初中浙教版4.1 因式分解教案
展开这是一份初中浙教版4.1 因式分解教案,共3页。教案主要包含了情境导入,探究新知,前进一步,巩固新知,应用解释,思维拓展,布置作业等内容,欢迎下载使用。
上课日期 月 日 星期
课题
4.1节 因式分解
课型
新授
教学目标
(1)理解因式分解的概念和意义
(2)认识因式分解与整式乘法的相互关系——相反变形,并会运用它们之间的相互关系寻求因式分解的方法。
重点和难点
重点是因式分解的概念,难点是理解因式分解与整式乘法的相互关系,并运用它们之间的相互关系寻求因式分解的方法。
教具准备
投影片
教学过程
一、情境导入
看谁算得快:(抢答)
(1)若a=101,b=99,则a2-b2=___________;
(2)若a=99,b=-1,则a2-2ab+b2=____________;
(3)若x=-3,则20x2+60x=____________。
二、探究新知
1、请每题答得最快的同学谈思路,得出最佳解题方法。(多媒体出示答案)(1)a2-b2=(a+b)(a-b)=(101+99)(101-99)=400;
(2)a2-2ab+b2=(a-b) 2=(99+1)2 =10000;
(3)20x2+60x=20x(x+3)=20x(-3)(-3+3)=0。
2、观察:a2-b2=(a+b)(a-b) , a2-2ab+b2 = (a-b)2 ,
20x2+60x=20x(x+3),找出它们的特点。(等式的左边是一个什么式子,右边又是什么形式?)
3、类比小学学过的因数分解概念,得出因式分解概念。(学生概括,老师补充。)
【让学生自己概括出所感知的知识内容,有利于学生在实践中感悟知识的生成过程,培养学生的语言表达能力。】
三、前进一步
1、让学生继续观察:(a+b)(a-b)= a2-b2 ,(a-b)2= a2-2ab+b2,
20x(x+3)= 20x2+60x,它们是什么运算?与因式分解有何关系?它们有何联系与区别?
(要注意让学生区分因式分解与整式乘法的区别,防止学生出现在进行因式分解当中,半路又做乘法的错误。)
2、因式分解与整式乘法的关系:
因式分解
结合:a2-b2=========(a+b)(a-b)
整式乘法
说明:从左到右是因式分解其特点是:由和差形式(多项式)转化成整式的积的形式;从右到左是整式乘法其特点是:由整式积的形式转化成和差形式(多项式)。
结论:因式分解与整式乘法的相互关系——相反变形。(多媒体展示学生得出的成果)
四、巩固新知
1、 下列代数式变形中,哪些是因式分解?哪些不是?为什么?
(1)x2-3x+1=x(x-3)+1 ;
(2)(m+n)(a+b)+(m+n)(x+y)=(m+n)(a+b+x+y);
(3)2m(m-n)=2m2-2mn;
(4)4x2-4x+1=(2x-1)2;
(5)3a2+6a=3a(a+2);
(6)x2-4+3x=(x-2)(x+2)+3x;
【针对学生易犯的错误,制造认知冲突,让学生充分暴露错误,然后通过分析、讨论,达到理解的效果。】
2、你能写出整式相乘(其中至少一个是多项式)的两个例子,并由此得到相应的两个多项式的因式分解吗?把结果与你的同伴交流。
【学生出题热情、积极性高,因初一学生好表现,因而能激发学生学习兴趣,激活学生的思维。】
五、应用解释
例 检验下列因式分解是否正确:
(1)x2y-xy2=xy(x-y);
(2)2x2-1=(2x+1)(2x-1);
(3)x2+3x+2=(x+1)(x+2).
分析:检验因式分解是否正确,只要看等式右边几个整式相乘的积与右边的多项式是否相等。
练习 计算下列各题,并说明你的算法:(请学生板演)
(1)872+87×13
(2)1012-992
六、思维拓展
1.若 x2+mx-n能分解成(x-2)(x-5),则m= ,n=
2.机动题:(填空)x2-8x+m=(x-4)( ),且m=
【进一步拓展学生在数学领域内的视野,增强学生对数学的兴趣,使学生从小热衷于数学的学习和探索。通过机动题,了解学生对概念的熟练程度和思维的灵敏性、深刻性、广阔性及探研创造能力,及时评价,及时矫正。】
七、布置作业
1、作业本
2、P99作业题:A组、B组(选做)
教后随笔
相关教案
这是一份初中浙教版4.1 因式分解教案及反思,共4页。教案主要包含了教学目标,教学重难点,教学过程等内容,欢迎下载使用。
这是一份初中数学苏科版七年级下册9.5 多项式的因式分解精品教案设计,共5页。教案主要包含了学习目标,学习重点、难点,旧知回顾,课堂研讨,拓展延伸等内容,欢迎下载使用。
这是一份数学七年级下册第9章 从面积到乘法公式9.5 多项式的因式分解优质教案,共5页。教案主要包含了学习目标,学习过程等内容,欢迎下载使用。