|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022年湖北省黄石十四中学中考数学猜题卷含解析
    立即下载
    加入资料篮
    2022年湖北省黄石十四中学中考数学猜题卷含解析01
    2022年湖北省黄石十四中学中考数学猜题卷含解析02
    2022年湖北省黄石十四中学中考数学猜题卷含解析03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年湖北省黄石十四中学中考数学猜题卷含解析

    展开
    这是一份2022年湖北省黄石十四中学中考数学猜题卷含解析,共22页。试卷主要包含了一组数据等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(共10小题,每小题3分,共30分)
    1.如图,AB是定长线段,圆心O是AB的中点,AE、BF为切线,E、F为切点,满足AE=BF,在上取动点G,国点G作切线交AE、BF的延长线于点D、C,当点G运动时,设AD=y,BC=x,则y与x所满足的函数关系式为(  )

    A.正比例函数y=kx(k为常数,k≠0,x>0)
    B.一次函数y=kx+b(k,b为常数,kb≠0,x>0)
    C.反比例函数y=(k为常数,k≠0,x>0)
    D.二次函数y=ax2+bx+c(a,b,c为常数,a≠0,x>0)
    2.在Rt△ABC中,∠ACB=90°,AC=12,BC=9,D是AB的中点,G是△ABC的重心,如果以点D为圆心DG为半径的圆和以点C为圆心半径为r的圆相交,那么r的取值范围是(  )
    A.r<5 B.r>5 C.r<10 D.5<r<10
    3.一次函数与的图象如图所示,给出下列结论:①;②;③当时,.其中正确的有( )

    A.0个 B.1个 C.2个 D.3个
    4.完全相同的6个小矩形如图所示放置,形成了一个长、宽分别为n、m的大矩形,则图中阴影部分的周长是(  )

    A.6(m﹣n) B.3(m+n) C.4n D.4m
    5.已知常数k<0,b>0,则函数y=kx+b,的图象大致是下图中的(  )
    A. B.
    C. D.
    6.在-,,0,-2这四个数中,最小的数是( )
    A. B. C.0 D.-2
    7.一组数据:3,2,5,3,7,5,x,它们的众数为5,则这组数据的中位数是(  )
    A.2 B.3 C.5 D.7
    8.如图,五边形ABCDE中,AB∥CD,∠1、∠2、∠3分别是∠BAE、∠AED、∠EDC的外角,则∠1+∠2+∠3等于

    A.90° B.180° C.210° D.270°
    9.某射手在同一条件下进行射击,结果如下表所示:
    射击次数(n)
    10
    20
    50
    100
    200
    500
    ……
    击中靶心次数(m)
    8
    19
    44
    92
    178
    451
    ……
    击中靶心频率()
    0.80
    0.95
    0.88
    0.92
    0.89
    0.90
    ……
    由此表推断这个射手射击1次,击中靶心的概率是( )
    A.0.6 B.0.7 C.0.8 D.0.9
    10.不等式4-2x>0的解集在数轴上表示为( )
    A. B. C. D.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,正比例函数y=kx与反比例函数y=的图象有一个交点A(2,m),AB⊥x轴于点B,平移直线y=kx使其经过点B,得到直线l,则直线l对应的函数表达式是_________ .

    12.一个布袋里装有10个只有颜色不同的球,这10个球中有m个红球,从布袋中摸出一个球,记下颜色后放回,搅匀,再摸出一个球,通过大量重复试验后发现,摸到红球的频率稳定在0.3左右,则m的值约为__________.
    13.在△ABC中,AB=AC,BD⊥AC于D,BE平分∠ABD交AC于E,sinA=,BC=,则 AE=_______.

    14.计算的结果等于_____________.
    15.如图,在矩形ABCD中,AD=5,AB=8,点E为射线DC上一个动点,把△ADE沿直线AE折叠,当点D的对应点F刚好落在线段AB的垂直平分线上时,则DE的长为_____.

