终身会员
搜索
    上传资料 赚现金

    2022届吉林省长春市九台市市级名校中考联考数学试卷含解析

    立即下载
    加入资料篮
    2022届吉林省长春市九台市市级名校中考联考数学试卷含解析第1页
    2022届吉林省长春市九台市市级名校中考联考数学试卷含解析第2页
    2022届吉林省长春市九台市市级名校中考联考数学试卷含解析第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届吉林省长春市九台市市级名校中考联考数学试卷含解析

    展开

    这是一份2022届吉林省长春市九台市市级名校中考联考数学试卷含解析,共20页。试卷主要包含了下列运算结果是无理数的是,函数,下列说法正确的是等内容,欢迎下载使用。


    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(共10小题,每小题3分,共30分)
    1.一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率为( ).
    A. B. C. D.
    2.甲、乙两人同时分别从A,B两地沿同一条公路骑自行车到C地.已知A,C两地间的距离为110千米,B,C两地间的距离为100千米.甲骑自行车的平均速度比乙快2千米/时.结果两人同时到达C地.求两人的平均速度,为解决此问题,设乙骑自行车的平均速度为x千米/时.由题意列出方程.其中正确的是(  )
    A. B. C. D.
    3.如图,折叠矩形纸片ABCD的一边AD,使点D落在BC边上的点F处,若AB=8,BC=10,则△CEF的周长为( )

    A.12 B.16 C.18 D.24
    4.下列运算结果是无理数的是(  )
    A.3× B. C. D.
    5.某微生物的直径为0.000 005 035m,用科学记数法表示该数为(  )
    A.5.035×10﹣6 B.50.35×10﹣5 C.5.035×106 D.5.035×10﹣5
    6.方程x2﹣4x+5=0根的情况是(  )
    A.有两个不相等的实数根 B.有两个相等的实数根
    C.有一个实数根 D.没有实数根
    7.“赶陀螺”是一项深受人们喜爱的运动.如图所示是一个陀螺的立体结构图.已知底面圆的直径AB=8 cm,圆柱的高BC=6 cm,圆锥的高CD=3 cm,则这个陀螺的表面积是(  )

    A.68π cm2 B.74π cm2 C.84π cm2 D.100π cm2
    8.函数(为常数)的图像上有三点,,,则函数值的大小关系是( )
    A.y3<y1<y2 B.y3<y2<y1 C.y1<y2<y3 D.y2<y3<y1
    9.如图图形中,可以看作中心对称图形的是(  )
    A. B. C. D.
    10.下列说法正确的是( )
    A.2a2b与–2b2a的和为0
    B.的系数是,次数是4次
    C.2x2y–3y2–1是3次3项式
    D.x2y3与– 是同类项
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.已知点P是线段AB的黄金分割点,PA>PB,AB=4 cm,则PA=____cm.
    12.如图,为的直径,与相切于点,弦.若,则______.

    13.一元二次方程x2﹣4=0的解是._________
    14.如图,已知点A是一次函数y=x(x≥0)图象上一点,过点A作x轴的垂线l,B是l上一点(B在A上方),在AB的右侧以AB为斜边作等腰直角三角形ABC,反比例函数y= (x>0)的图象过点B,C,若△OAB的面积为5,则△ABC的面积是________.

    15.如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=.
    其中正确的序号是   (把你认为正确的都填上).

    16.如图,六边形ABCDEF的六个内角都相等.若AB=1,BC=CD=3,DE=2,则这个六边形的周长等于_________.

    三、解答题(共8题,共72分)
    17.(8分)已知在梯形ABCD中,AD∥BC,AB=BC,DC⊥BC,且AD=1,DC=3,点P为边AB上一动点,以P为圆心,BP为半径的圆交边BC于点Q.
    (1)求AB的长;
    (2)当BQ的长为时,请通过计算说明圆P与直线DC的位置关系.

    18.(8分)如图,已知点A,C在EF上,AD∥BC,DE∥BF,AE=CF.
    (1)求证:四边形ABCD是平行四边形;
    (2)直接写出图中所有相等的线段(AE=CF除外).

