


吉林省辽源市2022年中考联考数学试卷含解析
展开
这是一份吉林省辽源市2022年中考联考数学试卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,﹣的绝对值是,函数中,x的取值范围是,一组数据1,2,3,3,4,1等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.下列各式中,不是多项式2x2﹣4x+2的因式的是( )
A.2 B.2(x﹣1) C.(x﹣1)2 D.2(x﹣2)
2.如图,四边形ABCD内接于⊙O,AD∥BC,BD平分∠ABC,∠A=130°,则∠BDC的度数为( )
A.100° B.105° C.110° D.115°
3.在2016年泉州市初中体育中考中,随意抽取某校5位同学一分钟跳绳的次数分别为:158,160,154,158,170,则由这组数据得到的结论错误的是( )
A.平均数为160 B.中位数为158 C.众数为158 D.方差为20.3
4.下列哪一个是假命题( )
A.五边形外角和为360°
B.切线垂直于经过切点的半径
C.(3,﹣2)关于y轴的对称点为(﹣3,2)
D.抛物线y=x2﹣4x+2017对称轴为直线x=2
5.﹣的绝对值是( )
A.﹣ B. C.﹣2 D.2
6.函数中,x的取值范围是( )
A.x≠0 B.x>﹣2 C.x<﹣2 D.x≠﹣2
7.一组数据1,2,3,3,4,1.若添加一个数据3,则下列统计量中,发生变化的是( )
A.平均数 B.众数 C.中位数 D.方差
8.一个容量为50的样本,在整理频率分布时,将所有频率相加,其和是( )
A.50 B.0.02 C.0.1 D.1
9.平面直角坐标系内一点关于原点对称点的坐标是( )
A. B. C. D.
10.下列图形中,哪一个是圆锥的侧面展开图?
A. B. C. D.
11.如图,是由几个相同的小正方形搭成几何体的左视图,这几个几何体的摆搭方式可能是( )
A. B. C. D.
12.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为( )
A.a=b B.2a+b=﹣1 C.2a﹣b=1 D.2a+b=1
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,在四边形ABCD中,,AC、BD相交于点E,若,则______.
14.已知:如图,AD、BE分别是△ABC的中线和角平分线,AD⊥BE,AD=BE=6,则AC的长等于______.
15.比较大小:_____1.
16.如图,在矩形ABCD中,AD=4,点P是直线AD上一动点,若满足△PBC是等腰三角形的点P有且只有3个,则AB的长为 .
17.图甲是小明设计的带菱形图案的花边作品,该作品由形如图乙的矩形图案拼接而成(不重叠,无缝隙).图乙种,,EF=4cm,上下两个阴影三角形的面积之和为54cm2,其内部菱形由两组距离相等的平行线交叉得到,则该菱形的周长为___cm
18.如图,在△ABC中,DE∥BC,BF平分∠ABC,交DE的延长线于点F,若AD=1,BD=2,BC=4,则EF=________.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)先化简分式: (-)÷∙,再从-3、-3、2、-2
中选一个你喜欢的数作为的值代入求值.
20.(6分)在等边△ABC外侧作直线AM,点C关于AM的对称点为D,连接BD交AM于点E,连接CE,CD,AD.
(1)依题意补全图1,并求∠BEC的度数;
(2)如图2,当∠MAC=30°时,判断线段BE与DE之间的数量关系,并加以证明;
(3)若0°<∠MAC<120°,当线段DE=2BE时,直接写出∠MAC的度数.
21.(6分)如图,的顶点是方格纸中的三个格点,请按要求完成下列作图,①仅用无刻度直尺,且不能用直尺中的直角;②保留作图痕迹.
在图1中画出边上的中线;在图2中画出,使得.
22.(8分)主题班会上,王老师出示了如图所示的一幅漫画,经过同学们的一番热议,达成以下四个观点:
A.放下自我,彼此尊重; B.放下利益,彼此平衡;
C.放下性格,彼此成就; D.合理竞争,合作双赢.