    16.如图,△ABC中,AB=17,BC=10,CA=21,AM平分∠BAC,点D、E分别为AM、AB上的动点,则BD+DE的最小值是_____.

    三、解答题(共8题,共72分)
    17.(8分)如图①,二次函数的抛物线的顶点坐标C,与x轴的交于A(1,0)、B(﹣3,0)两点,与y轴交于点D(0,3).

    (1)求这个抛物线的解析式;
    (2)如图②,过点A的直线与抛物线交于点E,交y轴于点F,其中点E的横坐标为﹣2,若直线PQ为抛物线的对称轴,点G为直线PQ上的一动点,则x轴上是否存在一点H,使D、G、H、F四点所围成的四边形周长最小?若存在,求出这个最小值及点G、H的坐标;若不存在,请说明理由;
    (3)如图③,连接AC交y轴于M,在x轴上是否存在点P,使以P、C、M为顶点的三角形与△AOM相似?若存在,求出点P的坐标;若不存在,请说明理由.
    18.(8分)某校为了解学生体质情况,从各年级随机抽取部分学生进行体能测试,每个学生的测试成绩按标准对应为优秀、良好、及格、不及格四个等级,统计员在将测试数据绘制成图表时发现,优秀漏统计4人,良好漏统计6人,于是及时更正,从而形成如图图表,请按正确数据解答下列各题:
    学生体能测试成绩各等次人数统计表
    体能等级
    调整前人数
    调整后人数
    优秀
    8
       
    良好
    16
       
    及格
    12
       
    不及格
    4
       
    合计
    40
       
    (1)填写统计表;
    (2)根据调整后数据,补全条形统计图;
    (3)若该校共有学生1500人,请你估算出该校体能测试等级为“优秀”的人数.

    19.(8分)甲、乙两组工人同时开始加工某种零件,乙组在工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(时)之间的函数图象如下图所示.求甲组加工零件的数量y与时间x之间的函数关系式.求乙组加工零件总量a的值.

    20.(8分)2018年4月12日上午,新中国历史上最大规模的海上阅兵在南海海域隆重举行,中国人解放军海军多艘战舰、多架战机和1万余名官兵参加了海上阅兵式,已知战舰和战机总数是124,战数的3倍比战机数的2倍少8.问有多少艘战舰和多少架战机参加了此次阅兵.
    21.(8分)小王上周五在股市以收盘价(收市时的价格)每股25元买进某公司股票1000股,在接下来的一周交易日内,小王记下该股票每日收盘价格相比前一天的涨跌情况:(单位:元)
    星期





    每股涨跌(元)
    +2
    ﹣1.4
    +0.9
    ﹣1.8
    +0.5
    根据上表回答问题:
    (1)星期二收盘时,该股票每股多少元?
    (2)周内该股票收盘时的最高价,最低价分别是多少?
    (3)已知买入股票与卖出股票均需支付成交金额的千分之五的交易费.若小王在本周五以收盘价将全部股票卖出,他的收益情况如何?
    22.(10分)勾股定理神秘而美妙,它的证法多样,其中的“面积法”给了李明灵感,他惊喜地发现;当两个全等的直角三角形如图(1)摆放时可以利用面积法”来证明勾股定理,过程如下

    如图(1)∠DAB=90°,求证:a2+b2=c2
    证明:连接DB,过点D作DF⊥BC交BC的延长线于点F,则DF=b-a
    S四边形ADCB=
    S四边形ADCB=
    ∴化简得:a2+b2=c2
    请参照上述证法,利用“面积法”完成如图(2)的勾股定理的证明,如图(2)中∠DAB=90°,求证:a2+b2=c2
    23.(12分)如图,△ABC中,D是BC上的一点,若AB=10,BD=6,AD=8,AC=17,求△ABC的面积.

