求解即可.
【解答】解:①当长方体实心铁块的棱长为10cm和ycm的那一面平放在长方体的容器底面时,
则铁块浸在水中的高度为8cm,
此时,水位上升了(8﹣x)cm(x<10﹣2=8),铁块浸在水中的体积为10×8×y=80ycm3,
∴80y=30×20×(8﹣x),
∴y=,
∵y≤15,
∴x≥6,
即:y=(6≤x<8),
②当长方体实心铁块的棱长为10cm和10cm的那一面平放在长方体的容器底面时,
同①的方法得,y=,
∵y≤15,
∴≤15,
∴x≤,
∴0<x≤,
故答案为:y=(0<x≤)或y=(6≤x<8)
【点评】此题主要考查了从实际问题列一次函数关系式,正确找出相等关系是解本题的关键.
三十一.一次函数的应用(共1小题)
31.(2021•赤峰)甲、乙两人在一条长400米的直线跑道上同起点、同终点、同方向匀速跑步,先到终点的人原地休息.已知甲先出发3秒,在跑步过程中,甲、乙两人间的距离y(米)与乙出发的时间x(秒)之间的函数关系如图所示,则下列结论正确的个数是( )
①乙的速度为5米/秒;
②离开起点后,甲、乙两人第一次相遇时,距离起点12米;
③甲、乙两人之间的距离超过32米的时间范围是44<x<89;
④乙到达终点时,甲距离终点还有68米.
A.4 B.3 C.2 D.1
【分析】通过函数图象可得,甲出发3秒走的路程为12米,乙到达终点所用的时间为80秒,根据行程问题的数量关系可以求出甲、乙的速度,利用数形结合思想及一元一次方程即可解答.
【解答】解:由函数图象,得:甲的速度为12÷3=4(米/秒),乙的速度为400÷80=5(米/秒),
故①正确;
设乙离开起点x秒后,甲、乙两人第一次相遇,根据题意得:
5x=12+4x,
解得:x=12,
∴离开起点后,甲、乙两人第一次相遇时,距离起点为:12×5=60(米),
故②错误;
当甲、乙两人之间的距离超过32米时,
,
可得44<x<89,
故③正确;
∵乙到达终点时,所用时间为80秒,甲先出发3秒,
∴此时甲行走的时间为83秒,
∴甲走的路程为:83×4=332(米),
∴乙到达终点时,甲、乙两人相距:400﹣332=68(米),
故④正确;
结论正确的个数为3.
故选:B.
【点评】本题主要考查了一次函数的应用,要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.
三十二.一次函数综合题(共1小题)
32.(2021•宁夏)如图,已知直线y=kx+3与x轴的正半轴交于点A,与y轴交于点B,sin∠OAB=.
(1)求k的值;
(2)D、E两点同时从坐标原点O出发,其中点D以每秒1个单位长度的速度,沿O→A→B的路线运动,点E以每秒2个单位长度的速度,沿O→B→A的路线运动.当D,E两点相遇时,它们都停止运动,设运动时间为t秒.
①在D、E两点运动过程中,是否存在DE∥OB?若存在,求出t的值,若不存在,请说明理由;
②若设△OED的面积为S,求S关于t的函数关系式,并求出t为多少时,S的值最大?
【分析】(1)先由直线y=kx+3求出它与y轴的交点B的坐标,然后在Rt△AOB中根据sin∠OAB=和勾股定理求出AB、OA的长,得到点A的坐标,将其代入y=kx+3求出k的值;
(2)①当点E与点B重合时,OD=,在OA上取一点F(,0),连接BF,通过计算证明DE∥BF或与BF重合,说明DE不与OB平行;
②按点E在OB上和点E在AB上分类讨论,求出S关于t的函数关系式,再利用一次函数和二次函数的性质求出S的最大值.
【解答】解:(1)直线y=kx+3,当x=0时,y=3,
∴B(0,3),
∴OB=3,
∵∠AOB=90°,且sin∠OAB=,
∴=,
∵AB=OB=×3=5,
∴OA==4,
∴A(4,0),
把A(4,0)代入y=kx+3得0=4k+3,
解得k=.
(2)①不存在,理由如下:
在OA上取一点F(,0),连接BF,
当0<t<时,如图1,OD=t,OE=2t,
∵==,==,
∴=,
∵∠DOE=∠FOB,
∴△ODE∽△OFB,
∴∠ODE=∠OFB,
∴DE∥BF,
当t=时,DE与BF重合,
∴当0<t≤时,不存在DE∥OB;
当<t<4时,如图2,AF=4=,AD=4﹣t,AE=8﹣2t,
∵==,=,
∴=,
同理可证DE∥BF,
∴此时不存在DE∥OB,
综上所述,不存在DE∥OB.
②当0<t≤时,如图1,S△OED=OD•OE=t×2t=t2,
∴S=t2,
∵a=1>0,
∴S随t的增大而增大,
∴当t=时,S最大=()2=;
当<t<4时,如图2,作EG⊥x轴,则EG∥BO,
∴△AGE∽△AOB,
∴=,
∴GE=•AE=(8﹣2t),
∴S△OED=OD•GE=×t(8﹣2t)=t2+t,
∴S=t2+t,
∵S=t2+t=(t﹣2)2+,且<0,<2<4,
∴当t=2时,S最大=,
∵>,
∴当t=2时,S的最大值为,
综上所述,S=,当t=2时,S的最大值为.