要求每人选取其中一个观点写出自己的感悟.根据同学们的选择情况,小明绘制了下面两幅不完整的图表,请根据图表中提供的信息,解答下列问题:
观点
频数
频率
A
a
0.2
B
12
0.24
C
8
b
D
20
0.4
(1)参加本次讨论的学生共有 人;表中a= ,b= ;
(2)在扇形统计图中,求D所在扇形的圆心角的度数;
(3)现准备从A,B,C,D四个观点中任选两个作为演讲主题,请用列表或画树状图的方法求选中观点D(合理竞争,合作双赢)的概率.
23.(8分)如图,AB为⊙O直径,C为⊙O上一点,点D是的中点,DE⊥AC于E,DF⊥AB于F.
(1)判断DE与⊙O的位置关系,并证明你的结论;
(2)若OF=4,求AC的长度.
24.(10分)先化简,然后从中选出一个合适的整数作为的值代入求值.
25.(10分)九(3)班“2017年新年联欢会”中,有一个摸奖游戏,规则如下:有4张纸牌,背面都是喜羊羊头像,正面有2张笑脸、2张哭脸.现将4张纸牌洗匀后背面朝上摆放到桌上,然后让同学去翻纸牌.
(1)现小芳有一次翻牌机会,若正面是笑脸的就获奖,正面是哭脸的不获奖.她从中随机翻开一张纸牌,求小芳获奖的概率.
(2)如果小芳、小明都有翻两张牌的机会.小芳先翻一张,放回后再翻一张;小明同时翻开两张纸牌.他们翻开的两张纸牌中只要出现一张笑脸就获奖.他们获奖的机会相等吗?通过树状图分析说明理由.
26.(12分)在Rt△ABC中,∠BAC=,D是BC的中点,E是AD的中点.过点A作AF∥BC交BE的延长线于点F.
(1)求证:△AEF≌△DEB;
(2)证明四边形ADCF是菱形;
(3)若AC=4,AB=5,求菱形ADCFD 的面积.
27.(12分)为了弘扬我国古代数学发展的伟大成就,某校九年级进行了一次数学知识竞赛,并设立了以我国古代数学家名字命名的四个奖项:“祖冲之奖”、“刘徽奖”、“赵爽奖”和“杨辉奖”,根据获奖情况绘制成如图1和图2所示的条形统计图和扇形统计图,并得到了获“祖冲之奖”的学生成绩统计表:
“祖冲之奖”的学生成绩统计表:
分数/分
80
85
90
95
人数/人
4
2
10
4
根据图表中的信息,解答下列问题:
(1)这次获得“刘徽奖”的人数是_____,并将条形统计图补充完整;
(2)获得“祖冲之奖”的学生成绩的中位数是_____分,众数是_____分;
(3)在这次数学知识竟赛中有这样一道题:一个不透明的盒子里有完全相同的三个小球,球上分别标有数字“﹣2”,“﹣1”和“2”,随机摸出一个小球,把小球上的数字记为x放回后再随机摸出一个小球,把小球上的数字记为y,把x作为横坐标,把y作为纵坐标,记作点(x,y).用列表法或树状图法求这个点在第二象限的概率.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
原式分解因式,判断即可.
【详解】
原式=2(x2﹣2x+1)=2(x﹣1)2。
故选:D.
【点睛】
考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
2、B
【解析】
根据圆内接四边形的性质得出∠C的度数,进而利用平行线的性质得出∠ABC的度数,利用角平分线的定义和三角形内角和解答即可.
【详解】
∵四边形ABCD内接于⊙O,∠A=130°,
∴∠C=180°-130°=50°,
∵AD∥BC,
∴∠ABC=180°-∠A=50°,
∵BD平分∠ABC,
∴∠DBC=25°,
∴∠BDC=180°-25°-50°=105°,
故选:B.
【点睛】
本题考查了圆内接四边形的性质,关键是根据圆内接四边形的性质得出∠C的度数.