    24.已知抛物线y=ax2+(3b+1)x+b﹣3(a>0),若存在实数m,使得点P(m,m)在该抛物线上,我们称点P(m,m)是这个抛物线上的一个“和谐点”.
    (1)当a=2,b=1时,求该抛物线的“和谐点”;
    (2)若对于任意实数b,抛物线上恒有两个不同的“和谐点”A、B.
    ①求实数a的取值范围;
    ②若点A,B关于直线y=﹣x﹣(+1)对称,求实数b的最小值.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、C
    【解析】
    延长AD,BC交于点Q,连接OE,OF,OD,OC,OQ,由AE与BF为圆的切线,利用切线的性质得到AE与EO垂直,BF与OF垂直,由AE=BF,OE=OF,利用HL得到直角三角形AOE与直角BOF全等,利用全等三角形的对应角相等得到∠A=∠B,利用等角对等边可得出三角形QAB为等腰三角形,由O为底边AB的中点,利用三线合一得到QO垂直于AB,得到一对直角相等,再由∠FQO与∠OQB为公共角,利用两对对应角相等的两三角形相似得到三角形FQO与三角形OQB相似,同理得到三角形EQO与三角形OAQ相似,由相似三角形的对应角相等得到∠QOE=∠QOF=∠A=∠B,再由切线长定理得到OD与OC分别为∠EOG与∠FOG的平分线,得到∠DOC为∠EOF的一半,即∠DOC=∠A=∠B,又∠GCO=∠FCO,得到三角形DOC与三角形OBC相似,同理三角形DOC与三角形DAO相似,进而确定出三角形OBC与三角形DAO相似,由相似得比例,将AD=x,BC=y代入,并将AO与OB换为AB的一半,可得出x与y的乘积为定值,即y与x成反比例函数,即可得到正确的选项.
    【详解】
    延长AD,BC交于点Q,连接OE,OF,OD,OC,OQ,

    ∵AE,BF为圆O的切线,
    ∴OE⊥AE,OF⊥FB,
    ∴∠AEO=∠BFO=90°,
    在Rt△AEO和Rt△BFO中,
    ∵,
    ∴Rt△AEO≌Rt△BFO(HL),
    ∴∠A=∠B,
    ∴△QAB为等腰三角形,
    又∵O为AB的中点,即AO=BO,
    ∴QO⊥AB,
    ∴∠QOB=∠QFO=90°,
    又∵∠OQF=∠BQO,
    ∴△QOF∽△QBO,
    ∴∠B=∠QOF,
    同理可以得到∠A=∠QOE,
    ∴∠QOF=∠QOE,
    根据切线长定理得:OD平分∠EOG,OC平分∠GOF,
    ∴∠DOC=∠EOF=∠A=∠B,
    又∵∠GCO=∠FCO,
    ∴△DOC∽△OBC,
    同理可以得到△DOC∽△DAO,
    ∴△DAO∽△OBC,
    ∴,
    ∴AD•BC=AO•OB=AB2,即xy=AB2为定值,
    设k=AB2,得到y=,
    则y与x满足的函数关系式为反比例函数y=(k为常数,k≠0,x>0).
    故选C.
    【点睛】
    本题属于圆的综合题,涉及的知识有:相似三角形的判定与性质,切线长定理,直角三角形全等的判定与性质,反比例函数的性质,以及等腰三角形的性质,做此题是注意灵活运用所学知识.
    2、D
    【解析】
    延长CD交⊙D于点E,
    ∵∠ACB=90°,AC=12,BC=9,∴AB==15,
    ∵D是AB中点,∴CD=,
    ∵G是△ABC的重心,∴CG==5,DG=2.5,
    ∴CE=CD+DE=CD+DF=10,
    ∵⊙C与⊙D相交,⊙C的半径为r,
    ∴ ,
    故选D.

