终身会员
搜索
    上传资料 赚现金

    2022年山西省大同矿区六校联考中考四模数学试题含解析

    立即下载
    加入资料篮
    2022年山西省大同矿区六校联考中考四模数学试题含解析第1页
    2022年山西省大同矿区六校联考中考四模数学试题含解析第2页
    2022年山西省大同矿区六校联考中考四模数学试题含解析第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年山西省大同矿区六校联考中考四模数学试题含解析

    展开

    这是一份2022年山西省大同矿区六校联考中考四模数学试题含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,关于x的方程=无解,则k的值为,一元二次方程=0的两个根是,关于x的方程等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    考生请注意:
    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.如图,⊙O的半径OC与弦AB交于点D,连结OA,AC,CB,BO,则下列条件中,无法判断四边形OACB为菱形的是( )

    A.∠DAC=∠DBC=30° B.OA∥BC,OB∥AC C.AB与OC互相垂直 D.AB与OC互相平分
    2.﹣18的倒数是(  )
    A.18 B.﹣18 C.- D.
    3.下列说法中,正确的是(  )
    A.长度相等的弧是等弧
    B.平分弦的直径垂直于弦,并且平分弦所对的两条弧
    C.经过半径并且垂直于这条半径的直线是圆的切线
    D.在同圆或等圆中90°的圆周角所对的弦是这个圆的直径
    4.关于x的方程=无解,则k的值为(  )
    A.0或 B.﹣1 C.﹣2 D.﹣3
    5.如图,CD是⊙O的弦,O是圆心,把⊙O的劣弧沿着CD对折,A是对折后劣弧上的一点,∠CAD=100°,则∠B的度数是(  )

    A.100° B.80° C.60° D.50°
    6.一元二次方程(x+3)(x-7)=0的两个根是
    A.x1=3,x2=-7 B.x1=3,x2=7
    C.x1=-3,x2=7 D.x1=-3,x2=-7
    7.小轩从如图所示的二次函数y=ax2+bx+c(a≠0)的图象中,观察得出了下面五条信息:
    ①ab>0;②a+b+c<0;③b+2c>0;④a﹣2b+4c>0;⑤.
    你认为其中正确信息的个数有

    A.2个 B.3个 C.4个 D.5个
    8.如图,嘉淇同学拿20元钱正在和售货员对话,且一本笔记本比一支笔贵3元,请你仔细看图,1本笔记本和1支笔的单价分别为( )

    A.5元,2元 B.2元,5元
    C.4.5元,1.5元 D.5.5元,2.5元
    9.如图,在正三角形ABC中,D,E,F分别是BC,AC,AB上的点,DE⊥AC,EF⊥AB,FD⊥BC,则△DEF的面积与△ABC的面积之比等于( )

    A.1∶3 B.2∶3 C.∶2 D.∶3
    10.关于x的方程(a﹣1)x|a|+1﹣3x+2=0是一元二次方程,则( )
    A.a≠±1 B.a=1 C.a=﹣1 D.a=±1
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,这是一幅长为3m,宽为1m的长方形世界杯宣传画,为测量宣传画上世界杯图案的面积,现将宣传画平铺在地上,向长方形宣传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在世界杯图案中的频率稳定在常数0.4附近,由此可估计宣传画上世界杯图案的面积约为___________________m1.

    12.算术平方根等于本身的实数是__________.
    13.将三角形纸片()按如图所示的方式折叠,使点落在边上,记为点,折痕为,已知,,若以点,,为顶点的三角形与相似,则的长度是______.

    14.如图,四边形ABCD中,E,F,G,H分别是边AB、BC、CD、DA的中点.若四边形EFGH为菱形,则对角线AC、BD应满足条件_____.

    15.如图,将的边绕着点顺时针旋转得到,边AC绕着点A逆时针旋转得到,联结.当时,我们称是的“双旋三角形”.如果等边的边长为a,那么它的“双旋三角形”的面积是__________(用含a的代数式表示).

    16.如图:图象①②③均是以P0为圆心,1个单位长度为半径的扇形,将图形①②③分别沿东北,正南,西北方向同时平移,每次移动一个单位长度,第一次移动后图形①②③的圆心依次为P1P2P3,第二次移动后图形①②③的圆心依次为P4P5P6…,依此规律,P0P2018=_____个单位长度.

