甘肃省庆阳镇原县联考2021-2022学年中考考前最后一卷数学试卷含解析
展开
这是一份甘肃省庆阳镇原县联考2021-2022学年中考考前最后一卷数学试卷含解析,共22页。试卷主要包含了下列计算错误的是,下列运算正确的是,下列命题中真命题是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,若AB∥CD,则α、β、γ之间的关系为( )
A.α+β+γ=360° B.α﹣β+γ=180°
C.α+β﹣γ=180° D.α+β+γ=180°
2.下列计算正确的是( )
A.2x2+3x2=5x4 B.2x2﹣3x2=﹣1
C.2x2÷3x2=x2 D.2x2•3x2=6x4
3.在,,则的值为( )
A. B. C. D.
4.下列计算错误的是( )
A.a•a=a2 B.2a+a=3a C.(a3)2=a5 D.a3÷a﹣1=a4
5.下列运算正确的是( )
A.5a+2b=5(a+b) B.a+a2=a3
C.2a3•3a2=6a5 D.(a3)2=a5
6.如图,O是坐标原点,菱形OABC的顶点A的坐标为(3,﹣4),顶点C在x轴的正半轴上,函数y=(k<0)的图象经过点B,则k的值为( )
A.﹣12 B.﹣32 C.32 D.﹣36
7.下列命题中真命题是( )
A.若a2=b2,则a=b B.4的平方根是±2
C.两个锐角之和一定是钝角 D.相等的两个角是对顶角
8.如图,A,B,C,D,E,G,H,M,N都是方格纸中的格点(即小正方形的顶点),要使△DEF与△ABC相似,则点F应是G,H,M,N四点中的( )
A.H或N B.G或H C.M或N D.G或M
9.在0.3,﹣3,0,﹣这四个数中,最大的是( )
A.0.3 B.﹣3 C.0 D.﹣
10.下列运算正确的是( )
A. B.
C. D.
11.点A(a,3)与点B(4,b)关于y轴对称,则(a+b)2017的值为( )
A.0 B.﹣1 C.1 D.72017
12.式子在实数范围内有意义,则x的取值范围是( )
A.x>﹣2 B.x≥﹣2 C.x<﹣2 D.x≤﹣2
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段 的长为________.
14.如图,从甲楼底部A处测得乙楼顶部C处的仰角是30°,从甲楼顶部B处测得乙楼底部D处的俯角是45°,已知甲楼的高AB是120m,则乙楼的高CD是_____m(结果保留根号)
15.在Rt△ABC中,∠A是直角,AB=2,AC=3,则BC的长为_____.
16.如图,的顶点落在两条平行线上,点D、E、F分别是三边中点,平行线间的距离是8,,移动点A,当时,EF的长度是______.
17.如图,在△ABC中,AD、BE分别是BC、AC两边中线,则=_____.
18.如图为二次函数图象的一部分,其对称轴为直线.若其与x轴一交点为A(3,0)则由图象可知,不等式的解集是_______.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)在一次数学活动课上,老师让同学们到操场上测量旗杆的高度,然后回来交流各自的测量方法.小芳的测量方法是:拿一根高3.5米的竹竿直立在离旗杆27米的C处(如图),然后沿BC方向走到D处,这时目测旗杆顶部A与竹竿顶部E恰好在同一直线上,又测得C、D两点的距离为3米,小芳的目高为1.5米,这样便可知道旗杆的高.你认为这种测量方法是否可行?请说明理由.
20.(6分)已知四边形ABCD是⊙O的内接四边形,AC是⊙O的直径,DE⊥AB,垂足为E
(1)延长DE交⊙O于点F,延长DC,FB交于点P,如图1.求证:PC=PB;
(2)过点B作BG⊥AD,垂足为G,BG交DE于点H,且点O和点A都在DE的左侧,如图2.若AB= ,DH=1,∠OHD=80°,求∠BDE的大小.
21.(6分)中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成,已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x米.