【点评】此题重点考查一次函数的图象与性质、二次函数的性质、动点问题的求解等知识与方法,在解第(2)题和第(3)题时,应按t的取值范围进行分类讨论,此题难度较大,属于考试压轴题.
三十三.反比例函数的定义(共1小题)
33.(2018•柳州)已知反比例函数的解析式为y=,则a的取值范围是( )
A.a≠2 B.a≠﹣2 C.a≠±2 D.a=±2
【分析】根据反比例函数解析式中k是常数,不能等于0解答即可.
【解答】解:根据反比例函数解析式中k是常数,不能等于0,由题意可得:|a|﹣2≠0,
解得:a≠±2,
故选:C.
【点评】此题主要考查了反比例函数,关键是根据反比例函数关系式中k的取值范围解答.
三十四.反比例函数的图象(共1小题)
34.(2021•青岛)已知反比例函数y=的图象如图所示,则一次函数y=cx+a和二次函数y=ax2+bx+c在同一平面直角坐标系中的图象可能是( )
A. B.
C. D.
【分析】根据反比例函数的图象得出b<0,逐一分析四个选项,根据二次函数图象的开口以及对称轴与y轴的关系,抛物线与y轴的交点,即可得出a、b、c的正负,由此即可得出一次函数图象经过的象限,再与函数图象进行对比即可得出结论.
【解答】解:∵反比例函数的图象在二、四象限,
∴b<0,
A、∵二次函数图象开口向上,对称轴在y轴右侧,交y轴的负半轴,
∴a>0,b<0,c<0,
∴一次函数图象应该过第一、二、四象限,A错误;
B、∵二次函数图象开口向下,对称轴在y轴右侧,
∴a<0,b>0,
∴与b<0矛盾,B错误;
C、∵二次函数图象开口向下,对称轴在y轴右侧,
∴a<0,b>0,
∴与b<0矛盾,C错误;
D、∵二次函数图象开口向上,对称轴在y轴右侧,交y轴的负半轴,
∴a>0,b<0,c<0,
∴一次函数图象应该过第一、二、四象限,D正确.
故选:D.
【点评】本题主要考查了一次函数、反比例函数、二次函数的图象与性质,根据函数图象与系数的关系进行判断是解题的关键,同时考查了数形结合的思想.
三十五.反比例函数图象的对称性(共1小题)
35.(2015•扬州)已知一个正比例函数的图象与一个反比例函数的一个交点坐标为(1,3),则另一个交点坐标是 (﹣1,﹣3) .
【分析】反比例函数的图象是中心对称图形,则经过原点的直线的两个交点一定关于原点对称.
【解答】解:∵反比例函数的图象与经过原点的直线的两个交点一定关于原点对称,
∴另一个交点的坐标与点(1,3)关于原点对称,
∴该点的坐标为(﹣1,﹣3).
故答案为:(﹣1,﹣3).
【点评】本题主要考查了反比例函数图象的中心对称性,要求同学们要熟练掌握关于原点对称的两个点的坐标的横、纵坐标都互为相反数.
三十六.反比例函数的性质(共1小题)
36.(2021•黔西南州)对于反比例函数y=,下列说法错误的是( )
A.图象经过点(1,﹣5)
B.图象位于第二、第四象限
C.当x<0时,y随x的增大而减小
D.当x>0时,y随x的增大而增大
【分析】根据题目中的函数解析式和反比例函数的性质,可以判断各个选项中的说法是否正确,从而可以解答本题.
【解答】解:∵反比例函数y=,
∴当x=1时,y=﹣=﹣5,故选项A不符合题意;
k=﹣5,故该函数图象位于第二、四象限,故选项B不符合题意;
当x<0,y随x的增大而增大,故选项C符合题意;
当x>0时,y随x的增大而增大,故选项D不符合题意;
故选:C.
【点评】本题考查反比例函数的性质,解答本题的关键是明确题意,利用反比例函数的性质解答.
三十七.反比例函数系数k的几何意义(共1小题)
37.(2021•兰州)如图,点A在反比例函数y=(x>0)的图象上,AB⊥x轴于点B,C是OB的中点,连接AO,AC,若△AOC的面积为4,则k=( )
A.16 B.12 C.8 D.4
【分析】由C是OB的中点求△AOB的面积,设A(a,b)根据面积公式求ab,最后求k.
【解答】解:∵C是OB的中点,△AOC的面积为4,
∴△AOB的面积为8,
设A(a,b)
∵AB⊥x轴于点B,
∴ab=16,
∵点A在反比例函数y=(x>0)的图象上,
∴k=16.
故选:A.
【点评】本题考查了比例系数k的几何意义、反比例函数图象上点的坐标特征,掌握用面积法求k是解题关键.
三十八.反比例函数图象上点的坐标特征(共1小题)
38.(2021•内江)如图,菱形ABCD的顶点分别在反比例函数y=和y=的图象上,若∠BCD=60°,则的值为( )
A. B. C. D.
【分析】连接AC、BD,根据菱形的性质和反比例函数的对称性,即可得出∠BOC=90°,∠BCO=∠BCD=30°,解直角三角形求得tan30°==,作BM⊥x轴于M,CN⊥x轴于N,证得△OMB∽△CNO,得到=()2,根据反比例函数系数k的几何意义即可求得结果.