    17.如图,正△ABC 的边长为 2,顶点 B、C 在半径为 的圆上,顶点 A在圆内,将正△ABC 绕点 B 逆时针旋转,当点 A 第一次落在圆上时,则点 C 运动的路线长为 (结果保留π);若 A 点落在圆上记做第 1 次旋转,将△ABC 绕点 A 逆时针旋转,当点 C 第一次落在圆上记做第 2 次旋转,再绕 C 将△ABC 逆时针旋转,当点 B 第一次落在圆上,记做第 3 次旋转……,若此旋转下去,当△ABC 完成第 2017 次旋转时,BC 边共回到原来位置 次.

    三、解答题(共7小题,满分69分)
    18.(10分)某中学为了解学生平均每天“诵读经典”的时间,在全校范围内随机抽查了部分学生进行调查统计(设每天的诵读时间为分钟),将调查统计的结果分为四个等级:Ⅰ级、Ⅱ级、Ⅲ级、Ⅳ级.将收集的数据绘制成如下两幅不完整的统计图.请根据图中提供的信息,解答下列问题:

    ()请补全上面的条形图.
    ()所抽查学生“诵读经典”时间的中位数落在__________级.
    ()如果该校共有名学生,请你估计该校平均每天“诵读经典”的时间不低于分钟的学生约有多少人?
    19.(5分)某商人制成了一个如图所示的转盘,取名为“开心大转盘”,游戏规定:参与者自由转动转盘,转盘停止后,若指针指向字母“A”,则收费2元,若指针指向字母“B”,则奖励3元;若指针指向字母“C”,则奖励1元.一天,前来寻开心的人转动转盘80次,你认为该商人是盈利的可能性大还是亏损的可能性大?为什么?

    20.(8分)如图1,在长方形ABCD中,,,点P从A出发,沿的路线运动,到D停止;点Q从D点出发,沿路线运动,到A点停止.若P、Q两点同时出发,速度分别为每秒、,a秒时P、Q两点同时改变速度,分别变为每秒、(P、Q两点速度改变后一直保持此速度,直到停止),如图2是的面积和运动时间(秒)的图象.
    (1)求出a值;
    (2)设点P已行的路程为,点Q还剩的路程为,请分别求出改变速度后,和运动时间(秒)的关系式;
    (3)求P、Q两点都在BC边上,x为何值时P,Q两点相距3cm?

    21.(10分)如图,某同学在测量建筑物AB的高度时,在地面的C处测得点A的仰角为30°,向前走60米到达D处,在D处测得点A的仰角为45°,求建筑物AB的高度.

    22.(10分)经过校园某路口的行人,可能左转,也可能直行或右转.假设这三种可能性相同,现有小明和小亮两人经过该路口,请用列表法或画树状图法,求两人之中至少有一人直行的概率.
    23.(12分)如图,在菱形ABCD中,点P在对角线AC上,且PA=PD,⊙O是△PAD的外接圆.

    (1)求证:AB是⊙O的切线;
    (2)若AC=8,tan∠BAC=,求⊙O的半径.
    24.(14分)如图,二次函数的图象与x轴的一个交点为,另一个交点为A,且与y轴相交于C点

    求m的值及C点坐标;
    在直线BC上方的抛物线上是否存在一点M,使得它与B,C两点构成的三角形面积最大,若存在,求出此时M点坐标;若不存在,请简要说明理由
    为抛物线上一点,它关于直线BC的对称点为Q
    当四边形PBQC为菱形时,求点P的坐标;
    点P的横坐标为,当t为何值时,四边形PBQC的面积最大,请说明理由.