    19.(8分)如图,Rt△ABC的两直角边AC边长为4,BC边长为3,它的内切圆为⊙O,⊙O与边AB、BC、AC分别相切于点D、E、F,延长CO交斜边AB于点G.
    (1)求⊙O的半径长;
    (2)求线段DG的长.

    20.(8分)解方程:.
    21.(8分) (1)解方程组
    (2)若点是平面直角坐标系中坐标轴上的点,( 1 )中的解分别为点的横、纵坐标,求的最小值及取得最小值时点的坐标.
    22.(10分)有甲、乙两个不透明的布袋,甲袋中有两个完全相同的小球,分别标有数字1和-1;乙袋中有三个完全相同的小球,分别标有数字-1、0和1.小丽先从甲袋中随机取出一个小球,记录下小球上的数字为x;再从乙袋中随机取出一个小球,记录下小球上的数字为y,设点P的坐标为(x,y).
    (1)请用表格或树状图列出点P所有可能的坐标;
    (1)求点P在一次函数y=x+1图象上的概率.
    23.(12分)如图1,经过原点O的抛物线y=ax2+bx(a≠0)与x轴交于另一点A(,0),在第一象限内与直线y=x交于点B(2,t).
    (1)求这条抛物线的表达式;
    (2)在第四象限内的抛物线上有一点C,满足以B,O,C为顶点的三角形的面积为2,求点C的坐标;
    (3)如图2,若点M在这条抛物线上,且∠MBO=∠ABO,在(2)的条件下,是否存在点P,使得△POC∽△MOB?若存在,求出点P的坐标;若不存在,请说明理由.