(1)若苗圃园的面积为72平方米,求x;
(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由;
(3)当这个苗圃园的面积不小于100平方米时,直接写出x的取值范围.
22.(8分)如图,抛物线y=﹣(x﹣1)2+c与x轴交于A,B(A,B分别在y轴的左右两侧)两点,与y轴的正半轴交于点C,顶点为D,已知A(﹣1,0).
(1)求点B,C的坐标;
(2)判断△CDB的形状并说明理由;
(3)将△COB沿x轴向右平移t个单位长度(0<t<3)得到△QPE.△QPE与△CDB重叠部分(如图中阴影部分)面积为S,求S与t的函数关系式,并写出自变量t的取值范围.
23.(8分)如图,将矩形ABCD沿对角线BD折叠,使点C落在点E处,BE与AD交于点F.
(1)求证:△ABF≌△EDF;
(2)若AB=6,BC=8,求AF的长.
24.(10分)计算:2-1+20160-3tan30°+|-|
25.(10分)为营造浓厚的创建全国文明城市氛围,东营市某中学委托制衣厂制作“最美东营人”和“最美志愿者”两款文化衫.若制作“最美东营人”文化衫2件,“最美志愿者”文化衫3件,共需90元;制作“最美东营人”文化衫3件,“最美志愿者”5件,共需145元.
(1)求“最美东营人”和“最美志愿者”两款文化衫每件各多少元?
(2)若该中学要购进“最美东营人”和“最美志愿者”两款文化衫共90件,总费用少于1595元,并且“最美东营人”文化衫的数量少于“最美志愿者”文化衫的数量,那么该中学有哪几种购买方案?
26.(12分)解方程组
27.(12分)如图,在自动向西的公路l上有一检查站A,在观测点B的南偏西53°方向,检查站一工作人员家住在与观测点B的距离为7km,位于点B南偏西76°方向的点C处,求工作人员家到检查站的距离AC.(参考数据:sin76°≈,cos76°≈,tan 76°≈4,sin53°≈,tan53°≈)
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、C
【解析】
过点E作EF∥AB,如图,易得CD∥EF,然后根据平行线的性质可得∠BAE+∠FEA=180°,∠C=∠FEC=γ,进一步即得结论.
【详解】
解:过点E作EF∥AB,如图,∵AB∥CD,AB∥EF,∴CD∥EF,
∴∠BAE+∠FEA=180°,∠C=∠FEC=γ,
∴∠FEA=β﹣γ,∴α+(β﹣γ)=180°,即α+β﹣γ=180°.
故选:C.
【点睛】
本题考查了平行公理的推论和平行线的性质,属于常考题型,作EF∥AB、熟练掌握平行线的性质是解题的关键.
2、D
【解析】
先利用合并同类项法则,单项式除以单项式,以及单项式乘以单项式法则计算即可得到结果.
【详解】
A、2x2+3x2=5x2,不符合题意;
B、2x2﹣3x2=﹣x2,不符合题意;
C、2x2÷3x2=,不符合题意;
D、2x23x2=6x4,符合题意,
故选:D.
【点睛】
本题主要考查了合并同类项法则,单项式除以单项式,单项式乘以单项式法则,正确掌握运算法则是解题关键.
3、A
【解析】
本题可以利用锐角三角函数的定义求解即可.
【详解】
解:tanA=,
∵AC=2BC,
∴tanA=.
故选:A.
【点睛】
本题考查了正切函数的概念,掌握直角三角形中角的对边与邻边的比是关键 .
4、C
【解析】
解:A、a•a=a2,正确,不合题意;
B、2a+a=3a,正确,不合题意;
C、(a3)2=a6,故此选项错误,符合题意;
D、a3÷a﹣1=a4,正确,不合题意;
故选C.
【点睛】
本题考查幂的乘方与积的乘方;合并同类项;同底数幂的乘法;负整数指数幂.
5、C
【解析】
直接利用合并同类项法则以及单项式乘以单项式、幂的乘方运算法则分别化简得出答案.