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、C
    【解析】
    (1)∵∠DAC=∠DBC=30°,
    ∴∠AOC=∠BOC=60°,
    又∵OA=OC=OB,
    ∴△AOC和△OBC都是等边三角形,
    ∴OA=AC=OC=BC=OB,
    ∴四边形OACB是菱形;即A选项中的条件可以判定四边形OACB是菱形;
    (2)∵OA∥BC,OB∥AC,
    ∴四边形OACB是平行四边形,
    又∵OA=OB,
    ∴四边形OACB是菱形,即B选项中的条件可以判定四边形OACB是菱形;
    (3)由OC和AB互相垂直不能证明到四边形OACB是菱形,即C选项中的条件不能判定四边形OACB是菱形;
    (4)∵AB与OC互相平分,
    ∴四边形OACB是平行四边形,
    又∵OA=OB,
    ∴四边形OACB是菱形,即由D选项中的条件能够判定四边形OACB是菱形.
    故选C.
    2、C
    【解析】
    根据乘积为1的两个数互为倒数,可得一个数的倒数.
    【详解】
    ∵-18=1,
    ∴﹣18的倒数是,
    故选C.
    【点睛】
    本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.
    3、D
    【解析】
    根据切线的判定,圆的知识,可得答案.
    【详解】
    解:A、在等圆或同圆中,长度相等的弧是等弧,故A错误;
    B、平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧,故B错误;
    C、经过半径的外端并且垂直于这条半径的直线是圆的切线,故C错误;
    D、在同圆或等圆中90°的圆周角所对的弦是这个圆的直径,故D正确;
    故选:D.
    【点睛】
    本题考查了切线的判定及圆的知识,利用圆的知识及切线的判定是解题关键.
    4、A
    【解析】
    方程两边同乘2x(x+3),得
    x+3=2kx,
    (2k-1)x=3,
    ∵方程无解,
    ∴当整式方程无解时,2k-1=0,k=,
    当分式方程无解时,①x=0时,k无解,
    ②x=-3时,k=0,
    ∴k=0或时,方程无解,
    故选A.
    5、B
    【解析】
    试题分析:如图,翻折△ACD,点A落在A′处,可知∠A=∠A′=100°,然后由圆内接四边形可知∠A′+∠B=180°,解得∠B=80°.
    故选:B

    6、C
    【解析】
    根据因式分解法直接求解即可得.
    【详解】
    ∵(x+3)(x﹣7)=0,
    ∴x+3=0或x﹣7=0,
    ∴x1=﹣3,x2=7,
    故选C.
    【点睛】
    本题考查了解一元二次方程——因式分解法,根据方程的特点选择恰当的方法进行求解是解题的关键.
    7、D
    【解析】
    试题分析:①如图,∵抛物线开口方向向下,∴a<1.
    ∵对称轴x,∴<1.∴ab>1.故①正确.
    ②如图,当x=1时,y<1,即a+b+c<1.故②正确.
    ③如图,当x=﹣1时,y=a﹣b+c>1,∴2a﹣2b+2c>1,即3b﹣2b+2c>1.∴b+2c>1.故③正确.
    ④如图,当x=﹣1时,y>1,即a﹣b+c>1,
    ∵抛物线与y轴交于正半轴,∴c>1.
    ∵b<1,∴c﹣b>1.
    ∴(a﹣b+c)+(c﹣b)+2c>1,即a﹣2b+4c>1.故④正确.
    ⑤如图,对称轴,则.故⑤正确.
    综上所述,正确的结论是①②③④⑤,共5个.故选D.
    8、A
    【解析】
    可设1本笔记本的单价为x元,1支笔的单价为y元,由题意可得等量关系:①3本笔记本的费用+2支笔的费用=19元,②1本笔记本的费用﹣1支笔的费用=3元,根据等量关系列出方程组,再求解即可.
    【详解】
    设1本笔记本的单价为x元,1支笔的单价为y元,依题意有:
    ,解得:.
    故1本笔记本的单价为5元,1支笔的单价为2元.
    故选A.
    【点睛】
    本题考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系设出未知数,列出方程组.
    9、A
    【解析】
    ∵DE⊥AC,EF⊥AB,FD⊥BC,
    ∴∠C+∠EDC=90°,∠FDE+∠EDC=90°,
    ∴∠C=∠FDE,
    同理可得:∠B=∠DFE,∠A=DEF,
    ∴△DEF∽△CAB,
    ∴△DEF与△ABC的面积之比= ,
    又∵△ABC为正三角形,
    ∴∠B=∠C=∠A=60°
    ∴△EFD是等边三角形,
    ∴EF=DE=DF,
    又∵DE⊥AC,EF⊥AB,FD⊥BC,
    ∴△AEF≌△CDE≌△BFD,
    ∴BF=AE=CD,AF=BD=EC,
    在Rt△DEC中,
    DE=DC×sin∠C=DC,EC=cos∠C×DC=DC,
    又∵DC+BD=BC=AC=DC,
    ∴,
    ∴△DEF与△ABC的面积之比等于:
    故选A.
    点晴:本题主要通过证出两个三角形是相似三角形,再利用相似三角形的性质:相似三角形的面积之比等于对应边之比的平方,进而将求面积比的问题转化为求边之比的问题,并通过含30度角的直角三角形三边间的关系(锐角三角形函数)即可得出对应边之比,进而得到面积比.
    10、C
    【解析】
    根据一元一次方程的定义即可求出答案.
    【详解】
    由题意可知:,解得a=−1
    故选C.
    【点睛】
    本题考查一元二次方程的定义,解题的关键是熟练运用一元二次方程的定义,本题属于基础题型.

