


2022年荆州市重点中学初中数学毕业考试模拟冲刺卷含解析
展开2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(共10小题,每小题3分,共30分)
1.将一把直尺与一块三角板如图所示放置,若则∠2的度数为( )
A.50° B.110° C.130° D.150°
2.下列各数:1.414,,﹣,0,其中是无理数的为( )
A.1.414 B. C.﹣ D.0
3.下列各数中,最小的数是( )
A.﹣4 B.3 C.0 D.﹣2
4.估计的运算结果应在哪个两个连续自然数之间( )
A.﹣2和﹣1 B.﹣3和﹣2 C.﹣4和﹣3 D.﹣5和﹣4
5.北京故宫的占地面积达到720 000平方米,这个数据用科学记数法表示为( )
A.0.72×106平方米 B.7.2×106平方米
C.72×104平方米 D.7.2×105平方米
6.已知点、都在反比例函数的图象上,则下列关系式一定正确的是( )
A. B. C. D.
7.下列各点中,在二次函数的图象上的是( )
A. B. C. D.
8.若一个多边形的内角和为360°,则这个多边形的边数是( )
A.3 B.4 C.5 D.6
9.实数的相反数是( )
A. B. C. D.
10.如图,菱形ABCD中,∠B=60°,AB=4,以AD为直径的⊙O交CD于点E,则的长为( )
A. B. C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.一个正多边形的一个内角是它的一个外角的5倍,则这个多边形的边数是_______________
12.在中,,,点分别是边的中点,则的周长是__________.
13.如图,从直径为4cm的圆形纸片中,剪出一个圆心角为90°的扇形OAB,且点O、A、B在圆周上,把它围成一个圆锥,则圆锥的底面圆的半径是_____cm.
14.从5张上面分别写着“加”“油”“向”“未”“来”这5个字的卡片(大小、形状完全相同)中随机抽取一张,则这张卡片上面恰好写着“加”字的概率是__________.
15.方程的两个根为、,则的值等于______.
16.如图,在平面直角坐标系中,将矩形AOCD沿直线AE折叠(点E在边DC上),折叠后顶点D恰好落在边OC上的点F处.若点D的坐标为(10,8),则点E的坐标为 .
三、解答题(共8题,共72分)
17.(8分)计算:
(1)
(2)
18.(8分)如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.求证:△AEC≌△BED;若∠1=40°,求∠BDE的度数.
19.(8分)2017年10月31日,在广州举行的世界城市日全球主场活动开幕式上,住建部公布许昌成为“国家生态园林城市”在2018年植树节到来之际,许昌某中学购买了甲、乙两种树木用于绿化校园.若购买7棵甲种树和4棵乙种树需510元;购买3棵甲种树和5棵乙种树需350元.
(1)求甲种树和乙种树的单价;
(2)按学校规划,准备购买甲、乙两种树共200棵,且甲种树的数量不少于乙种树的数量的,请设计出最省钱的购买方案,并说明理由.
20.(8分)如图所示,在长和宽分别是a、b的矩形纸片的四个角都剪去一个边长为x的正方形.
(1)用a,b,x表示纸片剩余部分的面积;
(2)当a=6,b=4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长.
21.(8分)有四张正面分别标有数字﹣1,0,1,2的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.随机抽取一张卡片,求抽到数字“﹣1”的概率;随机抽取一张卡片,然后不放回,再随机抽取一张卡片,请用列表或画树状图的方法求出第一次抽到数字“2”且第二次抽到数字“0”的概率.
22.(10分)如图,在中,是的中点,过点的直线交于点,交 的平行线于点,交于点,连接、.
求证:;请你判断与的大小关系,并说明理由.
23.(12分)如图,AC是⊙O的直径,点P在线段AC的延长线上,且PC=CO,点B在⊙O上,且∠CAB=30°.
(1)求证:PB是⊙O的切线;
(2)若D为圆O上任一动点,⊙O的半径为5cm时,当弧CD长为 时,四边形ADPB为菱形,当弧CD长为 时,四边形ADCB为矩形.
24.从一幢建筑大楼的两个观察点A,B观察地面的花坛(点C),测得俯角分别为15°和60°,如图,直线AB与地面垂直,AB=50米,试求出点B到点C的距离.(结果保留根号)
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
如图,根据长方形的性质得出EF∥GH,推出∠FCD=∠2,代入∠FCD=∠1+∠A求出即可.