【解答】解:连接AC、BD,
∵四边形ABCD是菱形,
∴AC⊥BD,
∵菱形ABCD的顶点分别在反比例函数y=和y=的图象上,
∴A与C、B与D关于原点对称,
∴AC、BD经过点O,
∴∠BOC=90°,
∵∠BCO=∠BCD=30°,
∴tan30°==,
作BM⊥x轴于M,CN⊥x轴于N,
∵∠BOM+∠NOC=90°=∠NOC+∠NCO,
∴∠BOM=∠NCO,
∵∠OMB=∠CNO=90°,
∴△OMB∽△CNO,
∴=()2,
∴=,
∴=﹣,
故选:D.
【点评】本题考查反比例函数图象上点的坐标特征,菱形的性质,解直角三角形,三角形相似的判定和性质,反比例函数系数k的几何意义,解题关键是熟练掌握反比例函数的性质与菱形的性质.
三十九.待定系数法求反比例函数解析式(共1小题)
39.(2021•鄂尔多斯)如图,矩形ABCD的两边AB,BC的长分别为3,8,C,D在y轴上,E是AD的中点,反比例函数y=(k≠0)的图象经过点E,与BC交于点F,且CF﹣BE=1.
(1)求反比例函数的解析式;
(2)在y轴上找一点P,使得S△CEP=S矩形ABCD,求此时点P的坐标.
【分析】(1)根据勾股定理求出BE=5,由CF﹣BE=1得CF=6,设F(﹣6,m),则E(﹣4,m+3),因为E,F都在反比例函数图象上,得出方程﹣6m=﹣4(m+3),解方程即可;
(2)由S△CEP=S矩形ABCD,可得CP的长,从而得出P坐标.
【解答】解:(1)∵E是AD的中点,
∴AE=,
在Rt△ABE中,由勾股定理得:BE=,
∵CF﹣BE=1,
∴CF=6,
∴F的横坐标为﹣6,
设F(﹣6,m),则E(﹣4,m+3),
∵E,F都在反比例函数图象上,
∴﹣6m=﹣4(m+3),
解得m=6,
∴F(﹣6,6),
∴k=﹣36,
∴反比例函数y=﹣.
(2)∵S△CEP=S矩形ABCD,
∴,
∴CP=8,
∴P(0,14)或(0,﹣2).
【点评】本题主要考查了反比例函数图象上点的坐标的特征、待定系数法求函数的解析式、勾股定理等知识,表示出E,F的坐标是解题的关键.
四十.反比例函数与一次函数的交点问题(共1小题)
40.(2021•南通)平面直角坐标系xOy中,直线y=2x与双曲线y=(k>2)相交于A,B两点,其中点A在第一象限.设M(m,2)为双曲线y=(k>2)上一点,直线AM,BM分别交y轴于C,D两点,则OC﹣OD的值为( )
A.2 B.4 C.6 D.8
【分析】解法一:设A(a,2a),M(m,2),则B(﹣a,﹣2a),分别计算直线AM和BM的解析式,令x=0可得OC和OD的长,相减可得结论;
解法二:作辅助线,构建相似三角形,先根据两个函数的解析式计算交点A和B的坐标,根据M(m,2)为双曲线y=(k>2)上一点,将点M的坐标代入反比例函数的解析式可得M的坐标,证明△EMD∽△FDB和△CPA∽△CEM,列比例式分别计算OC和OD的长,可得结论;
解法三,取特殊值k=8,可得结论.
【解答】解:解法一:设A(a,2a),M(m,2),则B(﹣a,﹣2a),
设直线BM的解析式为:y=nx+b,
则,解得:,
∴直线BM的解析式为:y=x+,
∴OD=,
同理得:直线AM的解析式为:y=x+,
∴OC=,
∵a•2a=2m,
∴m=a2,
∴OC﹣OD=﹣=4;
解法二:由题意得:,
解得:,,
∵点A在第一象限,
∴A(,),B(﹣,﹣),
∵M(m,2)为双曲线y=(k>2)上一点,
∴2m=k,
∴m=,
∴M(,2),
如图,过点A作AP⊥y轴于P,过点M作ME⊥y轴于E,过点B作BF⊥y轴于F,
∴∠MED=∠BFD=90°,
∵∠EDM=∠BDF,
∴△EMD∽△FBD,
∴,即==,
∴OD==﹣2,
∵∠CPA=∠CEM=90°,∠ACP=∠ECM,
∴△CPA∽△CEM,
∴,即==,
∴OC===+2,
∴OC﹣OD=+2﹣(﹣2)=4.
解法三:取k=8,如图,则M(4,2),A(2,4),B(﹣2,﹣4),
得AM的解析式为:y=﹣x+6,BM的解析式为:y=x﹣2,
∴OC=6,OD=2,
∴OC﹣OD=6﹣2=4.
故选:B.
【点评】本题考查反比例函数的综合问题,解题关键是构造相似三角形求解.