    二、填空题(共7小题,每小题3分,满分21分)
    11、1.4
    【解析】
    由概率估计图案在整副画中所占比例,再求出图案的面积.
    【详解】
    估计宣传画上世界杯图案的面积约为3×1×0.4=1.4m1.
    故答案为1.4
    【点睛】
    本题考核知识点:几何概率. 解题关键点:由几何概率估计图案在整副画中所占比例.
    12、0或1
    【解析】
    根据负数没有算术平方根,一个正数的算术平方根只有一个,1和0的算术平方根等于本身,即可得出答案.
    解:1和0的算术平方根等于本身.
    故答案为1和0
    “点睛”本题考查了算术平方根的知识,注意掌握1和0的算术平方根等于本身.
    13、或2
    【解析】
    由折叠性质可知B’F=BF,△B’FC与△ABC相似,有两种情况,分别对两种情况进行讨论,设出B’F=BF=x,列出比例式方程解方程即可得到结果.
    【详解】
    由折叠性质可知B’F=BF,设B’F=BF=x,故CF=4-x
    当△B’FC∽△ABC,有,得到方程,解得x=,故BF=;
    当△FB’C∽△ABC,有,得到方程,解得x=2,故BF=2;
    综上BF的长度可以为或2.
    【点睛】
    本题主要考查相似三角形性质,解题关键在于能够对两个相似三角形进行分类讨论.
    14、AC=BD.
    【解析】
    试题分析:添加的条件应为:AC=BD,把AC=BD作为已知条件,根据三角形的中位线定理可得,HG平行且等于AC的一半,EF平行且等于AC的一半,根据等量代换和平行于同一条直线的两直线平行,得到HG和EF平行且相等,所以EFGH为平行四边形,又EH等于BD的一半且AC=BD,所以得到所证四边形的邻边EH与HG相等,所以四边形EFGH为菱形.
    试题解析:添加的条件应为:AC=BD.
    证明:∵E,F,G,H分别是边AB、BC、CD、DA的中点,
    ∴在△ADC中,HG为△ADC的中位线,所以HG∥AC且HG=AC;同理EF∥AC且EF=AC,同理可得EH=BD,
    则HG∥EF且HG=EF,
    ∴四边形EFGH为平行四边形,又AC=BD,所以EF=EH,
    ∴四边形EFGH为菱形.
    考点:1.菱形的性质;2.三角形中位线定理.
    15、.
    【解析】
    首先根据等边三角形、“双旋三角形”的定义得出△A B'C'是顶角为150°的等腰三角形,其中AB'=AC'=a.过C'作C'D⊥AB'于D,根据30°角所对的直角边等于斜边的一半得出C'DAC'a,然后根据S△AB'C'AB'•C'D即可求解.
    【详解】
    ∵等边△ABC的边长为a,∴AB=AC=a,∠BAC=60°.
    ∵将△ABC的边AB绕着点A顺时针旋转α(0°<α<90°)得到AB',∴AB'=AB=a,∠B'AB=α.
    ∵边AC绕着点A逆时针旋转β(0°<β<90°)得到AC',∴AC'=AC=a,∠CAC'=β,∴∠B'AC'=∠B'AB+∠BAC+∠CAC'=α+60°+β=60°+90°=150°.
    如图,过C'作C'D⊥AB'于D,则∠D=90°,∠DAC'=30°,∴C'DAC'a,∴S△AB'C'AB'•C'Da•aa1.
    故答案为:a1.

    【点睛】
    本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了含30°角的直角三角形的性质,等边三角形的性质以及三角形的面积.
    16、1
    【解析】
    根据P0P1=1,P0P2=1,P0P3=1;P0P4=2,P0P5=2,P0P6=2;P0P7=3,P0P8=3,P0P9=3;可知每移动一次,圆心离中心的距离增加1个单位,依据2018=3×672+2,即可得到点P2018在正南方向上,P0P2018=672+1=1.
    【详解】
    由图可得,P0P1=1,P0P2=1,P0P3=1;
    P0P4=2,P0P5=2,P0P6=2;
    P0P7=3,P0P8=3,P0P9=3;
    ∵2018=3×672+2,
    ∴点P2018在正南方向上,
    ∴P0P2018=672+1=1,
    故答案为1.
    【点睛】
    本题主要考查了坐标与图形变化,应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.
    17、,1.
    【解析】
    首先连接OA′、OB、OC,再求出∠C′BC的大小,进而利用弧长公式问题即可解决.因为△ABC是三边在正方形CBA′C″上,BC边每12次回到原来位置,2017÷12=1.08,推出当△ABC完成第2017次旋转时,BC边共回到原来位置1次.
    【详解】
    如图,连接OA′、OB、OC.