【详解】
A、5a+2b,无法计算,故此选项错误;
B、a+a2,无法计算,故此选项错误;
C、2a3•3a2=6a5,故此选项正确;
D、(a3)2=a6,故此选项错误.
故选C.
【点睛】
此题主要考查了合并同类项以及单项式乘以单项式、幂的乘方运算,正确掌握运算法则是解题关键.
6、B
【解析】
解:
∵O是坐标原点,菱形OABC的顶点A的坐标为(3,﹣4),顶点C在x轴的正半轴上,
∴OA=5,AB∥OC,
∴点B的坐标为(8,﹣4),
∵函数y=(k<0)的图象经过点B,
∴﹣4=,得k=﹣32.
故选B.
【点睛】
本题主要考查菱形的性质和用待定系数法求反函数的系数,解此题的关键在于根据A点坐标求得OA的长,再根据菱形的性质求得B点坐标,然后用待定系数法求得反函数的系数即可.
7、B
【解析】
利用对顶角的性质、平方根的性质、锐角和钝角的定义分别判断后即可确定正确的选项.
【详解】
A、若a2=b2,则a=±b,错误,是假命题;
B、4的平方根是±2,正确,是真命题;
C、两个锐角的和不一定是钝角,故错误,是假命题;
D、相等的两个角不一定是对顶角,故错误,是假命题.
故选B.
【点睛】
考查了命题与定理的知识,解题的关键是了解对顶角的性质、平方根的性质、锐角和钝角的定义,难度不大.
8、C
【解析】
根据两三角形三条边对应成比例,两三角形相似进行解答
【详解】
设小正方形的边长为1,则△ABC的各边分别为3、、,只能F是M或N时,其各边是6、2,2.与△ABC各边对应成比例,故选C
【点睛】
本题考查了相似三角形的判定,相似三角形对应边成比例是解题的关键
9、A
【解析】
根据正数大于0,0大于负数,正数大于负数,比较即可
【详解】
∵-3<-<0<0.3
∴最大为0.3
故选A.
【点睛】
本题考查实数比较大小,解题的关键是正确理解正数大于0,0大于负数,正数大于负数,本题属于基础题型.
10、D
【解析】
【分析】根据同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的法则逐项进行计算即可得.
【详解】A. ,故A选项错误,不符合题意;
B. ,故B选项错误,不符合题意;
C. ,故C选项错误,不符合题意;
D. ,正确,符合题意,
故选D.
【点睛】本题考查了整式的运算,熟练掌握同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的运算法则是解题的关键.
11、B
【解析】
根据关于y轴对称的点的纵坐标相等,横坐标互为相反数,可得答案.
【详解】
解:由题意,得
a=-4,b=1.
(a+b)2017=(-1)2017=-1,
故选B.
【点睛】
本题考查了关于y轴对称的点的坐标,利用关于y轴对称的点的纵坐标相等,横坐标互为相反数得出a,b是解题关键.
12、B
【解析】
根据二次根式有意义的条件可得 ,再解不等式即可.
【详解】
解:由题意得:,
解得:,
故选:B.
【点睛】
此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、
【解析】
已知BC=8, AD是中线,可得CD=4, 在△CBA和△CAD中, 由∠B=∠DAC,∠C=∠C, 可判定△CBA∽△CAD,根据相似三角形的性质可得 , 即可得AC2=CD•BC=4×8=32,解得AC=4.
14、40
【解析】
利用等腰直角三角形的性质得出AB=AD,再利用锐角三角函数关系即可得出答案.
【详解】
解:由题意可得:∠BDA=45°,
则AB=AD=120m,
又∵∠CAD=30°,
∴在Rt△ADC中,
tan∠CDA=tan30°=,
解得:CD=40(m),
故答案为40.
【点睛】
此题主要考查了解直角三角形的应用,正确得出tan∠CDA=tan30°=是解题关键.
15、
【解析】
根据勾股定理解答即可.