3、D
【解析】
解:A.平均数为(158+160+154+158+170)÷5=160,正确,故本选项不符合题意;
B.按照从小到大的顺序排列为154,158,158,160,170,位于中间位置的数为158,故中位数为158,正确,故本选项不符合题意;
C.数据158出现了2次,次数最多,故众数为158,正确,故本选项不符合题意;
D.这组数据的方差是S2=[(154﹣160)2+2×(158﹣160)2+(160﹣160)2+(170﹣160)2]=28.8,错误,故本选项符合题意.
故选D.
点睛:本题考查了众数、平均数、中位数及方差,解题的关键是掌握它们的定义,难度不大.
4、C
【解析】
分析:
根据每个选项所涉及的数学知识进行分析判断即可.
详解:
A选项中,“五边形的外角和为360°”是真命题,故不能选A;
B选项中,“切线垂直于经过切点的半径”是真命题,故不能选B;
C选项中,因为点(3,-2)关于y轴的对称点的坐标是(-3,-2),所以该选项中的命题是假命题,所以可以选C;
D选项中,“抛物线y=x2﹣4x+2017对称轴为直线x=2”是真命题,所以不能选D.
故选C.
点睛:熟记:(1)凸多边形的外角和都是360°;(2)切线的性质;(3)点P(a,b)关于y轴的对称点为(-a,b);(4)抛物线的对称轴是直线: 等数学知识,是正确解答本题的关键.
5、B
【解析】
根据求绝对值的法则,直接计算即可解答.
【详解】
,
故选:B.
【点睛】
本题主要考查求绝对值的法则,掌握负数的绝对值等于它的相反数,是解题的关键.
6、B
【解析】
要使有意义,
所以x+1≥0且x+1≠0,
解得x>-1.
故选B.
7、D
【解析】
A. ∵原平均数是:(1+2+3+3+4+1) ÷6=3;
添加一个数据3后的平均数是:(1+2+3+3+4+1+3) ÷7=3;
∴平均数不发生变化.
B. ∵原众数是:3;
添加一个数据3后的众数是:3;
∴众数不发生变化;
C. ∵原中位数是:3;
添加一个数据3后的中位数是:3;
∴中位数不发生变化;
D. ∵原方差是:;
添加一个数据3后的方差是:;
∴方差发生了变化.
故选D.
点睛:本题主要考查的是众数、中位数、方差、平均数的,熟练掌握相关概念和公式是解题的关键.
8、D
【解析】
所有小组频数之和等于数据总数,所有频率相加等于1.
9、D
【解析】
根据“平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),即关于原点的对称点,横纵坐标都变成相反数”解答.
【详解】
解:根据关于原点对称的点的坐标的特点,
∴点A(-2,3)关于原点对称的点的坐标是(2,-3), 故选D.
【点睛】
本题主要考查点关于原点对称的特征,解决本题的关键是要熟练掌握点关于原点对称的特征.
10、B
【解析】
根据圆锥的侧面展开图的特点作答.
【详解】
A选项:是长方体展开图.
B选项:是圆锥展开图.
C选项:是棱锥展开图.
D选项:是正方体展开图.
故选B.
【点睛】
考查了几何体的展开图,注意圆锥的侧面展开图是扇形.
11、A
【解析】
根据左视图的概念得出各选项几何体的左视图即可判断.
【详解】
解:A选项几何体的左视图为
;
B选项几何体的左视图为
;
C选项几何体的左视图为
;
D选项几何体的左视图为
;
故选:A.
【点睛】
本题考查由三视图判断几何体,解题的关键是熟练掌握左视图的概念.
12、B
【解析】
试题分析:根据作图方法可得点P在第二象限角平分线上,
则P点横纵坐标的和为0,即2a+b+1=0,
∴2a+b=﹣1.故选B.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、
【解析】
利用相似三角形的性质即可求解;
【详解】
解:∵ AB∥CD,
∴△AEB∽△CED,
∴ ,
∴ ,
故答案为 .
