![2022年山西省大同市中考联考数学试卷含解析01](http://m.enxinlong.com/img-preview/2/3/13069736/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年山西省大同市中考联考数学试卷含解析02](http://m.enxinlong.com/img-preview/2/3/13069736/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年山西省大同市中考联考数学试卷含解析03](http://m.enxinlong.com/img-preview/2/3/13069736/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2022年山西省大同市中考联考数学试卷含解析
展开2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图所示的几何体的俯视图是( )
A. B. C. D.
2.数据3、6、7、1、7、2、9的中位数和众数分别是( )
A.1和7 B.1和9 C.6和7 D.6和9
3.一元二次方程x2﹣8x﹣2=0,配方的结果是( )
A.(x+4)2=18 B.(x+4)2=14 C.(x﹣4)2=18 D.(x﹣4)2=14
4.下列图形是由同样大小的棋子按照一定规律排列而成的,其中,图①中有5个棋子,图②中有10个棋子,图③中有16个棋子,…,则图⑥________中有个棋子( )
A.31 B.35 C.40 D.50
5.如图,已知点A,B分别是反比例函数y=(x<0),y=(x>0)的图象上的点,且∠AOB=90°,tan∠BAO=,则k的值为( )
A.2 B.﹣2 C.4 D.﹣4
6.已知是二元一次方程组的解,则m+3n的值是( )
A.4 B.6 C.7 D.8
7.甲、乙两盒中分别放入编号为1、2、3、4的形状相同的4个小球,从甲盒中任意摸出一球,再从乙盒中任意摸出一球,将两球编号数相加得到一个数,则得到数( )的概率最大.
A.3 B.4 C.5 D.6
8.一元二次方程x2+2x﹣15=0的两个根为( )
A.x1=﹣3,x2=﹣5 B.x1=3,x2=5
C.x1=3,x2=﹣5 D.x1=﹣3,x2=5
9.一个圆锥的底面半径为,母线长为6,则此圆锥的侧面展开图的圆心角是( )
A.180° B.150° C.120° D.90°
10.的相反数是 ( )
A. B. C.3 D.-3
11.下列方程中是一元二次方程的是( )
A. B.
C. D.
12.已知x+=3,则x2+=( )
A.7 B.9 C.11 D.8
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.27的立方根为 .
14.肥皂泡的泡壁厚度大约是,用科学记数法表示为 _______.
15.关于x的一元二次方程有实数根,则a的取值范围是 __________.
16.如图所示,在等腰△ABC中,AB=AC,∠A=36°,将△ABC中的∠A沿DE向下翻折,使点A落在点C处.若AE=,则BC的长是_____.
17.已知,,,是成比例的线段,其中,,,则_______.
18.一组数据:1,2,a,4,5的平均数为3,则a=_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)顶点为D的抛物线y=﹣x2+bx+c交x轴于A、B(3,0),交y轴于点C,直线y=﹣x+m经过点C,交x轴于E(4,0).
求出抛物线的解析式;如图1,点M为线段BD上不与B、D重合的一个动点,过点M作x轴的垂线,垂足为N,设点M的横坐标为x,四边形OCMN的面积为S,求S与x之间的函数关系式,并求S的最大值;点P为x轴的正半轴上一个动点,过P作x轴的垂线,交直线y=﹣x+m于G,交抛物线于H,连接CH,将△CGH沿CH翻折,若点G的对应点F恰好落在y轴上时,请直接写出点P的坐标.
20.(6分)车辆经过润扬大桥收费站时,4个收费通道 A.B、C、D中,可随机选择其中的一个通过.一辆车经过此收费站时,选择 A通道通过的概率是 ;求两辆车经过此收费站时,选择不同通道通过的概率.
21.(6分)某校为了解学生体质情况,从各年级随机抽取部分学生进行体能测试,每个学生的测试成绩按标准对应为优秀、良好、及格、不及格四个等级,统计员在将测试数据绘制成图表时发现,优秀漏统计4人,良好漏统计6人,于是及时更正,从而形成如图图表,请按正确数据解答下列各题:
学生体能测试成绩各等次人数统计表
体能等级
调整前人数
调整后人数
优秀
8
良好
16
及格
12
不及格
4
合计
40
(1)填写统计表;
(2)根据调整后数据,补全条形统计图;
(3)若该校共有学生1500人,请你估算出该校体能测试等级为“优秀”的人数.