【详解】
∵在Rt△ABC中,∠A是直角,AB=2,AC=3,
∴BC===,
故答案为:
【点睛】
此题考查勾股定理,关键是根据勾股定理解答.
16、1
【解析】
过点D作于点H,根等腰三角形的性质求得BD的长度,继而得到,结合三角形中位线定理求得EF的长度即可.
【详解】
解:如图,过点D作于点H,
过点D作于点H,,
.
又平行线间的距离是8,点D是AB的中点,
,
在直角中,由勾股定理知,.
点D是AB的中点,
.
又点E、F分别是AC、BC的中点,
是的中位线,
.
故答案是:1.
【点睛】
考查了三角形中位线定理和平行线的性质,解题的关键是根据平行线的性质求得DH的长度.
17、
【解析】
利用三角形中位线的性质定理以及相似三角形的性质即可解决问题;
【详解】
∵AE=EC,BD=CD,
∴DE∥AB,DE=AB,
∴△EDC∽△ABC,
∴=,
故答案是:.
【点睛】
考查相似三角形的判定和性质、三角形中位线定理等知识,解题的关键是熟练掌握三角形中位线定理.
18、﹣1<x<1
【解析】
试题分析:由图象得:对称轴是x=1,其中一个点的坐标为(1,0)
∴图象与x轴的另一个交点坐标为(-1,0)
利用图象可知:
ax2+bx+c<0的解集即是y<0的解集,
∴-1<x<1.
考点:二次函数与不等式(组).
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、这种测量方法可行,旗杆的高为21.1米.
【解析】
分析:根据已知得出过F作FG⊥AB于G,交CE于H,利用相似三角形的判定得出△AGF∽△EHF,再利用相似三角形的性质得出即可.
详解:这种测量方法可行.
理由如下:
设旗杆高AB=x.过F作FG⊥AB于G,交CE于H(如图).
所以△AGF∽△EHF.
因为FD=1.1,GF=27+3=30,HF=3,
所以EH=3.1﹣1.1=2,AG=x﹣1.1.
由△AGF∽△EHF,
得,
即,
所以x﹣1.1=20,
解得x=21.1(米)
答:旗杆的高为21.1米.
点睛:此题主要考查了相似三角形的判定与性质,根据已知得出△AGF∽△EHF是解题关键.
20、(1)详见解析;(2)∠BDE=20°.
【解析】
(1)根据已知条件易证BC∥DF,根据平行线的性质可得∠F=∠PBC;再利用同角的补角相等证得∠F=∠PCB,所以∠PBC=∠PCB,由此即可得出结论;(2)连接OD,先证明四边形DHBC是平行四边形,根据平行四边形的性质可得BC=DH=1,在Rt△ABC中,用锐角三角函数求出∠ACB=60°,进而判断出DH=OD,求出∠ODH=20°,再求得∠NOH=∠DOC=40°,根据三角形外角的性质可得∠OAD=∠DOC=20°,最后根据圆周角定理及平行线的性质即可求解.
【详解】
(1)如图1,∵AC是⊙O的直径,
∴∠ABC=90°,
∵DE⊥AB,
∴∠DEA=90°,
∴∠DEA=∠ABC,
∴BC∥DF,
∴∠F=∠PBC,
∵四边形BCDF是圆内接四边形,
∴∠F+∠DCB=180°,
∵∠PCB+∠DCB=180°,
∴∠F=∠PCB,
∴∠PBC=∠PCB,
∴PC=PB;
(2)如图2,连接OD,
∵AC是⊙O的直径,
∴∠ADC=90°,
∵BG⊥AD,
∴∠AGB=90°,
∴∠ADC=∠AGB,
∴BG∥DC,
∵BC∥DE,
∴四边形DHBC是平行四边形,
∴BC=DH=1,
在Rt△ABC中,AB=,tan∠ACB=,
∴∠ACB=60°,
∴BC=AC=OD,
∴DH=OD,
在等腰△DOH中,∠DOH=∠OHD=80°,
∴∠ODH=20°,
设DE交AC于N,
∵BC∥DE,
∴∠ONH=∠ACB=60°,
∴∠NOH=180°﹣(∠ONH+∠OHD)=40°,
∴∠DOC=∠DOH﹣∠NOH=40°,
∵OA=OD,
∴∠OAD=∠DOC=20°,
∴∠CBD=∠OAD=20°,
∵BC∥DE,
∴∠BDE=∠CBD=20°.