四十一.根据实际问题列反比例函数关系式(共1小题)
41.(2016•广州)一司机驾驶汽车从甲地去乙地,他以平均80千米/小时的速度用了4个小时到达乙地,当他按原路匀速返回时.汽车的速度v千米/小时与时间t小时的函数关系是( )
A.v=320t B.v= C.v=20t D.v=
【分析】根据路程=速度×时间,利用路程相等列出方程即可解决问题.
【解答】解:由题意vt=80×4,
则v=.
故选:B.
【点评】本题考查实际问题的反比例函数、路程、速度、时间之间的关系,解题的关键是构建方程解决问题,属于中考常考题型.
四十二.反比例函数的应用(共1小题)
42.(2021•娄底)根据反比例函数的性质、联系化学学科中的溶质质量分数的求法以及生活体验等,判定下列有关函数y=(a为常数且a>0,x>0)的性质表述中,正确的是( )
①y随x的增大而增大
②y随x的增大而减小
③0<y<1
④0≤y≤1
A.①③ B.①④ C.②③ D.②④
【分析】可借助反比例函数的性质,将原函数进行变形后,左右两边取倒数,观察与x的变化关系,再借助x和a的取值范围,即可确定正确结果.
【解答】解:∵y=(a为常数且a>0,x>0),
∴=,即=+1,
根据反比例函数的性质,
∵a>0,
∴当x增大时,随x的增大而减小,
∴+1也随x的增大而减小,
即也随x的增大而减小,
则y就随x的增大而增大,
∴性质①正确.
又∵a>0,x>0,∴a+x>0,
∴>0,即y>0,
又∵x<a+x,
∴<1,即y<1,
∴0<y<1,
∴性质③正确.
综上所述,性质①③正确,
故选:A.
【点评】本题考查了反比例函数图象性质的应用,借助把新的函数形式变形为反比例函数的形式,再运用反比例函数的性质,从而得到新函数的性质,这样的方法也是研究函数的一种普遍方法,是一种把未知转化为已知的数学思想.应熟练掌握反比例函数的图象性质是解决问题的基础.
四十三.反比例函数综合题(共1小题)
43.(2021•罗湖区)以矩形OABC的顶点O为坐标原点建立平面直角坐标系,使点A、C分别在x、y轴的正半轴上,双曲线y=(x>0)的图象经过BC的中点D,且与AB交于点E,过OC边上一点F,把△BCF沿直线BF翻折,使点C落在矩形内部的一点C′处,且C′E∥BC,若点C′的坐标为(2,4),则tan∠CBF的值为 .
【分析】首先证明点E是线段AB的中点,设BC=BC′=m,则EC′=m﹣2.在Rt△BEC′中,根据BC′2=BE2+EC′2,构建方程求出m即可求得点E的坐标;延长EC′交y轴于G,则EG⊥y轴,由勾股定理求得点F的坐标;最后结合锐角三角函数的定义求得答案.
【解答】解:连接OD、OE.设BC=BC′=m,则EC′=m﹣2.
∵CD=BD,
∴S△CDO==S矩形ABCD,
∵S△AOE==S△CDO=S矩形ABCD,
∴AE=EB,
∵C′(2,4),
∴AE=EB=4,
在Rt△BEC′中,∵BC′2=BE2+EC′2,
∴m2=42+(m﹣2)2,
∴m=5,
∴E(5,4),
∴B(5,8),则BC=5,
延长EC′交y轴于G,则EG⊥y轴,
∴C′G=2,CG=4,
∴在Rt△FGC′中,C′F2=C′G2+FG2,即(4﹣FG)2=22+FG2,
∴FG=,
∴CF=4﹣=,
∴tan∠CBF===.
故答案是:.
【点评】本题考查了反比例函数综合题,涉及待定系数法求函数解析式、翻折变换、勾股定理等知识,综合性较强,学会利用参数构建方程解决问题.
四十四.二次函数的定义(共1小题)
44.(2015•兰州)下列函数解析式中,一定为二次函数的是( )
A.y=3x﹣1 B.y=ax2+bx+c C.s=2t2﹣2t+1 D.y=x2+
【分析】根据二次函数的定义,可得答案.
【解答】解:A、y=3x﹣1是一次函数,故A不符合题意;
B、y=ax2+bx+c (a≠0)是二次函数,故B不符合题意;
C、s=2t2﹣2t+1是二次函数,故C符合题意;
D、y=x2+不是二次函数,故D不符合题意.
故选:C.
【点评】本题考查了二次函数的定义,y=ax2+bx+c (a≠0)是二次函数,注意二次函数都是整式.
四十五.二次函数的图象(共1小题)
45.(2021•阜新)如图,二次函数y=a(x+2)2+k的图象与x轴交于A,B(﹣1,0)两点,则下列说法正确的是( )
A.a<0
B.点A的坐标为(﹣4,0)
C.当x<0时,y随x的增大而减小
D.图象的对称轴为直线x=﹣2
【分析】因为图象开口方向向上,所以a>0,故A错误,因为图象对称轴为直线x=﹣2,且过B(﹣1,0),所以A点坐标为(﹣3,0),故B错误,D正确,当x<0时,由图象可知y随x的增大先减小后增大,故C错误,即选D.