    24.一道选择题有四个选项.
    (1)若正确答案是,从中任意选出一项,求选中的恰好是正确答案的概率;
    (2)若正确答案是,从中任意选择两项,求选中的恰好是正确答案的概率.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、B
    【解析】
    朝上的数字为偶数的有3种可能,再根据概率公式即可计算.
    【详解】
    依题意得P(朝上一面的数字是偶数)=
    故选B.
    【点睛】
    此题主要考查概率的计算,解题的关键是熟知概率公式进行求解.
    2、A
    【解析】
    设乙骑自行车的平均速度为x千米/时,则甲骑自行车的平均速度为(x+2)千米/时,根据题意可得等量关系:甲骑110千米所用时间=乙骑100千米所用时间,根据等量关系可列出方程即可.
    解:设乙骑自行车的平均速度为x千米/时,由题意得:
    =,
    故选A.
    3、A
    【解析】
    解:∵四边形ABCD为矩形,
    ∴AD=BC=10,AB=CD=8,
    ∵矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上的F处,
    ∴AF=AD=10,EF=DE,
    在Rt△ABF中,
    ∵BF==6,
    ∴CF=BC-BF=10-6=4,
    ∴△CEF的周长为:CE+EF+CF=CE+DE+CF=CD+CF=8+4=1.
    故选A.
    4、B
    【解析】
    根据二次根式的运算法则即可求出答案.
    【详解】
    A选项:原式=3×2=6,故A不是无理数;
    B选项:原式=,故B是无理数;
    C选项:原式==6,故C不是无理数;
    D选项:原式==12,故D不是无理数
    故选B.
    【点睛】
    考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.
    5、A
    【解析】
    试题分析:0.000 005 035m,用科学记数法表示该数为5.035×10﹣6,故选A.
    考点:科学记数法—表示较小的数.
    6、D
    【解析】
    解: ∵a=1,b=﹣4,c=5,
    ∴△=b2﹣4ac=(﹣4)2﹣4×1×5=﹣4<0,
    所以原方程没有实数根.
    7、C
    【解析】
    试题分析:∵底面圆的直径为8cm,高为3cm,∴母线长为5cm,∴其表面积=π×4×5+42π+8π×6=84πcm2,故选C.
    考点:圆锥的计算;几何体的表面积.
    8、A
    【解析】
    试题解析:∵函数y=(a为常数)中,-a1-1<0,
    ∴函数图象的两个分支分别在二、四象限,在每一象限内y随x的增大而增大,
    ∵>0,
    ∴y3<0;
    ∵-<-,
    ∴0<y1<y1,
    ∴y3<y1<y1.
    故选A.
    9、D
    【解析】
    根据 把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可.
    【详解】
    解:A、不是中心对称图形,故此选项不合题意;
    B、不是中心对称图形,故此选项不合题意;
    C、不是中心对称图形,故此选项不合题意;
    D、是中心对称图形,故此选项符合题意;
    故选D.
    【点睛】
    此题主要考查了中心对称图形,关键掌握中心对称图形定义.
    10、C
    【解析】
    根据多项式的项数和次数及单项式的系数和次数、同类项的定义逐一判断可得.
    【详解】
    A、2a2b与-2b2a不是同类项,不能合并,此选项错误;
    B、πa2b的系数是π,次数是3次,此选项错误;
    C、2x2y-3y2-1是3次3项式,此选项正确;
    D、x2y3与﹣相同字母的次数不同,不是同类项,此选项错误;
    故选C.
    【点睛】
    本题主要考查多项式、单项式、同类项,解题的关键是掌握多项式的项数和次数及单项式的系数和次数、同类项的定义.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、2-2
    【解析】
    根据黄金分割点的定义,知AP是较长线段;则AP=AB,代入运算即可.
    【详解】
    解:由于P为线段AB=4的黄金分割点,
    且AP是较长线段;
    则AP=4×=cm,
    故答案为:(2-2)cm.
    【点睛】
    此题考查了黄金分割的定义,应该识记黄金分割的公式:较短的线段=原线段的,难度一般.
    12、1
    【解析】
    利用切线的性质得,利用直角三角形两锐角互余可得,再根据平行线的性质得到,,然后根据等腰三角形的性质求出的度数即可.
    【详解】
    ∵与相切于点,
    ∴AC⊥AB,
    ∴,
    ∴,
    ∵,
    ∴,,
    ∵,
    ∴,
    ∴.
    故答案为1.
    【点睛】
    本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.
    13、x=±1
    【解析】
    移项得x1=4,
    ∴x=±1.
    故答案是:x=±1.
    14、
    【解析】
    如图,过C作CD⊥y轴于D,交AB于E.设AB=2a,则BE=AE=CE=a,再设A(x,x),则B(x,x+2a)、C(x+a,x+a),再由B、C在反比例函数的图象上可得x(x+2a)=(x+a)(x+a),解得x=3a,由△OAB的面积为5求得ax=5,即可得a2=,根据S△ABC=AB•CE即可求解.
    【详解】
    如图,过C作CD⊥y轴于D,交AB于E.

    ∵AB⊥x轴,
    ∴CD⊥AB,
    ∵△ABC是等腰直角三角形,
    ∴BE=AE=CE,
    设AB=2a,则BE=AE=CE=a,
    设A(x,x),则B(x,x+2a),C(x+a,x+a),
    ∵B、C在反比例函数的图象上,
    ∴x(x+2a)=(x+a)(x+a),
    解得x=3a,
    ∵S△OAB=AB•DE=•2a•x=5,
    ∴ax=5,
    ∴3a2=5,
    ∴a2=,
    ∴S△ABC=AB•CE=•2a•a=a2=.
    故答案为:.
    【点睛】
    本题考查了反比例函数图象上点的坐标特征、等腰直角三角形的性质、三角形面积,熟练掌握反比例函数上的点符合反比例函数的关系式是关键.
    15、①②④
    【解析】
    分析:∵四边形ABCD是正方形,∴AB=AD。
    ∵△AEF是等边三角形,∴AE=AF。
    ∵在Rt△ABE和Rt△ADF中,AB=AD,AE=AF,∴Rt△ABE≌Rt△ADF(HL)。∴BE=DF。
    ∵BC=DC,∴BC﹣BE=CD﹣DF。∴CE=CF。∴①说法正确。
    ∵CE=CF,∴△ECF是等腰直角三角形。∴∠CEF=45°。
    ∵∠AEF=60°,∴∠AEB=75°。∴②说法正确。
    如图,连接AC,交EF于G点,