【点睛】
本题考查相似三角形的性质和判定,解题的关键是熟练掌握相似三角形的性质.
14、
【解析】
试题分析:如图,过点C作CF⊥AD交AD的延长线于点F,可得BE∥CF,易证△BGD≌△CFD,所以GD=DF,BG=CF;又因BE是△ABC的角平分线且AD⊥BE,BG是公共边,可证得△ABG≌△DBG,所以AG=GD=3;由BE∥CF可得△AGE∽△AFC,所以,即FC=3GE;又因BE=BG+GE=3GE+GE=4GE=6,所以GE=,BG=;在Rt△AFC中,AF=AG+GD+GF=9,CF=BG=,由勾股定理可求得AC=.
考点:全等三角形的判定及性质;相似三角形的判定及性质;勾股定理.
15、
【解析】
先将1化为根号的形式,根据被开方数越大值越大即可求解.
【详解】
解: , ,
,
故答案为>.
【点睛】
本题考查实数大小的比较,比较大小时,常用的方法有:作差法,作商法,如果有一个是二次根式,要把另一个也化为二次根式的形式,根据被开方数的大小进行比较.
16、1.
【解析】
试题分析:如图,当AB=AD时,满足△PBC是等腰三角形的点P有且只有3个,△P1BC,△P2BC是等腰直角三角形,△P3BC是等腰直角三角形(P3B=P3C),则AB=AD=1,故答案为1.
考点:矩形的性质;等腰三角形的性质;勾股定理;分类讨论.
17、
【解析】
试题分析:根据,EF=4可得:AB=和BC的长度,根据阴影部分的面积为54可得阴影部分三角形的高,然后根据菱形的性质可以求出小菱形的边长为,则菱形的周长为:×4=.
考点:菱形的性质.
18、
【解析】
由DE∥BC可得出△ADE∽△ABC,根据相似三角形的性质和平行线的性质解答即可.
【详解】
∵DE∥BC,
∴∠F=∠FBC,
∵BF平分∠ABC,
∴∠DBF=∠FBC,
∴∠F=∠DBF,
∴DB=DF,
∵DE∥BC,
∴△ADE∽△ABC,
∴ ,即 ,
解得:DE= ,
∵DF=DB=2,
∴EF=DF-DE=2- = ,
故答案为.
【点睛】
此题考查相似三角形的判定和性质,关键是由DE∥BC可得出△ADE∽△ABC.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、 ;5
【解析】
原式=(-)∙
=∙
=∙
=
a=2,原式=5
20、(1)补全图形如图1所示,见解析,∠BEC=60°;(2)BE=2DE,见解析;(3)∠MAC=90°.
【解析】
(1)根据轴对称作出图形,先判断出∠ABD=∠ADB=y,再利用三角形的内角和得出x+y即可得出结论;
(2)同(1)的方法判断出四边形ABCD是菱形,进而得出∠CBD=30°,进而得出∠BCD=90°,即可得出结论;
(3)先作出EF=2BE,进而判断出EF=CE,再判断出∠CBE=90°,进而得出∠BCE=30°,得出∠AEC=60°,即可得出结论.
【详解】
(1)补全图形如图1所示,
根据轴对称得,AD=AC,∠DAE=∠CAE=x,∠DEM=∠CEM.
∵△ABC是等边三角形,
∴AB=AC,∠BAC=60°.
∴AB=AD.
∴∠ABD=∠ADB=y.
在△ABD中,2x+2y+60°=180°,
∴x+y=60°.
∴∠DEM=∠CEM=x+y=60°.
∴∠BEC=60°;
(2)BE=2DE,
证明:∵△ABC是等边三角形,
∴AB=BC=AC,
由对称知,AD=AC,∠CAD=2∠CAM=60°,
∴△ACD是等边三角形,
∴CD=AD,
∴AB=BC=CD=AD,
∴四边形ABCD是菱形,且∠BAD=2∠CAD=120°,
∴∠ABC=60°,
∴∠ABD=∠DBC=30°,
由(1)知,∠BEC=60°,
∴∠ECB=90°.