【解答】解:∵二次函数y=a(x+2)2+k的图象开口方向向上,
∴a>0,
故A错误,
∵图象对称轴为直线x=﹣2,且过B(﹣1,0),
∴A点的坐标为(﹣3,0),
故B错误,D正确,
由图象知,当x<0时,由图象可知y随x的增大先减小后增大,
故C错误,
故选:D.
【点评】本题主要考查二次函数的性质,熟练掌握二次函数的图形性质是解题的关键.
四十六.二次函数的性质(共1小题)
46.(2021•阿坝州)二次函数y=ax2+bx+c的图象如图所示,下列说法错误的是( )
A.a<0,b>0
B.b2﹣4ac>0
C.方程ax2+bx+c=0的解是x1=5,x2=﹣1
D.不等式ax2+bx+c>0的解集是0<x<5
【分析】根据函数图象确定对称轴、最大值、增减性、二次函数与一元二次方程的关系判断即可.
【解答】解:由图象可知,抛物线开口向下,所以a<0;对称轴为直线x=﹣=2,所以b=﹣4a,所以b>0,故A正确.
因为抛物线与x轴有两个交点,所以b2﹣4ac>0,故B正确.
由图象和对称轴公式可知,抛物线与x轴交于点(5,0)和(﹣1,0),所以方程ax2+bx+c=0的解是x1=5,x2=﹣1,故C正确.
由图象可知,不等式ax2+bx+c>0的解集是﹣1<x<5,故D错误.
故选:D.
【点评】本题考查的是二次函数y=ax2+bx+c的图象和性质,理解二次函数的对称轴、最值、二次函数与一元二次方程的关系、二次函数的增减性是解题的关键.
四十七.二次函数图象与系数的关系(共1小题)
47.(2021•攀枝花)如图,二次函数y=ax2+bx+c的图象的对称轴为x=﹣,且经过点(﹣2,0),下列说法错误的是( )
A.bc<0
B.a=b
C.当x1>x2≥﹣时,y1>y2
D.不等式ax2+bx+c<0的解集是﹣2<x<
【分析】根据函数图象和二次函数的性质,可以判断各个选项中的说法是否正确,从而可以解答本题.
【解答】解:由图象可得,
b>0,c<0,则bc<0,故选项A正确;
∵该函数的对称轴为x=﹣,
∴−=﹣,
化简得b=a,故选项B正确;
∵该函数图象开口向上,该函数的对称轴为x=﹣,
∴x≥﹣时,y随x的增大而增大,
当x1>x2≥﹣时,y1>y2,故选项C正确;
∵图象的对称轴为x=﹣,且经过点(﹣2,0),
∴图象与x轴另一个交点为(1,0),
不等式ax2+bx+c<0的解集是﹣2<x<1,故选项D错误;
故选:D.
【点评】本题考查二次函数与不等式、二次函数图象与系数的关系,解答本题的关键是明确题意,利用数形结合的思想解答.
四十八.二次函数图象上点的坐标特征(共1小题)
48.(2021•济南)新定义:在平面直角坐标系中,对于点P(m,n)和点P′(m,n′),若满足m≥0时,n′=n﹣4;m<0时,n′=﹣n,则称点P′(m,n′)是点P(m,n)的限变点.例如:点P1(2,5)的限变点是P1′(2,1),点P2(﹣2,3)的限变点是P2′(﹣2,﹣3).若点P(m,n)在二次函数y=﹣x2+4x+2的图象上,则当﹣1≤m≤3时,其限变点P′的纵坐标n'的取值范围是( )
A.﹣2≤n′≤2 B.1≤n′≤3 C.1≤n′≤2 D.﹣2≤n′≤3
【分析】根据新定义得到当m≥0时,n′=﹣m2+4m+2﹣4=﹣(m﹣2)2+2,在0≤m≤3时,得到﹣2≤n′≤2;当m<0时,n′=m2﹣4m﹣2=(m﹣2)2﹣6,在﹣1≤m<0时,得到﹣2≤n′≤3,即可得到限变点P′的纵坐标n'的取值范围是﹣2≤n′≤3.
【解答】解:由题意可知,
当m≥0时,n′=﹣m2+4m+2﹣4=﹣(m﹣2)2+2,
∴当0≤m≤3时,﹣2≤n′≤2,
当m<0时,n′=m2﹣4m﹣2=(m﹣2)2﹣6,
∴当﹣1≤m<0时,﹣2<n′≤3,
综上,当﹣1≤m≤3时,其限变点P′的纵坐标n'的取值范围是﹣2≤n′≤3,
故选:D.
【点评】本题主要考查了二次函数图象上点的坐标特征,解题的关键是根据限变点的定义得到n′关于m的函数.
四十九.二次函数图象与几何变换(共1小题)
49.(2021•西藏)将抛物线y=(x﹣1)2+2向左平移3个单位长度,再向下平移4个单位长度所得到的抛物线的解析式为( )
A.y=x2﹣8x+22 B.y=x2﹣8x+14 C.y=x2+4x+10 D.y=x2+4x+2
【分析】根据“左加右减,上加下减”的法则进行解答即可.
【解答】解:将抛物线y=(x﹣1)2+2向左平移3个单位长度所得抛物线解析式为:y=(x﹣1+3)2+2,即y=(x+2)2+2;
再向下平移4个单位为:y=(x+2)2+2﹣4,即y=(x+2)2﹣2=x2+4x+2.