    ∴AC⊥EF,且AC平分EF。
    ∵∠CAD≠∠DAF,∴DF≠FG。
    ∴BE+DF≠EF。∴③说法错误。
    ∵EF=2,∴CE=CF=。
    设正方形的边长为a,在Rt△ADF中,,解得,
    ∴。
    ∴。∴④说法正确。
    综上所述,正确的序号是①②④。
    16、2
    【解析】
    凸六边形ABCDEF,并不是一规则的六边形,但六个角都是110°,所以通过适当的向外作延长线,可得到等边三角形,进而求解.
    【详解】
    解:如图,分别作直线AB、CD、EF的延长线和反向延长线使它们交于点G、H、P.

    ∵六边形ABCDEF的六个角都是110°,
    ∴六边形ABCDEF的每一个外角的度数都是60°.
    ∴△AHF、△BGC、△DPE、△GHP都是等边三角形.
    ∴GC=BC=3,DP=DE=1.
    ∴GH=GP=GC+CD+DP=3+3+1=8,FA=HA=GH-AB-BG=8-1-3=4,EF=PH-HF-EP=8-4-1=1.
    ∴六边形的周长为1+3+3+1+4+1=2.
    故答案为2.
    【点睛】
    本题考查了等边三角形的性质及判定定理;解题中巧妙地构造了等边三角形,从而求得周长.是非常完美的解题方法,注意学习并掌握.

    三、解答题(共8题,共72分)
    17、(1)AB长为5;(2)圆P与直线DC相切,理由详见解析.
    【解析】
    (1)过A作AE⊥BC于E,根据矩形的性质得到CE=AD=1,AE=CD=3,根据勾股定理即可得到结论;
    (2)过P作PF⊥BQ于F,根据相似三角形的性质得到PB=,得到PA=AB-PB=,过P作PG⊥CD于G交AE于M,根据相似三角形的性质得到PM=,根据切线的判定定理即可得到结论.
    【详解】
    (1)过A作AE⊥BC于E,
    则四边形AECD是矩形,
    ∴CE=AD=1,AE=CD=3,
    ∵AB=BC,
    ∴BE=AB-1,
    在Rt△ABE中,∵AB2=AE2+BE2,
    ∴AB2=32+(AB-1)2,
    解得:AB=5;
    (2)过P作PF⊥BQ于F,
    ∴BF=BQ=,
    ∴△PBF∽△ABE,
    ∴,
    ∴,
    ∴PB=,
    ∴PA=AB-PB=,
    过P作PG⊥CD于G交AE于M,
    ∴GM=AD=1,
    ∵DC⊥BC
    ∴PG∥BC
    ∴△APM∽△ABE,
    ∴,
    ∴,
    ∴PM=,
    ∴PG=PM+MG==PB,
    ∴圆P与直线DC相切.