22.(8分)如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆恰好与BC相切于点D,分别交AC、AB于点E、F.
(1)若∠B=30°,求证:以A、O、D、E为顶点的四边形是菱形.
(2)若AC=6,AB=10,连结AD,求⊙O的半径和AD的长.
23.(8分)在平面直角坐标系xOy中有不重合的两个点与.若Q、P为某个直角三角形的两个锐角顶点,当该直角三角形的两条直角边分别与x轴或y轴平行(或重合),则我们将该直角三角形的两条直角边的边长之和称为点Q与点P之间的“直距”记做,特别地,当PQ与某条坐标轴平行(或重合)时,线段PQ的长即为点Q与点P之间的“直距”.例如下图中,点,点,此时点Q与点P之间的“直距”.
(1)①已知O为坐标原点,点,,则_________,_________;
②点C在直线上,求出的最小值;
(2)点E是以原点O为圆心,1为半径的圆上的一个动点,点F是直线上一动点.直接写出点E与点F之间“直距”的最小值.
24.(10分)某初级中学正在展开“文明城市创建人人参与,志愿服务我当先行”的“创文活动”为了了解该校志愿者参与服务情况,现对该校全体志愿者进行随机抽样调查.根据调查数据绘制了如下所示不完整统计图.条形统计图中七年级、八年级、九年级、教师分别指七年级、八年级、九年级、教师志愿者中被抽到的志愿者,扇形统计图中的百分数指的是该年级被抽到的志愿者数与样本容量的比.
请补全条形统计图;若该校共有志愿者600人,则该校九年级大约有多少志愿者?
25.(10分)八年级(1)班学生在完成课题学习“体质健康测试中的数据分析”后,利用课外活动时间积极参加体育锻炼,每位同学从篮球、跳绳、立定跳远、长跑、铅球中选一项进行训练,训练后都进行了测试.现将项目选择情况及训练后篮球定时定点投篮测试成绩整理后作出如下统计图.
请你根据上面提供的信息回答下列问题:扇形图中跳绳部分的扇形圆心角为 度,该班共有学生 人, 训练后篮球定时定点投篮平均每个人的进球数是 .老师决定从选择铅球训练的3名男生和1名女生中任选两名学生先进行测试,请用列表或画树形图的方法求恰好选中两名男生的概率.
26.(12分)先化简后求值:已知:x=﹣2,求的值.
27.(12分)如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数y=的图象相交于点A(m,3)、B(–6,n),与x轴交于点C.
(1)求一次函数y=kx+b的关系式;
(2)结合图象,直接写出满足kx+b>的x的取值范围;
(3)若点P在x轴上,且S△ACP=,求点P的坐标.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
找到从上面看所得到的图形即可,注意所有看到的棱都应表现在俯视图中.
【详解】
从上往下看,该几何体的俯视图与选项D所示视图一致.
故选D.
【点睛】
本题考查了简单组合体三视图的知识,俯视图是从物体的上面看得到的视图.
2、C
【解析】
如果一组数据有奇数个,那么把这组数据从小到大排列后,排在中间位置的数是这组数据的中位数;如果一组数据有偶数个,那么把这组数据从小到大排列后,排在中间位置的两个数的平均数是这组数据的中位数. 一组数据中出现次数最多的数据叫做众数.
【详解】
解:∵7出现了2次,出现的次数最多,
∴众数是7;
∵从小到大排列后是:1,2,3,6,7,7,9,排在中间的数是6,
∴中位数是6
故选C.
【点睛】
本题考查了中位数和众数的求法,解答本题的关键是熟练掌握中位数和众数的定义.
3、C
【解析】
x2-8x=2,
x2-8x+16=1,
(x-4)2=1.
故选C.
【点睛】本题考查了解一元二次方程-配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.
4、C
【解析】
根据题意得出第n个图形中棋子数为1+2+3+…+n+1+2n,据此可得.