故选:D.
【点评】本题考查的是二次函数的图象与几何变换,熟知二次函数图象平移的法则是解答此题的关键.
五十.二次函数的最值(共1小题)
50.(2021•广东)我国南宋时期数学家秦九韶曾提出利用三角形的三边求面积的公式,此公式与古希腊几何学家海伦提出的公式如出一辙,即三角形的三边长分别为a,b,c,记p=,则其面积S=.这个公式也被称为海伦﹣秦九韶公式.若p=5,c=4,则此三角形面积的最大值为( )
A. B.4 C.2 D.5
【分析】根据公式算出a+b的值,代入公式即可求出解.
【解答】解:∵p=,p=5,c=4,
∴5=,
∴a+b=6,
∴a=6﹣b,
∴S=
=
=
=
=
=
=,
当b=3时,S有最大值为=2.
故选:C.
【点评】本题考查二次根式的应用,解答本题的关键是明确题意,表示出相应的三角形的面积.
五十一.待定系数法求二次函数解析式(共1小题)
51.(2021•无锡)如图,在平面直角坐标系中,O为坐标原点,点C为y轴正半轴上的一个动点,过点C的直线与二次函数y=x2的图象交于A、B两点,且CB=3AC,P为CB的中点,设点P的坐标为P(x,y)(x>0),写出y关于x的函数表达式为: y=x2 .
【分析】过A作AD⊥y轴于D,过B作BE⊥y轴于E,又CB=3AC,得CE=3CD,BE=3AD,设AD=m,则BE=3m,A(﹣m,m2),B(3m,9m2),可得C(0,3m2),而P为CB的中点,故P(m,6m2),即可得y=x2.
【解答】解:过A作AD⊥y轴于D,过B作BE⊥y轴于E,如图:
∵AD⊥y轴,BE⊥y轴,
∴AD∥BE,
∴△ACD∽△BCE,
∴==,
∵CB=3AC,
∴CE=3CD,BE=3AD,
设AD=m,则BE=3m,
∵A、B两点在二次函数y=x2的图象上,
∴A(﹣m,m2),B(3m,9m2),
∴OD=m2,OE=9m2,
∴ED=8m2,
而CE=3CD,
∴CD=2m2,OC=3m2,
∴C(0,3m2),
∵P为CB的中点,
∴P(m,6m2),
又已知P(x,y),
∴,
∴y=x2;
故答案为:y=x2.
【点评】本题考查二次函数图象上点坐标的特征,涉及相似三角形的判定与性质等知识,解题的关键是用含字母的代数式表示C的坐标.
五十二.二次函数的三种形式(共1小题)
52.(2018•山西)用配方法将二次函数y=x2﹣8x﹣9化为y=a(x﹣h)2+k的形式为( )
A.y=(x﹣4)2+7 B.y=(x﹣4)2﹣25
C.y=(x+4)2+7 D.y=(x+4)2﹣25
【分析】直接利用配方法进而将原式变形得出答案.
【解答】解:y=x2﹣8x﹣9
=x2﹣8x+16﹣25
=(x﹣4)2﹣25.
故选:B.
【点评】此题主要考查了二次函数的三种形式,正确配方是解题关键.
五十三.抛物线与x轴的交点(共1小题)
53.(2021•巴中)已知二次函数y=ax2+bx+c的自变量x与函数y的部分对应值见表格,则下列结论:①c=2;②b2﹣4ac>0;③方程ax2+bx=0的两根为x1=﹣2,x2=0;④7a+c<0.其中正确的有( )
x
…
﹣3
﹣2
﹣1
1
2
…
y
…
1.875
3
m
1.875
0
…
A.①④ B.②③ C.③④ D.②④
【分析】由表格可以得到二次函数图象经过点点(﹣3,1.875)和点(1,1.875),这两点关于对称轴对称,由此得到对称轴直线,设出二次函数顶点式,代入两点,求解出二次函数解析式,得到a,b,c的值,依次代入到①②③④中进行判断即可解决.
【解答】解:由表格可以得到,二次函数图象经过点(﹣3,1.875)和点(1,1.875),
∵点(﹣3,1.875)与点(1,1.875)是关于二次函数对称轴对称的,
∴二次函数的对称轴为直线x==﹣1,
∴设二次函数解析式为y=a(x+1)2+h,
代入点(﹣2,3),(2,0)得,
,
解得,
∴二次函数的解析式为:,
∵,
∴c=3,
∴①是错误的,
∵b2﹣4ac=>0,
∴②是正确的,
方程ax2+bx=0为,
即为x2+2x=0,
∴x1=﹣2,x2=0,
∴③是正确的,
∵7a+c==>0,
∴④是错误的,
∴②③是正确的,
故选:B.
【点评】本题考查了二次函数系数特征和二次函数解析式求法,利用待定系数法求解函数解析式是通法,由表格提炼出对称轴的信息,是解题的突破口,此题,也可以通过二次函数系数特征来解决.