    【点睛】
    本题考查了直线与圆的位置关系,矩形的判定和性质,相似三角形的判定和性质,正确的作出辅助线是解题的关键.
    18、(1)见解析;(2)AD=BC,EC=AF,ED=BF,AB=DC.
    【解析】
    整体分析:
    (1)用ASA证明△ADE≌△CBF,得到AD=BC,根据一组对边平行且相等的四边形是平行四边形证明;(2)根据△ADE≌△CBF,和平行四边形ABCD的性质及线段的和差关系找相等的线段.
    解:(1)证明:∵AD∥BC,DE∥BF,
    ∴∠E=∠F,∠DAC=∠BCA,∴∠DAE=∠BCF.
    在△ADE和△CBF中,,
    ∴△ADE≌△CBF,∴AD=BC,
    ∴四边形ABCD是平行四边形.
    (2)AD=BC,EC=AF,ED=BF,AB=DC.
    理由如下:
    ∵△ADE≌△CBF,∴AD=BC,ED=BF.
    ∵AE=CF,∴EC=AF.
    ∵四边形ABCD是平行四边形,∴AB=DC.
    19、 (1) 1;(2)
    【解析】
    (1)由勾股定理求AB,设⊙O的半径为r,则r=(AC+BC-AB)求解;
    (2)过G作GP⊥AC,垂足为P,根据CG平分直角∠ACB可知△PCG为等腰直角三角形,设PG=PC=x,则CG=x,由(1)可知CO=r=,由Rt△AGP∽Rt△ABC,利用相似比求x,由OG=CG-CO求OG,在Rt△ODG中,由勾股定理求DG.
    试题解析:(1)在Rt△ABC中,由勾股定理得AB==5,
    ∴☉O的半径r=(AC+BC-AB)=(4+3-5)=1;
    (2)过G作GP⊥AC,垂足为P,设GP=x,
    由∠ACB=90°,CG平分∠ACB,得∠GCP=45°,
    ∴GP=PC=x,
    ∵Rt△AGP∽Rt△ABC,
    ∴=,解得x=,
    即GP=,CG=,
    ∴OG=CG-CO=-=,
    在Rt△ODG中,DG==.

    20、
    【解析】
    分析:此题应先将原分式方程两边同时乘以最简公分母,则原分式方程可化为整式方程,解出即可.
    详解:去分母,得.
    去括号,得.
    移项,得 .
    合并同类项,得 .
    系数化为1,得.
    经检验,原方程的解为.
    点睛:本题主要考查分式方程的解法.注意:解分式方程必须检验.
    21、(1);(2)当坐标为时,取得最小值为.
    【解析】
    (1)用加减消元法解二元一次方程组;(2)利用(1)确定出B的坐标,进而得到AB取得最小值时A的坐标,以及AB的最小值.
    【详解】
    解:(1)
    ①②得:
    解得:
    把代入②得,
    则方程组的解为
    (2 )由题意得:,
    当坐标为时,取得最小值为.
    【点睛】
    此题考查了二元一次方程组的解,以及坐标与图形性质,熟练掌握运算法则及数形结合思想解题是解本题的关键.
    22、(1)见解析;(1).
    【解析】
    试题分析:(1)画出树状图(或列表),根据树状图(或表格)列出点P所有可能的坐标即可;(1)根据(1)的所有结果,计算出这些结果中点P在一次函数图像上的个数,即可求得点P在一次函数图像上的概率.
    试题解析:(1)画树状图:

    或列表如下:

    ∴点P所有可能的坐标为(1,-1),(1,0)(1,1)(-1,-1),(-1,0)(-1,1).
    ∵只有(1,1)与(-1,-1)这两个点在一次函数图像上,
    ∴P(点P在一次函数图像上)=.
    考点:用(树状图或列表法)求概率.
    23、(1)y=2x2﹣3x;(2)C(1,﹣1);(3)(,)或(﹣,).
    【解析】
    (1)由直线解析式可求得B点坐标,由A、B坐标,利用待定系数法可求得抛物线的表达式;
    (2)过C作CD∥y轴,交x轴于点E,交OB于点D,过B作BF⊥CD于点F,可设出C点坐标,利用C点坐标可表示出CD的长,从而可表示出△BOC的面积,由条件可得到关于C点坐标的方程,可求得C点坐标;
    (3)设MB交y轴于点N,则可证得△ABO≌△NBO,可求得N点坐标,可求得直线BN的解析式,联立直线BM与抛物线解析式可求得M点坐标,过M作MG⊥y轴于点G,由B、C的坐标可求得OB和OC的长,由相似三角形的性质可求得的值,当点P在第一象限内时,过P作PH⊥x轴于点H,由条件可证得△MOG∽△POH,由的值,可求得PH和OH,可求得P点坐标;当P点在第三象限时,同理可求得P点坐标.
    【详解】
    (1)∵B(2,t)在直线y=x上,
    ∴t=2,
    ∴B(2,2),
    把A、B两点坐标代入抛物线解析式可得:,解得:,
    ∴抛物线解析式为;
    (2)如图1,过C作CD∥y轴,交x轴于点E,交OB于点D,过B作BF⊥CD于点F,∵点C是抛物线上第四象限的点,
    ∴可设C(t,2t2﹣3t),则E(t,0),D(t,t),
    ∴OE=t,BF=2﹣t,CD=t﹣(2t2﹣3t)=﹣2t2+4t,
    ∴S△OBC=S△CDO+S△CDB=CD•OE+CD•BF=(﹣2t2+4t)(t+2﹣t)=﹣2t2+4t,
    ∵△OBC的面积为2,
    ∴﹣2t2+4t=2,解得t1=t2=1,
    ∴C(1,﹣1);