【详解】
∵EF∥GH,∴∠FCD=∠2,
∵∠FCD=∠1+∠A,∠1=40°,∠A=90°,
∴∠2=∠FCD=130°,
故选C.
【点睛】
本题考查了平行线的性质,三角形外角的性质等,准确识图是解题的关键.
2、B
【解析】
试题分析:根据无理数的定义可得是无理数.故答案选B.
考点:无理数的定义.
3、A
【解析】
有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可
【详解】
根据有理数比较大小的方法,可得
﹣4<﹣2<0<3
∴各数中,最小的数是﹣4
故选:A
【点睛】
本题考查了有理数大小比较的方法,解题的关键要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小
4、C
【解析】
根据二次根式的性质,可化简得=﹣3=﹣2,然后根据二次根式的估算,由3<2<4可知﹣2在﹣4和﹣3之间.
故选C.
点睛:此题主要考查了二次根式的化简和估算,关键是根据二次根式的性质化简计算,再二次根式的估算方法求解.
5、D
【解析】
试题分析:把一个数记成a×10n(1≤a<10,n整数位数少1)的形式,叫做科学记数法.
∴此题可记为1.2×105平方米.
考点:科学记数法
6、A
【解析】
分析:根据反比例函数的性质,可得答案.
详解:由题意,得
k=-3,图象位于第二象限,或第四象限,
在每一象限内,y随x的增大而增大,
∵3<6,
∴x1<x2<0,
故选A.
点睛:本题考查了反比例函数,利用反比例函数的性质是解题关键.
7、D
【解析】
将各选项的点逐一代入即可判断.
【详解】
解:当x=1时,y=-1,故点不在二次函数的图象;
当x=2时,y=-4,故点和点不在二次函数的图象;
当x=-2时,y=-4,故点在二次函数的图象;
故答案为:D.
【点睛】
本题考查了判断一个点是否在二次函数图象上,解题的关键是将点代入函数解析式.
8、B
【解析】
利用多边形的内角和公式求出n即可.
【详解】
由题意得:(n-2)×180°=360°,
解得n=4;
故答案为:B.
【点睛】
本题考查多边形的内角和,解题关键在于熟练掌握公式.
9、D
【解析】
根据相反数的定义求解即可.
【详解】
的相反数是-,
故选D.
【点睛】
本题考查了实数的性质,在一个数的前面加上负号就是这个数的相反数.
10、B
【解析】
连接OE,由菱形的性质得出∠D=∠B=60°,AD=AB=4,得出OA=OD=2,由等腰三角形的性质和三角形内角和定理求出∠DOE=60°,再由弧长公式即可得出答案.
【详解】
解:连接OE,如图所示:
∵四边形ABCD是菱形,
∴∠D=∠B=60°,AD=AB=4,
∴OA=OD=2,
∵OD=OE,
∴∠OED=∠D=60°,
∴∠DOE=180°﹣2×60°=60°,
∴ 的长==;
故选B.
【点睛】
本题考查弧长公式、菱形的性质、等腰三角形的性质等知识;熟练掌握菱形的性质,求出∠DOE的度数是解决问题的关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、1
【解析】
设这个正多边的外角为x°,则内角为5x°,根据内角和外角互补可得x+5x=180,解可得x的值,再利用外角和360°÷外角度数可得边数.
【详解】
设这个正多边的外角为x°,由题意得:
x+5x=180,
解得:x=30,
360°÷30°=1.
故答案为:1.
【点睛】
此题主要考查了多边形的内角和外角,关键是计算出外角的度数,进而得到边数.
12、
【解析】
首先利用勾股定理求得斜边长,然后利用三角形中位线定理求得答案即可.
【详解】
解:∵Rt△ABC中,∠C=90°,AC=3,BC=4,
∴AB===5,
∵点D、E、F分别是边AB、AC、BC的中点,
∴DE=BC,DF=AC,EF=AB,
∴C△DEF=DE+DF+EF=BC +AC +AB = (BC+AC+AB)=(4+3+5)=6.
故答案为:6.
【点睛】
本题考查了勾股定理和三角形中位线定理.
13、
【解析】
设圆锥的底面圆的半径为r,由于∠AOB=90°得到AB为圆形纸片的直径,则OB=cm,根据弧长公式计算出扇形OAB的弧AB的长,然后根据圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长进行计算.