五十四.图象法求一元二次方程的近似根(共1小题)
54.(2021•黄石)二次函数y=ax2+bx+c(a、b、c是常数,且a≠0)的自变量x与函数值y的部分对应值如下表:
x
…
﹣1
0
1
2
…
y
…
m
2
2
n
…
且当x=时,对应的函数值y<0.有以下结论:
①abc>0;②m+n<﹣;③关于x的方程ax2+bx+c=0的负实数根在﹣和0之间;④P1(t﹣1,y1)和P2(t+1,y2)在该二次函数的图象上,则当实数t>时,y1>y2.
其中正确的结论是( )
A.①② B.②③ C.③④ D.②③④
【分析】将(0,2),(1,2)代入y=ax2+bx+c得,可得二次函数为:y=ax2﹣ax+2,根据当x=时,对应的函数值y<0,有a<﹣,b>,即得a<0,b>0,c>0,故①不正确;由m=2a+2,n=2a+2,结合a<﹣,可得m+n<﹣,故②正确;由抛物线过(0,2),(1,2),得抛物线对称轴为x=,而当x=时,对应的函数值y<0,可知当x=﹣时,对应的函数值y<0,关于x的方程ax2+bx+c=0的负实数根在﹣和0之间,故③正确;由y1=a(t﹣1)2﹣a(t﹣1)+2,y2=a(t+1)2﹣a(t+1)+2,知a(t﹣1)2﹣a(t﹣1)+2>a(t+1)2﹣a(t+1)+2时,t>,故④不正确,
【解答】解:将(0,2),(1,2)代入y=ax2+bx+c得:
,解得,
∴二次函数为:y=ax2﹣ax+2,
∵当x=时,对应的函数值y<0,
∴a﹣a+2<0,
∴a<﹣,
∴﹣a>,即b>,
∴a<0,b>0,c>0,
∴abc<0,故①不正确;
∵x=﹣1时y=m,x=2时y=n,
∴m=a+a+2=2a+2,n=4a﹣2a+2=2a+2,
∴m+n=4a+4,
∵a<﹣,
∴m+n<﹣,故②正确;
∵抛物线过(0,2),(1,2),
∴抛物线对称轴为x=,
又∵当x=时,对应的函数值y<0,
∴根据对称性:当x=﹣时,对应的函数值y<0,
而x=0时y=2>0,
∴抛物线与x轴负半轴交点横坐标在﹣和0之间,
∴关于x的方程ax2+bx+c=0的负实数根在﹣和0之间,故③正确;
∵P1(t﹣1,y1)和P2(t+1,y2)在该二次函数的图象上,
∴y1=a(t﹣1)2﹣a(t﹣1)+2,y2=a(t+1)2﹣a(t+1)+2,
若y1>y2,则a(t﹣1)2﹣a(t﹣1)+2>a(t+1)2﹣a(t+1)+2,
即a(t﹣1)2﹣a(t﹣1)>a(t+1)2﹣a(t+1),
∵a<0,
∴(t﹣1)2﹣(t﹣1)<(t+1)2﹣(t+1),
解得t>,故④不正确,
故选:B.
【点评】本题考查二次函数的综合应用,题目综合性较强,解题的关键是熟练掌握二次函数基本性质及图象特征,根据已知列方程或不等式.
五十五.二次函数与不等式(组)(共1小题)
55.(2021•大庆)已知函数y=ax2﹣(a+1)x+1,则下列说法不正确的个数是( )
①若该函数图象与x轴只有一个交点,则a=1;
②方程ax2﹣(a+1)x+1=0至少有一个整数根;
③若<x<1,则y=ax2﹣(a+1)x+1的函数值都是负数;
④不存在实数a,使得ax2﹣(a+1)x+1≤0对任意实数x都成立.
A.0 B.1 C.2 D.3
【分析】①当a=0时,函数图象与x轴只有一个交点;②当a=0时,﹣x+1=0,解得x=1;③分a>0与a<0两种情况讨论;④当a=0时,不能使ax2﹣(a+1)x+1≤0对任意实数x都成立.
【解答】解:①当a=0时,y=﹣x+1,此时函数图象与x轴交点为(1,0),故①错误;
②当a=0时,﹣x+1=0,解得x=1;
当a≠0时,ax2﹣(a+1)x+1=(x﹣1)(ax﹣1)=0,
解得x=1或x=,
故②正确;
③当a>0时,函数图象开口向上,若<x<1,则y<0;
当a<0时,函数图象开口向下,若<x<1,则y>0;
故③错误;
④当a≠0时,y=ax2﹣(a+1)x+1,Δ=(a﹣1)2≥0,
此时ax2﹣(a+1)x+1≤0函数与x至少有一个交点,
不能使ax2﹣(a+1)x+1≤0对任意实数x都成立;
当a=0时,﹣x+1≤0,不能使ax2﹣(a+1)x+1≤0对任意实数x都成立;
故④正确;
故选:C.
【点评】本题考查函数与方程的关系;由于a是二次项系数,因此a具有特殊性,则对a的特殊的讨论是解题的关键.
五十六.根据实际问题列二次函数关系式(共1小题)
56.(2019•山西)北中环桥是省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱组成,通过吊桥,拉索与主梁相连,最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象﹣抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A,B两点.拱高为78米(即最高点O到AB的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为x轴建立平面直角坐标系,则此抛物线钢拱的函数表达式为( )
A.y=x2 B.y=﹣x2
C.y=x2 D.y=﹣x2
【分析】直接利用图象假设出抛物线解析式,进而得出答案.