【详解】
解:∵图1中棋子有5=1+2+1×2个,
图2中棋子有10=1+2+3+2×2个,
图3中棋子有16=1+2+3+4+3×2个,
…
∴图6中棋子有1+2+3+4+5+6+7+6×2=40个,
故选C.
【点睛】
本题考查了图形的变化规律,通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.
5、D
【解析】
首先过点A作AC⊥x轴于C,过点B作BD⊥x轴于D,易得△OBD∽△AOC,又由点A,B分别在反比例函数y= (x<0),y=(x>0)的图象上,即可得S△OBD= ,S△AOC=|k|,然后根据相似三角形面积的比等于相似比的平方,即可求出k的值
【详解】
解:过点A作AC⊥x轴于C,过点B作BD⊥x轴于D,
∴∠ACO=∠ODB=90°,
∴∠OBD+∠BOD=90°,
∵∠AOB=90°,
∴∠BOD+∠AOC=90°,
∴∠OBD=∠AOC,
∴△OBD∽△AOC,
又∵∠AOB=90°,tan∠BAO= ,
∴=,
∴ = ,即 ,
解得k=±4,
又∵k<0,
∴k=-4,
故选:D.
【点睛】
此题考查了相似三角形的判定与性质、反比例函数的性质以及直角三角形的性质.解题时注意掌握数形结合思想的应用,注意掌握辅助线的作法。
6、D
【解析】
分析:根据二元一次方程组的解,直接代入构成含有m、n的新方程组,解方程组求出m、n的值,代入即可求解.
详解:根据题意,将代入,得:,
①+②,得:m+3n=8,
故选D.
点睛:此题主要考查了二元一次方程组的解,利用代入法求出未知参数是解题关键,比较简单,是常考题型.
7、C
【解析】
解:甲和乙盒中1个小球任意摸出一球编号为1、2、3、1的概率各为,
其中得到的编号相加后得到的值为{2,3,1,5,6,7,8}
和为2的只有1+1;
和为3的有1+2;2+1;
和为1的有1+3;2+2;3+1;
和为5的有1+1;2+3;3+2;1+1;
和为6的有2+1;1+2;
和为7的有3+1;1+3;
和为8的有1+1.
故p(5)最大,故选C.
8、C
【解析】
运用配方法解方程即可.
【详解】
解:x2+2x﹣15= x2+2x+1-16=(x+1)2-16=0,即(x+1)2=16,解得,x1=3,x2=-5.
故选择C.
【点睛】
本题考查了解一元二次方程,选择合适的解方程方法是解题关键.
9、B
【解析】
解:,解得n=150°.故选B.
考点:弧长的计算.
10、B
【解析】
先求的绝对值,再求其相反数:
根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点到原点的距离是,所以的绝对值是;
相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,1的相反数还是1.因此的相反数是.故选B.
11、C
【解析】
找到只含有一个未知数,未知数的最高次数是2,二次项系数不为0的整式方程的选项即可.
【详解】
解:A、当a=0时,不是一元二次方程,故本选项错误;
B、是分式方程,故本选项错误;
C、化简得:是一元二次方程,故本选项正确;
D、是二元二次方程,故本选项错误;
故选:C.
【点睛】
本题主要考查一元二次方程,熟练掌握一元二次方程的定义是解题的关键.
12、A
【解析】
根据完全平方公式即可求出答案.
【详解】
∵(x+)2=x2+2+
∴9=2+x2+,
∴x2+=7,
故选A.
【点睛】
本题考查完全平方公式,解题的关键是熟练运用完全平方公式.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、1
【解析】
找到立方等于27的数即可.
解:∵11=27,
∴27的立方根是1,
故答案为1.
考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算
14、7×10-1.
【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
0.0007=7×10-1.
故答案为:7×10-1.
【点睛】
本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
15、a≤1且a≠0
【解析】
∵关于x的一元二次方程有实数根,
∴ ,解得:,
∴a的取值范围为:且 .
点睛:解本题时,需注意两点:(1)这是一道关于“x”的一元二次方程,因此 ;
(2)这道一元二次方程有实数根,因此 ;这个条件缺一不可,尤其是第一个条件解题时很容易忽略.