    【点睛】本题考查了三角形的重心的性质、直角三角形斜边中线等于斜边一半、两圆相交等,根据知求出CG的长是解题的关键.
    3、B
    【解析】
    仔细观察图象,①k的正负看函数图象从左向右成何趋势即可;②a,b看y2=x+a,y1=kx+b与y轴的交点坐标;③看两函数图象的交点横坐标;④以两条直线的交点为分界,哪个函数图象在上面,则哪个函数值大.
    【详解】
    ①∵y1=kx+b的图象从左向右呈下降趋势,
    ∴k<0正确;
    ②∵y2=x+a,与y轴的交点在负半轴上,
    ∴a<0,故②错误;
    ③当x<3时,y1>y2错误;
    故正确的判断是①.
    故选B.
    【点睛】
    本题考查一次函数性质的应用.正确理解一次函数的解析式:y=kx+b (k≠0)y随x的变化趋势:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.
    4、D
    【解析】
    解:设小长方形的宽为a,长为b,则有b=n-3a,
    阴影部分的周长:
    2(m-b)+2(m-3a)+2n=2m-2b+2m-6a+2n=4m-2(n-3a)-6a+2n=4m-2n+6a-6a+2n=4m.
    故选D.
    5、D
    【解析】
    当k<0,b>0时,直线经过一、二、四象限,双曲线在二、四象限,由此确定正确的选项.
    【详解】
    解:∵当k<0,b>0时,直线与y轴交于正半轴,且y随x的增大而减小,
    ∴直线经过一、二、四象限,双曲线在二、四象限.
    故选D.
    【点睛】
    本题考查了一次函数、反比例函数的图象与性质.关键是明确系数与图象的位置的联系.
    6、D
    【解析】
    根据正数大于0,负数小于0,正数大于一切负数,两个负数,绝对值大的反而小比较即可.
    【详解】
    在﹣,,0,﹣1这四个数中,﹣1<﹣<0<,
    故最小的数为:﹣1.
    故选D.
    【点睛】
    本题考查了实数的大小比较,解答本题的关键是熟练掌握实数的大小比较方法,特别是两个负数的大小比较.
    7、C
    【解析】
    分析:众数是指一组数据中出现次数最多的那个数据,一组数据可以有多个众数,也可以没有众数;中位数是指将数据按大小顺序排列起来形成一个数列,居于数列中间位置的那个数据.根据定义即可求出答案.
    详解:∵众数为5, ∴x=5, ∴这组数据为:2,3,3,5,5,5,7, ∴中位数为5, 故选C.
    点睛:本题主要考查的是众数和中位数的定义,属于基础题型.理解他们的定义是解题的关键.
    8、B
    【解析】
    试题分析:如图,如图,过点E作EF∥AB,