∴BE=2CE.
∵CE=DE,
∴BE=2DE.
(3)如图3,(本身点C,A,D在同一条直线上,为了说明∠CBD=90°,画图时,没画在一条直线上)
延长EB至F使BE=BF,
∴EF=2BE,
由轴对称得,DE=CE,
∵DE=2BE,
∴CE=2BE,
∴EF=CE,
连接CF,同(1)的方法得,∠BEC=60°,
∴△CEF是等边三角形,
∵BE=BF,
∴∠CBE=90°,
∴∠BCE=30°,
∴∠ACE=30°,
∵∠AED=∠AEC,∠BEC=60°,
∴∠AEC=60°,
∴∠MAC=180°﹣∠AEC﹣∠ACE=90°.
【点睛】
此题是三角形综合题,主要考查了等边三角形的判定和性质,轴对称的性质,等腰三角形的性质,三角形的内角和定理,作出图形是解本题的关键.
21、(1)见解析;(2)见解析.
【解析】
(1)利用矩形的性质得出AB的中点,进而得出答案.
(2)利用矩形的性质得出AC、BC的中点,连接并延长,使延长线段与连接这两个中点的线段相等.
【详解】
(1)如图所示:CD即为所求.
(2)
【点睛】
本题考查应用设计与作图,正确借助矩形性质和网格分析是解题关键.
22、(1)50、10、0.16;(2)144°;(3).
【解析】
(1)由B观点的人数和所占的频率即可求出总人数;由总人数即可求出a、b的值,
(2)用360°乘以D观点的频率即可得;
(3)画出树状图,然后根据概率公式列式计算即可得解
【详解】
解:(1)参加本次讨论的学生共有12÷0.24=50,
则a=50×0.2=10,b=8÷50=0.16,
故答案为50、10、0.16;
(2)D所在扇形的圆心角的度数为360°×0.4=144°;
(3)根据题意画出树状图如下:
由树形图可知:共有12中可能情况,选中观点D(合理竞争,合作双赢)的概率有6种,
所以选中观点D(合理竞争,合作双赢)的概率为.
【点睛】
此题考查了列表法或树状图法求概率以及条形统计图.用到的知识点为:概率=所求情况数与总情况数之比.
23、(1)DE与⊙O相切,证明见解析;(2)AC=8.
【解析】
(1)解:(1)DE与⊙O相切.
证明:连接OD、AD,
∵点D是的中点,
∴=,
∴∠DAO=∠DAC,
∵OA=OD,
∴∠DAO=∠ODA,
∴∠DAC=∠ODA,
∴OD∥AE,
∵DE⊥AC,
∴DE⊥OD,
∴DE与⊙O相切.
(2) 连接BC,根据△ODF与△ABC相似,求得AC的长.AC=8
24、-1
【解析】
先化简,再选出一个合适的整数代入即可,要注意a的取值范围.
【详解】
解:
,
当时,原式.
【点睛】
本题考查的是代数式的求值,熟练掌握代数式的化简是解题的关键.
25、(1);(2)他们获奖机会不相等,理由见解析.
【解析】
(1)根据正面有2张笑脸、2张哭脸,直接利用概率公式求解即可求得答案;(2)根据题意分别列出表格,然后由表格即可求得所有等可能的结果与获奖的情况,再利用概率公式求解即可求得他们获奖的概率.