【详解】
解:设圆锥的底面圆的半径为r,
连结AB,如图,
∵扇形OAB的圆心角为90°,
∴∠AOB=90°,
∴AB为圆形纸片的直径,
∴AB=4cm,
∴OB=cm,
∴扇形OAB的弧AB的长=π,
∴2πr=π,
∴r=(cm).
故答案为.
【点睛】
本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长.也考查了圆周角定理和弧长公式.
14、
【解析】
根据概率的公式进行计算即可.
【详解】
从5张上面分别写着“加”“油”“向”“未”“来”这5个字的卡片中随机抽取一张,则这张卡片上面恰好写着“加”字的概率是.
故答案为:.
【点睛】
考查概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比.
15、1.
【解析】
根据一元二次方程根与系数的关系求解即可.
【详解】
解:根据题意得,,
所以===1.
故答案为1.
【点睛】
本题考查了根与系数的关系:若、是一元二次方程(a≠0)的两根时,,.
16、(10,3)
【解析】
根据折叠的性质得到AF=AD,所以在直角△AOF中,利用勾股定理求得OF=6,然后设EC=x,则EF=DE=8-x,CF=10-6=4,根据勾股定理列方程求出EC可得点E的坐标.
【详解】
∵四边形AOCD为矩形,D的坐标为(10,8),
∴AD=BC=10,DC=AB=8,
∵矩形沿AE折叠,使D落在BC上的点F处,
∴AD=AF=10,DE=EF,
在Rt△AOF中,OF= =6,
∴FC=10−6=4,
设EC=x,则DE=EF=8−x,
在Rt△CEF中,EF2=EC2+FC2,
即(8−x)2=x2+42,
解得x=3,即EC的长为3.
∴点E的坐标为(10,3).
三、解答题(共8题,共72分)
17、(1);(2)1.
【解析】
(1)根据二次根式的混合运算法则即可;
(2)根据特殊角的三角函数值即可计算.
【详解】
解:(1)原式=
;
(2)原式
.
【点睛】
本题考查了二次根式运算以及特殊角的三角函数值的运算,解题的关键是熟练掌握运算法则.
18、(1)见解析;(1)70°.
【解析】
(1)根据全等三角形的判定即可判断△AEC≌△BED;
(1)由(1)可知:EC=ED,∠C=∠BDE,根据等腰三角形的性质即可知∠C的度数,从而可求出∠BDE的度数.
【详解】
证明:(1)∵AE和BD相交于点O,∴∠AOD=∠BOE.
在△AOD和△BOE中,
∠A=∠B,∴∠BEO=∠1.
又∵∠1=∠1,∴∠1=∠BEO,∴∠AEC=∠BED.
在△AEC和△BED中,
∴△AEC≌△BED(ASA).
(1)∵△AEC≌△BED,
∴EC=ED,∠C=∠BDE.
在△EDC中,∵EC=ED,∠1=40°,∴∠C=∠EDC=70°,
∴∠BDE=∠C=70°.
【点睛】
本题考查了全等三角形的判定与性质,解题的关键是熟练的掌握全等三角形的判定与性质.
19、(1)甲种树的单价为50元/棵,乙种树的单价为40元/棵.(2)当购买1棵甲种树、133棵乙种树时,购买费用最低,理由见解析.
【解析】
(1)设甲种树的单价为x元/棵,乙种树的单价为y元/棵,根据“购买7棵甲种树和4棵乙种树需510元;购买3棵甲种树和5棵乙种树需350元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;
(2)设购买甲种树a棵,则购买乙种树(200-a)棵,根据甲种树的数量不少于乙种树的数量的可得出关于a的一元一次不等式,解之即可得出a的取值范围,再由甲种树的单价比乙种树的单价贵,即可找出最省钱的购买方案.
【详解】
解:(1)设甲种树的单价为x元/棵,乙种树的单价为y元/棵,
根据题意得:
,
解得:
答:甲种树的单价为50元/棵,乙种树的单价为40元/棵.
(2)设购买甲种树a棵,则购买乙种树(200﹣a)棵,
根据题意得:
解得:
∵a为整数,
∴a≥1.
∵甲种树的单价比乙种树的单价贵,
∴当购买1棵甲种树、133棵乙种树时,购买费用最低.