16、
【解析】
【分析】由折叠的性质可知AE=CE,再证明△BCE是等腰三角形即可得到BC=CE,问题得解.
【详解】∵AB=AC,∠A=36°,
∴∠B=∠ACB==72°,
∵将△ABC中的∠A沿DE向下翻折,使点A落在点C处,
∴AE=CE,∠A=∠ECA=36°,
∴∠CEB=72°,
∴BC=CE=AE=,
故答案为.
【点睛】本题考查了等腰三角形的判断和性质、折叠的性质以及三角形内角和定理的运用,证明△BCE是等腰三角形是解题的关键.
17、
【解析】
如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段.根据定义ad=cb,将a,b及c的值代入即可求得d.
【详解】
已知a,b,c,d是成比例线段,
根据比例线段的定义得:ad=cb,
代入a=3,b=2,c=6,
解得:d=4,
则d=4cm.
故答案为:4
【点睛】
本题主要考查比例线段的定义.要注意考虑问题要全面.
18、1
【解析】
依题意有:(1+2+a+4+5)÷5=1,解得a=1.故答案为1.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、 (1)y=﹣x2+2x+3;(2)S=﹣(x﹣)2+;当x=时,S有最大值,最大值为;(3)存在,点P的坐标为(4,0)或(,0).
【解析】
(1)将点E代入直线解析式中,可求出点C的坐标,将点C、B代入抛物线解析式中,可求出抛物线解析式.
(2)将抛物线解析式配成顶点式,可求出点D的坐标,设直线BD的解析式,代入点B、D,可求出直线BD的解析式,则MN可表示,则S可表示.
(3)设点P的坐标,则点G的坐标可表示,点H的坐标可表示,HG长度可表示,利用翻折推出CG=HG,列等式求解即可.
【详解】
(1)将点E代入直线解析式中,
0=﹣×4+m,
解得m=3,
∴解析式为y=﹣x+3,
∴C(0,3),
∵B(3,0),
则有,
解得,
∴抛物线的解析式为:y=﹣x2+2x+3;
(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,
∴D(1,4),
设直线BD的解析式为y=kx+b,代入点B、D,
,
解得,
∴直线BD的解析式为y=﹣2x+6,
则点M的坐标为(x,﹣2x+6),
∴S=(3+6﹣2x)•x•=﹣(x﹣)2+,
∴当x=时,S有最大值,最大值为.
(3)存在,
如图所示,
设点P的坐标为(t,0),
则点G(t,﹣t+3),H(t,﹣t2+2t+3),
∴HG=|﹣t2+2t+3﹣(﹣t+3)|=|t2﹣t|
CG==t,
∵△CGH沿GH翻折,G的对应点为点F,F落在y轴上,
而HG∥y轴,
∴HG∥CF,HG=HF,CG=CF,
∠GHC=∠CHF,
∴∠FCH=∠CHG,
∴∠FCH=∠FHC,
∴∠GCH=∠GHC,
∴CG=HG,
∴|t2﹣t|=t,
当t2﹣t=t时,
解得t1=0(舍),t2=4,
此时点P(4,0).
当t2﹣t=﹣t时,
解得t1=0(舍),t2=,
此时点P(,0).
综上,点P的坐标为(4,0)或(,0).
【点睛】
此题考查了待定系数法求函数解析式,点坐标转换为线段长度,几何图形与二次函数结合的问题,最后一问推出CG=HG为解题关键.
20、(1);(2).
【解析】
试题分析:(1)根据概率公式即可得到结论;
(2)画出树状图即可得到结论.
试题解析:(1)选择 A通道通过的概率=,
故答案为;
(2)设两辆车为甲,乙,如图,两辆车经过此收费站时,会有16种可能的结果,其中选择不同通道通过的有12种结果,∴选择不同通道通过的概率==.
21、(1)12;22;12;4;50;(2)详见解析;(3)1.
【解析】
(1)求出各自的人数,补全表格即可;
(2)根据调整后的数据,补全条形统计图即可;
(3)根据“游戏”人数占的百分比,乘以1500即可得到结果.