    (3)存在.设MB交y轴于点N,
    如图2,
    ∵B(2,2),
    ∴∠AOB=∠NOB=45°,
    在△AOB和△NOB中,
    ∵∠AOB=∠NOB,OB=OB,∠ABO=∠NBO,
    ∴△AOB≌△NOB(ASA),
    ∴ON=OA=,
    ∴N(0,),
    ∴可设直线BN解析式为y=kx+,把B点坐标代入可得2=2k+,解得k=,
    ∴直线BN的解析式为,联立直线BN和抛物线解析式可得:,解得:或,
    ∴M(,),
    ∵C(1,﹣1),
    ∴∠COA=∠AOB=45°,且B(2,2),
    ∴OB=,OC=,
    ∵△POC∽△MOB,
    ∴,∠POC=∠BOM,
    当点P在第一象限时
    ,如图3,过M作MG⊥y轴于点G,过P作PH⊥x轴于点H,如图3
    ∵∠COA=∠BOG=45°,
    ∴∠MOG=∠POH,且∠PHO=∠MGO,
    ∴△MOG∽△POH,

    ∵M(,),
    ∴MG=,OG=,
    ∴PH=MG=,OH=OG=,
    ∴P(,);
    当点P在第三象限时,如图4,过M作MG⊥y轴于点G,过P作PH⊥y轴于点H,
    同理可求得PH=MG=,OH=OG=,
    ∴P(﹣,);
    综上可知:存在满足条件的点P,其坐标为(,)或(﹣,).

    【点睛】
    本题为二次函数的综合应用,涉及待定系数法、三角形的面积、二次函数的性质、全等三角形的判定和性质、相似三角形的判定和性质、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)中用C点坐标表示出△BOC的面积是解题的关键,在(3)中确定出点P的位置,构造相似三角形是解题的关键,注意分两种情况.
    24、(1);(2)
    【解析】
    (1)直接利用概率公式求解;
    (2)画树状图展示所有12种等可能的结果数,再找出选中的恰好是正确答案A,B的结果数,然后根据概率公式求解.
    【详解】
    解:(1)选中的恰好是正确答案A的概率为;
    (2)画树状图:

    共有12种等可能的结果数,其中选中的恰好是正确答案A,B的结果数为2,
    所以选中的恰好是正确答案A,B的概率=.
    【点睛】
    本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.

    相关试卷

    吉林省长春市宽城区市级名校2022年中考数学五模试卷含解析:

    这是一份吉林省长春市宽城区市级名校2022年中考数学五模试卷含解析,共21页。试卷主要包含了计算3–,下列运算正确的是等内容,欢迎下载使用。

    2022届吉林省长春市南关区市级名校中考三模数学试题含解析:

    这是一份2022届吉林省长春市南关区市级名校中考三模数学试题含解析,共24页。试卷主要包含了下列计算正确的是,如图,点A,B在双曲线y=等内容,欢迎下载使用。

    2022届吉林省长春市南关区市级名校中考试题猜想数学试卷含解析:

    这是一份2022届吉林省长春市南关区市级名校中考试题猜想数学试卷含解析,共24页。试卷主要包含了答题时请按要求用笔,初三,四根长度分别为3,4,6,等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map