【详解】
(1)∵有4张纸牌,背面都是喜羊羊头像,正面有2张笑脸、2张哭脸,翻一次牌正面是笑脸的就获奖,正面是哭脸的不获奖,
∴获奖的概率是;
故答案为;
(2)他们获奖机会不相等,理由如下:
小芳:
笑1
笑2
哭1
哭2
笑1
笑1,笑1
笑2,笑1
哭1,笑1
哭2,笑1
笑2
笑1,笑2
笑2,笑2
哭1,笑2
哭2,笑2
哭1
笑1,哭1
笑2,哭1
哭1,哭1
哭2,哭1
哭2
笑1,哭2
笑2,哭2
哭1,哭2
哭2,哭2
∵共有16种等可能的结果,翻开的两张纸牌中只要出现笑脸的有12种情况,
∴P(小芳获奖)=;
小明:
笑1
笑2
哭1
哭2
笑1
笑2,笑1
哭1,笑1
哭2,笑1
笑2
笑1,笑2
哭1,笑2
哭2,笑2
哭1
笑1,哭1
笑2,哭1
哭2,哭1
哭2
笑1,哭2
笑2,哭2
哭1,哭2
∵共有12种等可能的结果,翻开的两张纸牌中只要出现笑脸的有10种情况,
∴P(小明获奖)=,
∵P(小芳获奖)≠P(小明获奖),
∴他们获奖的机会不相等.
【点睛】
本题考查了列表法或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.
26、(1)证明详见解析;(2)证明详见解析;(3)1.
【解析】
(1)利用平行线的性质及中点的定义,可利用AAS证得结论;
(2)由(1)可得AF=BD,结合条件可求得AF=DC,则可证明四边形ADCF为平行四边形,再利用直角三角形的性质可证得AD=CD,可证得四边形ADCF为菱形;
(3)连接DF,可证得四边形ABDF为平行四边形,则可求得DF的长,利用菱形的面积公式可求得答案.
【详解】
(1)证明:∵AF∥BC,
∴∠AFE=∠DBE,
∵E是AD的中点,
∴AE=DE,
在△AFE和△DBE中,
∴△AFE≌△DBE(AAS);
(2)证明:由(1)知,△AFE≌△DBE,则AF=DB.
∵AD为BC边上的中线
∴DB=DC,
∴AF=CD.
∵AF∥BC,
∴四边形ADCF是平行四边形,
∵∠BAC=90°,D是BC的中点,E是AD的中点,
∴AD=DC=BC,
∴四边形ADCF是菱形;
(3)连接DF,
∵AF∥BD,AF=BD,
∴四边形ABDF是平行四边形,
∴DF=AB=5,
∵四边形ADCF是菱形,
∴S菱形ADCF=AC▪DF=×4×5=1.
【点睛】
本题主要考查菱形的性质及判定,利用全等三角形的性质证得AF=CD是解题的关键,注意菱形面积公式的应用.
27、(1)刘徽奖的人数为人,补全统计图见解析;(2)获得“祖冲之奖”的学生成绩的中位数是90分,众数是90分;(3)(点在第二象限).
【解析】
(1)先根据祖冲之奖的人数及其百分比求得总人数,再根据扇形图求出赵爽奖、杨辉奖的人数,继而根据各奖项的人数之和等于总人数求得刘徽奖的人数,据此可得;
(2)根据中位数和众数的定义求解可得;
(3)列表得出所有等可能结果,再找到这个点在第二象限的结果,根据概率公式求解可得.
【详解】
(1)∵获奖的学生人数为20÷10%=200人,∴赵爽奖的人数为200×24%=48人,杨辉奖的人数为200×46%=92人,则刘徽奖的人数为200﹣(20+48+92)=40,补全统计图如下:
故答案为40;
(2)获得“祖冲之奖”的学生成绩的中位数是90分,众数是90分.
故答案为90、90;
(3)列表法:
∵第二象限的点有(﹣2,2)和(﹣1,2),∴P(点在第二象限).
【点睛】
本题考查了用列表法或画树状图法求概率、频数分布直方图以及利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题,也考查列表法或画树状图法求概率.
相关试卷
这是一份吉林省辽源市2021-2022学年中考三模数学试题含解析,共24页。试卷主要包含了答题时请按要求用笔,计算2a2+3a2的结果是,﹣的绝对值是等内容,欢迎下载使用。
这是一份2022年吉林省辽源市中考冲刺卷数学试题含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,下列运算正确的是等内容,欢迎下载使用。
这是一份2022年吉林省辽源市中考数学仿真试卷含解析,共20页。