【点睛】
本题考查了圆内接四边形的性质、圆周角定理、平行四边形的判定与性质、等腰三角形的性质等知识点,解决第(2)问,作出辅助线,求得∠ODH=20°是解决本题的关键.
21、 (1) x=2;(2)苗圃园的面积最大为12.5平方米,最小为5平方米;(3) 6≤x≤4.
【解析】
(1)根据题意得方程求解即可;
(2)设苗圃园的面积为y,根据题意得到二次函数解析式y=x(31-2x)=-2x2+31x,根据二次函数的性质求解即可;
(3)由题意得不等式,即可得到结论.
【详解】
解:(1)苗圃园与墙平行的一边长为(31-2x)米.依题意可列方程
x(31-2x)=72,即x2-15x+36=1.
解得x1=3,x2=2.
又∵31-2x≤3,即x≥6,
∴x=2
(2)依题意,得8≤31-2x≤3.解得6≤x≤4.
面积S=x(31-2x)=-2(x-)2+(6≤x≤4).
①当x=时,S有最大值,S最大=;
②当x=4时,S有最小值,S最小=4×(31-22)=5.
(3)令x(31-2x)=41,得x2-15x+51=1.
解得x1=5,x2=1
∴x的取值范围是5≤x≤4.
22、 (Ⅰ)B(3,0);C(0,3);(Ⅱ)为直角三角形;(Ⅲ).
【解析】
(1)首先用待定系数法求出抛物线的解析式,然后进一步确定点B,C的坐标.
(2)分别求出△CDB三边的长度,利用勾股定理的逆定理判定△CDB为直角三角形.
(3)△COB沿x轴向右平移过程中,分两个阶段:
①当0<t≤时,如答图2所示,此时重叠部分为一个四边形;
②当<t<3时,如答图3所示,此时重叠部分为一个三角形.
【详解】
解:(Ⅰ)∵点在抛物线上,
∴,得
∴抛物线解析式为:,
令,得,∴;
令,得或,∴.
(Ⅱ)为直角三角形.理由如下:
由抛物线解析式,得顶点的坐标为.
如答图1所示,过点作轴于点M,
则,,.
过点作于点,则,.
在中,由勾股定理得:;
在中,由勾股定理得:;
在中,由勾股定理得:.
∵,
∴为直角三角形.
(Ⅲ)设直线的解析式为,
∵,
∴,
解得,
∴,
直线是直线向右平移个单位得到,
∴直线的解析式为:;
设直线的解析式为,
∵,
∴,解得:,
∴.
连续并延长,射线交交于,则.
在向右平移的过程中:
(1)当时,如答图2所示:
设与交于点,可得,.
设与的交点为,则:.
解得,
∴.
.
(2)当时,如答图3所示:
设分别与交于点、点.
∵,
∴,.
直线解析式为,令,得,
∴.
.
综上所述,与的函数关系式为:.
23、(1)见解析;(2)
【解析】
(1)根据矩形的性质可得AB=CD,∠C=∠A=90°,再根据折叠的性质可得DE=CD,∠C=∠E=90°,然后利用“角角边”证明即可;
(2)设AF=x,则BF=DF=8-x,根据勾股定理列方程求解即可.