【解答】解:设抛物线的解析式为:y=ax2,
将B(45,﹣78)代入得:﹣78=a×452,
解得:a=﹣,
故此抛物线钢拱的函数表达式为:y=﹣x2.
故选:B.
【点评】此题主要考查了根据实际问题列二次函数解析式,正确假设出抛物线解析式是解题关键.
五十七.二次函数的应用(共1小题)
57.某景点的“喷水巨龙”口中C处的水流呈抛物线形,该水流喷出的高度y(m)与水平距离x(m)之间的关系如图所示,D为该水流的最高点,DA⊥OB,垂足为A.已知OC=OB=8m,OA=2m,则该水流距水平面的最大高度AD的长度为( )
A.9m B.10m C.11m D.12m
【分析】设抛物线解析式为y=a(x﹣2)2+k,将点C(0,8)、B(8,0)代入求出a、k的值即可.
【解答】解:根据题意,设抛物线解析式为y=a(x﹣2)2+k,
将点C(0,8)、B(8,0)代入,得:
,
解得,
∴抛物线解析式为y=﹣(x﹣2)2+9,
所以当x=2时,y=9,即AD=9m,
故选:A.
【点评】本题主要考查二次函数的应用,解题的关键是掌握待定系数法求函数解析式.
五十八.二次函数综合题(共1小题)
58.(2021•赤峰)如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣3,0)、B(1,0)两点,与y轴交于点C,对称轴l与x轴交于点F,直线m∥AC,点E是直线AC上方抛物线上一动点,过点E作EH⊥m,垂足为H,交AC于点G,连接AE、EC、CH、AH.
(1)抛物线的解析式为 y=﹣x2﹣2x+3 ;
(2)当四边形AHCE面积最大时,求点E的坐标;
(3)在(2)的条件下,连接EF,点P是x轴上一动点,在抛物线上是否存在点Q,使得以F、E、P、Q为顶点,以EF为一边的四边形是平行四边形.若存在,请直接写出点Q的坐标;若不存在,说明理由.
【分析】(1)利用待定系数法构建方程组求出b,c即可;
(2)如图1中,连接OE.设E(m,﹣m2﹣2m+3).由题意AC∥直线m,推出△ACH的面积是定值,因为S四边形AECH=S△AEC+S△ACH,推出当△AEC的面积最大时,四边形AECH的面积最大,构建二次函数,利用二次函数的性质解决问题即可;
(3)如图2中,因为点Q在抛物线上 EF是平行四边形的边,观察图象可知,满足条件的点Q的纵坐标为±,构建方程求解即可.
【解答】解:(1)∵y=﹣x2+bx+c与x轴交于(﹣3,0)、B(1,0),
∴,
解得,
∴抛物线的解析式为y=﹣x2﹣2x+3.
故答案为:y=﹣x2﹣2x+3;
(2)如图1中,连接OE.设E(m,﹣m2﹣2m+3).
∵A(﹣3,0),C(0,3),
∴OA=OC=3,AC=3,
∵AC∥直线m,
∴当直线m的位置确定时,△ACH的面积是定值,
∵S四边形AECH=S△AEC+S△ACH,
∴当△AEC的面积最大时,四边形AECH的面积最大,
∵S△AEC=S△AEO+S△ECO﹣S△AOC=×3×(﹣m2﹣2m+3)+×3×(﹣m)﹣×3×3=﹣(m+)2+,
∵﹣<0,
∴m=﹣时,△AEC的面积最大,
∴E(﹣,);
(3)存在.如图2中,因为点Q在抛物线上 EF是平行四边形的边,观察图象可知,满足条件的点Q的纵坐标为±,
对于抛物线y=﹣x2﹣2x+3,当y=时,﹣x2﹣2x+3=,解得x=﹣(舍弃)或﹣,
∴Q1(﹣,).
当y=﹣时,﹣x2﹣2x+3=﹣,解得x=,
∴Q2(,﹣),Q3(,﹣).
综上所述,满足条件的点Q坐标为(﹣,)或(,﹣)或(,﹣).
【点评】本题属于二次函数综合题,考查了二次函数的性质,一次函数的性质,平行四边形的判定和性质等知识,解题的关键是学会构建二次函数解决最值问题,学会利用参数构建方程解决问题,属于中考常考题型.
相关试卷
这是一份2022年中考数学考前30天迅速提分专题02 数与式(含答案),共53页。试卷主要包含了2数与式,2×10﹣2,精确度正确的是,01D.精确到0等内容,欢迎下载使用。
这是一份2022年中考数学考前30天迅速提分专题03 方程与不等式(含答案),共64页。试卷主要包含了3方程与不等式,5<x<20,2652=6,6﹣1,75,04,31,21等内容,欢迎下载使用。
这是一份2022年中考数学考前30天迅速提分专题14 旋转的两种模型与真题训练(含答案),共37页。试卷主要包含了5旋转的两种模型与真题训练,7,10等内容,欢迎下载使用。
![文档详情页底部广告位](http://m.enxinlong.com/img/images/257d7bc79dd514896def3dc0b2e3f598.jpg)