    ∵OB=OC=,BC=2,
    ∴△OBC是等腰直角三角形,
    ∴∠OBC=45°;
    同理可证:∠OBA′=45°,
    ∴∠A′BC=90°;
    ∵∠ABC=60°,
    ∴∠A′BA=90°-60°=30°,
    ∴∠C′BC=∠A′BA=30°,
    ∴当点A第一次落在圆上时,则点C运动的路线长为:.
    ∵△ABC是三边在正方形CBA′C″上,BC边每12次回到原来位置,
    2017÷12=1.08,
    ∴当△ABC完成第2017次旋转时,BC边共回到原来位置1次,
    故答案为:,1.
    【点睛】
    本题考查轨迹、等边三角形的性质、旋转变换、规律问题等知识,解题的关键是循环利用数形结合的思想解决问题,循环从特殊到一般的探究方法,所以中考填空题中的压轴题.

    三、解答题(共7小题,满分69分)
    18、)补全的条形图见解析()Ⅱ级.().
    【解析】
    试题分析:(1)根据Ⅱ级的人数和所占的百分比即可求出总数,从而求出三级人数,进而补全图形;
    (2)把所有同类数据按照从小到大的顺序排列,中间的数据是中位数,则该数在Ⅱ级.;
    (3)由样本估计总体,由于时间不低于的人数占,故该类学生约有408人.
    试题解析: (1)本次随机抽查的人数为:20÷40%=50(人).三级人数为:50-13-20-7=10.
    补图如下:

    (2)把所有同类数据按照从小到大的顺序排列,中间的数据是中位数,则该数在Ⅱ级.
    (3)由样本估计总体,由于时间不低于的人数占,所以该类学生约有.
    19、商人盈利的可能性大.
    【解析】
    试题分析:根据几何概率的定义,面积比即概率.图中A,B,C所占的面积与总面积之比即为A,B,C各自的概率,算出相应的可能性,乘以钱数,比较即可.
    试题解析:商人盈利的可能性大.
    商人收费:80××2=80(元),商人奖励:80××3+80××1=60(元),因为80>60,所以商人盈利的可能性大.
    20、(1)6;(2);;(3)10或;
    【解析】
    (1)根据图象变化确定a秒时,P点位置,利用面积求a;
    (2)P、Q两点的函数关系式都是在运动6秒的基础上得到的,因此注意在总时间内减去6秒;
    (3)以(2)为基础可知,两个点相距3cm分为相遇前相距或相遇后相距,因此由(2)可列方程.
    【详解】
    (1)由图象可知,当点P在BC上运动时,△APD的面积保持不变,则a秒时,点P在AB上.

    ∴AP=6,
    则a=6;
    (2)由(1)6秒后点P变速,则点P已行的路程为y1=6+2(x﹣6)=2x﹣6,
    ∵Q点路程总长为34cm,第6秒时已经走12cm,
    故点Q还剩的路程为y2=34﹣12﹣;
    (3)当P、Q两点相遇前相距3cm时,
    ﹣(2x﹣6)=3,解得x=10,
    当P、Q两点相遇后相距3cm时,
    (2x﹣6)﹣()=3,解得x=,
    ∴当x=10或时,P、Q两点相距3cm
    【点睛】
    本题是双动点问题,解答时应注意分析图象的变化与动点运动位置之间的关系.列函数关系式时,要考虑到时间x的连续性才能直接列出函数关系式.
    21、(30+30)米.
    【解析】
    解:设建筑物AB的高度为x米
    在Rt△ABD 中,∠ADB=45°
    ∴AB=DB=x
    ∴BC=DB+CD= x+60
    在Rt△ABC 中,∠ACB=30°,
    ∴tan∠ACB=


    ∴x=30+30
    ∴建筑物AB的高度为(30+30)米
    22、两人之中至少有一人直行的概率为.
    【解析】
    【分析】画树状图展示所有9种等可能的结果数,找出“至少有一人直行”的结果数,然后根据概率公式求解.
    【详解】画树状图为:

    共有9种等可能的结果数,其中两人之中至少有一人直行的结果数为5,
    所以两人之中至少有一人直行的概率为.
    【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.概率=所求情况数与总情况数之比.
    23、 (1)见解析;(2).
    【解析】
    分析:(1)连结OP、OA,OP交AD于E,由PA=PD得弧AP=弧DP,根据垂径定理的推理得OP⊥AD,AE=DE,则∠1+∠OPA=90°,而∠OAP=∠OPA,所以∠1+∠OAP=90°,再根据菱形的性质得∠1=∠2,所以∠2+∠OAP=90°,然后根据切线的判定定理得到直线AB与⊙O相切;
    (2)连结BD,交AC于点F,根据菱形的性质得DB与AC互相垂直平分,则AF=4,tan∠DAC=,得到DF=2,根据勾股定理得到AD==2,求得AE=,设⊙O的半径为R,则OE=R﹣,OA=R,根据勾股定理列方程即可得到结论.
    详解:(1)连结OP、OA,OP交AD于E,如图,
    ∵PA=PD,∴弧AP=弧DP,∴OP⊥AD,AE=DE,∴∠1+∠OPA=90°.
    ∵OP=OA,∴∠OAP=∠OPA,∴∠1+∠OAP=90°.
    ∵四边形ABCD为菱形,∴∠1=∠2,∴∠2+∠OAP=90°,∴OA⊥AB,
    ∴直线AB与⊙O相切;
    (2)连结BD,交AC于点F,如图,
    ∵四边形ABCD为菱形,∴DB与AC互相垂直平分.
    ∵AC=8,tan∠BAC=,∴AF=4,tan∠DAC==,
    ∴DF=2,∴AD==2,∴AE=.
    在Rt△PAE中,tan∠1==,∴PE=.
    设⊙O的半径为R,则OE=R﹣,OA=R.
    在Rt△OAE中,∵OA2=OE2+AE2,∴R2=(R﹣)2+()2,
    ∴R=,即⊙O的半径为.

    点睛:本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了菱形的性质和锐角三角函数以及勾股定理.
    24、,;存在,;或;当时,.
    【解析】
    (1)用待定系数法求出抛物线解析式;
    (2)先判断出面积最大时,平移直线BC的直线和抛物线只有一个交点,从而求出点M坐标;
    (3)①先判断出四边形PBQC时菱形时,点P是线段BC的垂直平分线,利用该特殊性建立方程求解;
    ②先求出四边形PBCQ的面积与t的函数关系式,从而确定出它的最大值.
    【详解】
    解:(1)将B(4,0)代入,解得,m=4,
    ∴二次函数解析式为,令x=0,得y=4,
    ∴C(0,4);
    (2)存在,理由:∵B(4,0),C(0,4),
    ∴直线BC解析式为y=﹣x+4,当直线BC向上平移b单位后和抛物线只有一个公共点时,△MBC面积最大,
    ∴,
    ∴,
    ∴△=1﹣4b=0,∴b=4,
    ∴,∴M(2,6);
    (3)①如图,∵点P在抛物线上,
    ∴设P(m,),当四边形PBQC是菱形时,点P在线段BC的垂直平分线上,∵B(4,0),C(0,4),
    ∴线段BC的垂直平分线的解析式为y=x,
    ∴m=,
    ∴m=,
    ∴P(,)或P(,);

    ②如图,设点P(t,),过点P作y轴的平行线l,过点C作l的垂线,
    ∵点D在直线BC上,∴D(t,﹣t+4),
    ∵PD=﹣(﹣t+4)=,BE+CF=4,
    ∴S四边形PBQC=2S△PDC=2(S△PCD+S△BD)=2(PD×CF+PD×BE)=4PD=
    ∵0<t<4,
    ∴当t=2时,S四边形PBQC最大=1.

    考点:二次函数综合题;二次函数的最值;最值问题;分类讨论;压轴题.

    相关试卷

    2024年山西省大同市新荣区三校联考中考一模数学试题:

    这是一份2024年山西省大同市新荣区三校联考中考一模数学试题,共6页。

    2023-2024学年山西省大同矿区六校联考数学九上期末教学质量检测试题含答案:

    这是一份2023-2024学年山西省大同矿区六校联考数学九上期末教学质量检测试题含答案,共7页。试卷主要包含了方程的根是等内容,欢迎下载使用。

    山西省大同矿区六校联考2023-2024学年数学八年级第一学期期末调研模拟试题含答案:

    这是一份山西省大同矿区六校联考2023-2024学年数学八年级第一学期期末调研模拟试题含答案,共7页。试卷主要包含了已知,如图,,,,估算的值在等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map