【详解】
(1)证明:在矩形ABCD中,AB=CD,∠A=∠C=90°,
由折叠得:DE=CD,∠C=∠E=90°,
∴AB=DE,∠A=∠E=90°,
∵∠AFB=∠EFD,
∴△ABF≌△EDF(AAS);
(2)解:∵△ABF≌△EDF,
∴BF=DF,
设AF=x,则BF=DF=8﹣x,
在Rt△ABF中,由勾股定理得:
BF2=AB2+AF2,即(8﹣x)2=x2+62,
x=,即AF=
【点睛】
本题考查了翻折变换的性质,全等三角形的判定与性质,矩形的性质,勾股定理,翻折前后对应边相等,对应角相等,利用勾股定理列出方程是解题的关键.
24、
【解析】
原式第一项利用负指数幂法则计算,第二项利用零指数幂法则计算,第三项利用特殊角的三角函数值化简,最后一项利用绝对值的代数意义化简,即可得到结果;
【详解】
原式=
=
=.
【点睛】
此题考查实数的混合运算.此题难度不大,注意解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、特殊角的三角函数值、绝对值等考点的运算.
25、(1)“最美东营人”文化衫每件15元,“最美志愿者”文化衫每件20元;(2)有三种方案,具体见解析.
【解析】
(1)设“最美东营人”文化衫每件x元,“最美志愿者”文化衫每件y元,根据若制作“最美东营人”文化衫2件,“最美志愿者”文化衫3件,共需90元;制作“最美东营人”文化衫3件,“最美志愿者”5件,共需11元建立方程组求出其解即可;
(2)设购买“最美东营人”文化衫m件,根据总费用少于1595元,并且“最美东营人”文化衫的数量少于“最美志愿者”文化衫的数量,列出不等式组,然后求m的正整数解.
【详解】
(1)设“最美东营人”文化衫每件x元,“最美志愿者”文化衫每件y元,
由题意,得
,
解得:
.
答:“最美东营人”文化衫每件15元,“最美志愿者”文化衫每件20元;
(2)设购买“最美东营人”文化衫m件,则购买“最美志愿者”文化衫(90-m)件,
由题意,得,
解得:41<m<1.
∵m是整数,
∴m=42,43,2.
则90-m=48,47,3.
答:方案一:购买“最美东营人”文化衫42件,“最美志愿者”文化衫48件;
方案二:购买“最美东营人”文化衫43件,“最美志愿者”文化衫47件;
方案三:购买“最美东营人”文化衫2件,“最美志愿者”文化衫3件.
【点睛】
本题考查了二元一次方程组的运用,一元一次不等式组的运用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的数量关系.
26、
【解析】
解:由①得③
把③代入②得
把代人③得
∴原方程组的解为
27、工作人员家到检查站的距离AC的长约为km.
【解析】
分析:过点B作BH⊥l交l于点H,解Rt△BCH,得出CH=BC•sin∠CBH=,BH=BC•cos∠CBH=.再解Rt△BAH中,求出AH=BH•tan∠ABH=,那么根据AC=CH-AH计算即可.
详解:如图,过点B作BH⊥l交l于点H,
∵在Rt△BCH中,∠BHC=90°,∠CBH=76°,BC=7km,
∴CH=BC•sin∠CBH≈,
BH=BC•cos∠CBH≈.
∵在Rt△BAH中,∠BHA=90°,∠ABH=53°,BH=,
∴AH=BH•tan∠ABH≈,
∴AC=CH﹣AH=(km).
答:工作人员家到检查站的距离AC的长约为km.
点睛:本题考查的是解直角三角形的应用-方向角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
相关试卷
这是一份甘肃省庆阳市镇原县重点达标名校2022年中考数学考前最后一卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,估计的值在等内容,欢迎下载使用。
这是一份安徽省和县联考2021-2022学年中考考前最后一卷数学试卷含解析,共18页。试卷主要包含了若分式的值为零,则x的值是,方程x2+2x﹣3=0的解是,若点A,若△÷,则“△”可能是,下列实数中,无理数是,下列计算正确的是等内容,欢迎下载使用。
这是一份2021-2022学年山东省济南槐荫区五校联考中考考前最后一卷数学试卷含解析,共20页。试卷主要包含了下列运算正确的是等内容,欢迎下载使用。