【详解】
解:(1)填表如下:
体能等级
调整前人数
调整后人数
优秀
8
12
良好
16
22
及格
12
12
不及格
4
4
合计
40
50
故答案为12;22;12;4;50;
(2)补全条形统计图,如图所示:
(3)抽取的学生中体能测试的优秀率为24%,
则该校体能测试为“优秀”的人数为1500×24%=1(人).
【点睛】
本题考查了统计表与条形统计图的知识点,解题的关键是熟练的掌握统计表与条形统计图的相关知识点.
22、(1)证明见解析;(2);3.
【解析】
试题分析:(1)连接OD、OE、ED.先证明△AOE是等边三角形,得到AE=AO=0D,则四边形AODE是平行四边形,然后由OA=OD证明四边形AODE是菱形;
(2)连接OD、DF.先由△OBD∽△ABC,求出⊙O的半径,然后证明△ADC∽△AFD,得出AD2=AC•AF,进而求出AD.
试题解析:(1)证明:如图1,连接OD、OE、ED.
∵BC与⊙O相切于一点D,
∴OD⊥BC,
∴∠ODB=90°=∠C,
∴OD∥AC,
∵∠B=30°,
∴∠A=60°,
∵OA=OE,
∴△AOE是等边三角形,
∴AE=AO=0D,
∴四边形AODE是平行四边形,
∵OA=OD,
∴四边形AODE是菱形.
(2)解:设⊙O的半径为r.
∵OD∥AC,
∴△OBD∽△ABC.
∴,即8r=6(8﹣r).
解得r=,
∴⊙O的半径为.
如图2,连接OD、DF.
∵OD∥AC,
∴∠DAC=∠ADO,
∵OA=OD,
∴∠ADO=∠DAO,
∴∠DAC=∠DAO,
∵AF是⊙O的直径,
∴∠ADF=90°=∠C,
∴△ADC∽△AFD,
∴,
∴AD2=AC•AF,
∵AC=6,AF=,
∴AD2=×6=45,
∴AD==3.
点评:本题考查了切线的性质、圆周角定理、等边三角形的判定与性质、菱形的判定和性质以及相似三角形的判定和性质,是一个综合题,难度中等.熟练掌握相关图形的性质及判定是解本题的关键.
考点:切线的性质;菱形的判定与性质;相似三角形的判定与性质.
23、(1)①3,1;②最小值为3;(1)
【解析】
(1)①根据点Q与点P之间的“直距”的定义计算即可;
②如图3中,由题意,当DCO为定值时,点C的轨迹是以点O为中心的正方形(如左边图),当DCO=3时,该正方形的一边与直线y=-x+3重合(如右边图),此时DCO定值最小,最小值为3;
(1)如图4中,平移直线y=1x+4,当平移后的直线与⊙O在左边相切时,设切点为E,作EF∥x轴交直线y=1x+4于F,此时DEF定值最小;
【详解】
解:(1)①如图1中,
观察图象可知DAO=1+1=3,DBO=1,
故答案为3,1.
②(i)当点C在第一象限时(),根据题意可知,为定值,设点C坐标为,则,即此时为3;
(ii)当点C在坐标轴上时(,),易得为3;
(ⅲ)当点C在第二象限时(),可得;
(ⅳ)当点C在第四象限时(),可得;
综上所述,当时,取得最小值为3;
(1)如解图②,可知点F有两种情形,即过点E分别作y轴、x轴的垂线与直线分别交于、;如解图③,平移直线使平移后的直线与相切,平移后的直线与x轴交于点G,设直线与x轴交于点M,与y轴交于点N,观察图象,此时即为点E与点F之间“直距”的最小值.连接OE,易证,∴,在中由勾股定理得,∴,解得,∴.
【点睛】
本题考查一次函数的综合题,点Q与点P之间的“直距”的定义,圆的有关知识,正方形的性质等知识,解题的关键是理解题意,学会利用新的定义,解决问题,属于中考压轴题.
失分原因
第(1)问 (1)不能根据定义找出AO、BO的“直距”分属哪种情形;
(1)不能找出点C在不同位置时, 的取值情况,并找到 的最小值第(1)问 (1)不能根据定义正确找出点E与点F之间“直距” 取最小值时点E、F 的位置;
(1)不能想到由相似求出GO的值
24、(1)作图见解析;(2)1.