【点睛】
一元一次不等式的应用,二元一次方程组的应用,读懂题目,是解题的关键.
20、(1)ab﹣4x1(1)
【解析】
(1)边长为x的正方形面积为x1,矩形面积减去4个小正方形的面积即可.
(1)依据剪去部分的面积等于剩余部分的面积,列方程求出x的值即可.
【详解】
解:(1)ab﹣4x1.
(1)依题意有:,将a=6,b=4,代入上式,得x1=2.
解得x1=,x1=(舍去).
∴正方形的边长为.
21、(1);(2).
【解析】
试题分析:(1)根据概率公式可得;
(2)先画树状图展示12种等可能的结果数,再找到符合条件的结果数,然后根据概率公式求解.
解:(1)∵随机抽取一张卡片有4种等可能结果,其中抽到数字“﹣1”的只有1种,
∴抽到数字“﹣1”的概率为;
(2)画树状图如下:
由树状图可知,共有12种等可能结果,其中第一次抽到数字“2”且第二次抽到数字“0”只有1种结果,
∴第一次抽到数字“2”且第二次抽到数字“0”的概率为.
22、(1)证明见解析;(2)证明见解析.
【解析】
(1)利用平行线的性质和中点的定义得到 ,进而得到三角形全等,从而求证结论;(2)利用中垂线的性质和三角形的三边关系进行判断即可.
【详解】
证明:(1)∵BG∥AC
∴
∵是的中点
∴
又∵
∴△BDG≌△CDF
∴
(2)由(1)中△BDG≌△CDF
∴GD=FD,BG=CF
又∵
∴ED垂直平分DF
∴EG=EF
∵在△BEG中,BE+BG>GE,
∴>
【点睛】
本题考查平行线性质的应用、全等三角形的判定和性质的应用及三角形三边关系,熟练掌握相关知识点是解题关键.
23、(1)证明见解析(2)cm,cm
【解析】
【分析】(1)连接OB,要证明PB是切线,只需证明OB⊥PB即可;
(2)利用菱形、矩形的性质,求出圆心角∠COD即可解决问题.
【详解】(1)如图连接OB、BC,
∵OA=OB,
∴∠OAB=∠OBA=30°,
∴∠COB=∠OAB=∠OBA=60°,
∵OB=OC,
∴△OBC是等边三角形,
∴BC=OC,∵PC=OA=OC,
∴BC=CO=CP,
∴∠PBO=90°,
∴OB⊥PB,
∴PB是⊙O的切线;
(2)①的长为cm时,四边形ADPB是菱形,
∵四边形ADPB是菱形,∠ADB=△ACB=60°,
∴∠COD=2∠CAD=60°,
∴的长=cm;
②当四边形ADCB是矩形时,易知∠COD=120°,
∴的长=cm,
故答案为:cm, cm.
【点睛】本题考查了圆的综合题,涉及到切线的判定、矩形的性质、菱形的性质、弧长公式等知识,准确添加辅助线、灵活应用相关知识解决问题是关键.
24、
【解析】
试题分析:根据题意构建图形,结合图形,根据直角三角形的性质可求解.
试题解析:作AD⊥BC于点D,∵∠MBC=60°,
∴∠ABC=30°,
∵AB⊥AN,∴∠BAN=90°,∴∠BAC=105°,
则∠ACB=45°,
在Rt△ADB中,AB=1000,则AD=500,BD=,
在Rt△ADC中,AD=500,CD=500, 则BC=.
答:观察点B到花坛C的距离为米.
考点:解直角三角形
海北市重点中学2022年初中数学毕业考试模拟冲刺卷含解析: 这是一份海北市重点中学2022年初中数学毕业考试模拟冲刺卷含解析,共21页。试卷主要包含了定义,在直角坐标系中,已知点P,不等式组 的整数解有等内容,欢迎下载使用。
鞍山市重点中学2022年初中数学毕业考试模拟冲刺卷含解析: 这是一份鞍山市重点中学2022年初中数学毕业考试模拟冲刺卷含解析,共16页。试卷主要包含了-sin60°的倒数为,如图图形中是中心对称图形的是,若点P等内容,欢迎下载使用。
2022届濮阳市重点中学初中数学毕业考试模拟冲刺卷含解析: 这是一份2022届濮阳市重点中学初中数学毕业考试模拟冲刺卷含解析,共23页。