【解析】
试题分析:(1)根据百分比=计算即可解决问题,求出八年级、九年级、被抽到的志愿者人数画出条形图即可;
(2)用样本估计总体的思想,即可解决问题;
试题解析:解:(1)由题意总人数=20÷40%=50人,八年级被抽到的志愿者:50×30%=15人
九年级被抽到的志愿者:50×20%=10人,条形图如图所示:
(2)该校共有志愿者600人,则该校九年级大约有600×20%=1人.
答:该校九年级大约有1名志愿者.
25、(1)36 , 40, 1;(2).
【解析】
(1)先求出跳绳所占比例,再用比例乘以360°即可,用篮球的人数除以所占比例即可;根据加权平均数的概念计算训练后篮球定时定点投篮人均进球数.
(2)画出树状图,根据概率公式求解即可.
【详解】
(1)扇形图中跳绳部分的扇形圆心角为360°×(1-10%-20%-10%-10%)=36度;
该班共有学生(2+1+7+4+1+1)÷10%=40人;
训练后篮球定时定点投篮平均每个人的进球数是=1,
故答案为:36,40,1.
(2)三名男生分别用A1,A2,A3表示,一名女生用B表示.根据题意,可画树形图如下:
由上图可知,共有12种等可能的结果,选中两名学生恰好是两名男生(记为事件M)
的结果有6种,
∴P(M)==.
26、
【解析】
先根据分式混合运算顺序和运算法则化简原式,再将x的值代入计算可得.
【详解】
解:原式=1﹣•(÷)=1﹣••=1﹣=,
当x=﹣2时,
原式===.
【点睛】
本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则.
27、(1);(1)-6<x<0或1<x;(3)(-1,0)或(-6,0)
【解析】
(1)利用反比例函数图象上点的坐标特征可求出点A、B的坐标,再利用待定系数法即可求出直线AB的解析式;
(1)根据函数图像判断即可;
(3)利用一次函数图象上点的坐标特征可求出点C的坐标,设点P的坐标为(x,0),根据三角形的面积公式结合S△ACP=S△BOC,即可得出|x+4|=1,解之即可得出结论.
【详解】
(1)∵点A(m,3),B(-6,n)在双曲线y=上,
∴m=1,n=-1,
∴A(1,3),B(-6,-1).
将(1,3),B(-6,-1)带入y=kx+b,
得:,解得,.
∴直线的解析式为y=x+1.
(1)由函数图像可知,当kx+b>时,-6<x<0或1<x;
(3)当y=x+1=0时,x=-4,
∴点C(-4,0).
设点P的坐标为(x,0),如图,
∵S△ACP=S△BOC,A(1,3),B(-6,-1),
∴×3|x-(-4)|=××|0-(-4)|×|-1|,即|x+4|=1,
解得:x1=-6,x1=-1.
∴点P的坐标为(-6,0)或(-1,0).
【点睛】
本题考查了反比例函数与一次函数的交点问题、一次(反比例)函数图象上点的坐标特征、待定系数法求一次函数解析式以及三角形的面积,解题的关键是:(1)根据点的坐标利用待定系数法求出直线AB的解析式;(1)根据函数图像判断不等式取值范围;(3)根据三角形的面积公式以及S△ACP=S△BOC,得出|x+4|=1.
山西省大同市新荣区三校联考2024届九年级下学期中考一模数学试卷(含解析): 这是一份山西省大同市新荣区三校联考2024届九年级下学期中考一模数学试卷(含解析),共18页。试卷主要包含了选择题,四象限,解答题等内容,欢迎下载使用。
2023年山西省大同市部分学校中考数学联考试卷(5月份)(含解析): 这是一份2023年山西省大同市部分学校中考数学联考试卷(5月份)(含解析),共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年山西省大同市新荣区两校联考中考三模数学试题(含解析): 这是一份2023年山西省大同市新荣区两校联考中考三模数学试题(含解析),共30页。试卷主要包含了单选题,解答题,填空题等内容,欢迎下载使用。