    ∵AB∥CD,∴EF∥AB∥CD,
    ∴∠1=∠4,∠3=∠5,
    ∴∠1+∠2+∠3=∠2+∠4+∠5=180°,
    故选B
    9、D
    【解析】
    观察表格的数据可以得到击中靶心的频率,然后用频率估计概率即可求解.
    【详解】
    依题意得击中靶心频率为0.90,
    估计这名射手射击一次,击中靶心的概率约为0.90.
    故选:D.
    【点睛】
    此题主要考查了利用频率估计概率,首先通过实验得到事件的频率,然后用频率估计概率即可解决问题.
    10、D
    【解析】
    根据解一元一次不等式基本步骤:移项、系数化为1可得.
    【详解】
    移项,得:-2x>-4,
    系数化为1,得:x<2,
    故选D.
    【点睛】
    考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、y=x-3
    【解析】
    【分析】由已知先求出点A、点B的坐标,继而求出y=kx的解析式,再根据直线y=kx平移后经过点B,可设平移后的解析式为y=kx+b,将B点坐标代入求解即可得.
    【详解】当x=2时,y==3,∴A(2,3),B(2,0),
    ∵y=kx过点 A(2,3),
    ∴3=2k,∴k=,
    ∴y=x,
    ∵直线y=x平移后经过点B,
    ∴设平移后的解析式为y=x+b,
    则有0=3+b,
    解得:b=-3,
    ∴平移后的解析式为:y=x-3,
    故答案为:y=x-3.
    【点睛】本题考查了一次函数与反比例函数的综合应用,涉及到待定系数法,一次函数图象的平移等,求出k的值是解题的关键.
    12、3
    【解析】
    在同样条件下,大量重复实验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出等式解答.
    【详解】
    解:根据题意得,=0.3,解得m=3.
    故答案为:3.
    【点睛】
    本题考查随机事件概率的意义,关键是要知道在同样条件下,大量重复实验时,随机事件发生的频率逐渐稳定在概率附近.
    13、5
    【解析】
    ∵BD⊥AC于D,
    ∴∠ADB=90°,
    ∴sinA=.
    设BD=,则AB=AC=,
    在Rt△ABD中,由勾股定理可得:AD=,
    ∴CD=AC-AD=,
    ∵在Rt△BDC中,BD2+CD2=BC2,
    ∴,解得(不合题意,舍去),
    ∴AB=10,AD=8,BD=6,
    ∵BE平分∠ABD,
    ∴,
    ∴AE=5.
    点睛:本题有两个解题关键点:(1)利用sinA=,设BD=,结合其它条件表达出CD,把条件集中到△BDC中,结合BC=由勾股定理解出,从而可求出相关线段的长;(2)要熟悉“三角形角平分线分线段成比例定理:三角形的内角平分线分对边所得线段与这个角的两边对应成比例”.
    14、a3
    【解析】
    试题解析:x5÷x2=x3.
    考点:同底数幂的除法.
    15、或10
    【解析】
    试题分析:根据题意,可分为E点在DC上和E在DC的延长线上,两种情况求解即可:
    如图①,当点E在DC上时,点D的对应点F刚好落在线段AB的垂直平分线QP上,易求FP=3,所以FQ=2,设FE=x,则FE=x,QE=4-x,在Rt△EQF中,(4-x)2+22=x2,所以x=.(2)如图②,当,所以FQ=点E在DG的延长线上时,点D的对应点F刚好落在线段AB的垂直平分线QP上,易求FP=3,所以FQ=8,设DE=x,则FE=x,QE=x-4,在Rt△EQF中,(x-4)2+82=x2,所以x=10,综上所述,DE=或10.

    16、8
    【解析】
    试题分析:过B 点作于点,与交于点,根据三角形两边之和小于第三边,可知的最小值是线的长,根据勾股定理列出方程组即可求解.
    过B 点作于点,与交于点,
    设AF=x,,

    ,(负值舍去).
    故BD+DE的值是8
    故答案为8

    考点:轴对称-最短路线问题.

    三、解答题(共8题,共72分)
    17、【小题1】 设所求抛物线的解析式为:,将A(1,0)、B(-3,0)、 D(0,3)代入,得…………………………………………2分
    即所求抛物线的解析式为:……………………………3分
    【小题2】 如图④,在y轴的负半轴上取一点I,使得点F与点I关于x轴对称,
    在x轴上取一点H,连接HF、HI、HG、GD、GE,则HF=HI…………………①
    设过A、E两点的一次函数解析式为:y=kx+b(k≠0),
    ∵点E在抛物线上且点E的横坐标为-2,将x=-2,代入抛物线,得
    ∴点E坐标为(-2,3)………………………………………………………………4分
    又∵抛物线图象分别与x轴、y轴交于点A(1,0)、B(-3,0)、
    D(0,3),所以顶点C(-1,4)
    ∴抛物线的对称轴直线PQ为:直线x=-1, [中国教#&~@育出%版网]
    ∴点D与点E关于PQ对称,GD=GE……………………………………………②
    分别将点A(1,0)、点E(-2,3)
    代入y=kx+b,得:
    解得:
    过A、E两点的一次函数解析式为:
    y=-x+1
    ∴当x=0时,y=1
    ∴点F坐标为(0,1)……………………5分
    ∴=2………………………………………③
    又∵点F与点I关于x轴对称,
    ∴点I坐标为(0,-1)
    ∴……………………………………④
    又∵要使四边形DFHG的周长最小,由于DF是一个定值,
    ∴只要使DG+GH+HI最小即可 ……………………………………6分
    由图形的对称性和①、②、③,可知,
    DG+GH+HF=EG+GH+HI
    只有当EI为一条直线时,EG+GH+HI最小
    设过E(-2,3)、I(0,-1)两点的函数解析式为:,
    分别将点E(-2,3)、点I(0,-1)代入,得:
    解得:
    过I、E两点的一次函数解析式为:y=-2x-1
    ∴当x=-1时,y=1;当y=0时,x=-;
    ∴点G坐标为(-1,1),点H坐标为(-,0)
    ∴四边形DFHG的周长最小为:DF+DG+GH+HF=DF+EI
    由③和④,可知:

    DF+EI=
    ∴四边形DFHG的周长最小为. …………………………………………7分
    【小题3】 如图⑤,

    由(2)可知,点A(1,0),点C(-1,4),设过A(1,0),点C(-1,4)两点的函数解析式为:,得:
    解得:,
    过A、C两点的一次函数解析式为:y=-2x+2,当x=0时,y=2,即M的坐标为(0,2);
    由图可知,△AOM为直角三角形,且, ………………8分
    要使,△AOM与△PCM相似,只要使△PCM为直角三角形,且两直角边之比为1:2即可,设P(,0),CM=,且∠CPM不可能为90°时,因此可分两种情况讨论; ……………………………………………………………………………9分
    ①当∠CMP=90°时,CM=,若则,可求的P(-4,0),则CP=5,,即P(-4,0)成立,若由图可判断不成立;……………………………………………………………………………………10分
    ②当∠PCM=90°时,CM=,若则,可求出
    P(-3,0),则PM=,显然不成立,若则,更不可能成立.……11分
    综上所述,存在以P、C、M为顶点的三角形与△AOM相似,点P的坐标为(-4,0)12分
    【解析】
    (1)直接利用三点式求出二次函数的解析式;
    (2)若四边形DFHG的周长最小,应将边长进行转换,利用对称性,要使四边形DFHG的周长最小,由于DF是一个定值,只要使DG+GH+HI最小即可,
    由图形的对称性和,可知,HF=HI,GD=GE,
    DG+GH+HF=EG+GH+HI
    只有当EI为一条直线时,EG+GH+HI最小,即
    ,DF+EI=
    即边形DFHG的周长最小为.
    (3)要使△AOM与△PCM相似,只要使△PCM为直角三角形,且两直角边之比为1:2即可,设P(,0),CM=,且∠CPM不可能为90°时,因此可分两种情况讨论,①当∠CMP=90°时,CM=,若则,可求的P(-4,0),则CP=5,,即P(-4,0)成立,若由图可判断不成立;②当∠PCM=90°时,CM=,若则,可求出P(-3,0),则PM=,显然不成立,若则,更不可能成立. 即求出以P、C、M为顶点的三角形与△AOM相似的P的坐标(-4,0)
    18、(1)12;22;12;4;50;(2)详见解析;(3)1.
    【解析】
    (1)求出各自的人数,补全表格即可;
    (2)根据调整后的数据,补全条形统计图即可;
    (3)根据“游戏”人数占的百分比,乘以1500即可得到结果.
    【详解】
    解:(1)填表如下:
    体能等级
    调整前人数
    调整后人数
    优秀
    8
    12
    良好
    16
    22
    及格
    12
    12
    不及格
    4
    4
    合计
    40
    50
    故答案为12;22;12;4;50;
    (2)补全条形统计图,如图所示:

    (3)抽取的学生中体能测试的优秀率为24%,
    则该校体能测试为“优秀”的人数为1500×24%=1(人).
    【点睛】
    本题考查了统计表与条形统计图的知识点,解题的关键是熟练的掌握统计表与条形统计图的相关知识点.
    19、(1)y=60x;(2)300
    【解析】
    (1)由题图可知,甲组的y是x的正比例函数.
    设甲组加工的零件数量y与时间x的函数关系式为y=kx.
    根据题意,得6k=360,
    解得k=60.
    所以,甲组加工的零件数量y与时间x之间的关系式为y=60x.
    (2)当x=2时,y=100.因为更换设备后,乙组工作效率是原来的2倍.
    所以,解得a=300.
    20、有48艘战舰和76架战机参加了此次阅兵.
    【解析】
    设有x艘战舰,y架战机参加了此次阅兵,根据题意列出方程组解答即可.
    【详解】
    设有x艘战舰,y架战机参加了此次阅兵,
    根据题意,得,
    解这个方程组,得 ,
    答:有48艘战舰和76架战机参加了此次阅兵.
    【点睛】
    此题考查二元一次方程组的应用,关键是根据题意列出等量关系进行解答.
    21、(1)25.6元;(2)收盘最高价为27元/股,收盘最低价为24.7元/股;(3)-51元,亏损51元.
    【解析】
    试题分析: (1)根据有理数的加减法的运算方法,求出星期二收盘时,该股票每股多少元即可.
    (2)这一周内该股票星期一的收盘价最高,星期四的收盘价最低.
    (3)用本周五以收盘价将全部股票卖出后得到的钱数减去买入股票与卖出股票均需支付的交易费,判断出他的收益情况如何即可.
    试题解析:
    (1)星期二收盘价为25+2−1.4=25.6(元/股)
    答:该股票每股25.6元.
    (2)收盘最高价为25+2=27(元/股)
    收盘最低价为25+2−1.45+0.9−1.8=24.7(元/股)
    答:收盘最高价为27元/股,收盘最低价为24.7元/股.
    (3)(25.2-25) ×1000-5‰×1000×(25.2+25)=200-251=-51(元)
    答:小王的本次收益为-51元.
    22、见解析.
    【解析】
    首先连结BD,过点B作DE边上的高BF,则BF=b-a,表示出S五边形ACBED,两者相等,整理即可得证.
    【详解】
    证明:连结BD,过点B作DE边上的高BF,则BF=b-a,

    ∵S五边形ACBED=S△ACB+S△ABE+S△ADE=ab+b1+ab,
    又∵S五边形ACBED=S△ACB+S△ABD+S△BDE=ab+c1+a(b-a),
    ∴ab+b1+ab=ab+c1+a(b-a),
    ∴a1+b1=c1.
    【点睛】
    此题考查了勾股定理的证明,用两种方法表示出五边形ACBED的面积是解本题的关键.
    23、3
    【解析】
    试题分析:根据AB=30,BD=6,AD=8,利用勾股定理的逆定理求证△ABD是直角三角形,再利用勾股定理求出CD的长,然后利用三角形面积公式即可得出答案.
    试题解析:∵BD3+AD3=63+83=303=AB3,
    ∴△ABD是直角三角形,
    ∴AD⊥BC,
    在Rt△ACD中,CD=,
    ∴S△ABC=BC•AD=(BD+CD)•AD=×33×8=3,
    因此△ABC的面积为3.
    答:△ABC的面积是3.
    考点:3.勾股定理的逆定理;3.勾股定理.
    24、(1)()或(﹣1,﹣1);(1)①2<a<17②b的最小值是
    【解析】
    (1)把x=y=m,a=1,b=1代入函数解析式,列出方程,通过解方程求得m的值即可;
    (1)抛物线上恒有两个不同的“和谐点”A、B.则关于m的方程m=am1+(3b+1)m+b-3的根的判别式△=9b1-4ab+11a.
    ①令y=9b1-4ab+11a,对于任意实数b,均有y>2,所以根据二次函数y=9b1-4ab+11的图象性质解答;
    ②利用二次函数图象的对称性质解答即可.
    【详解】
    (1)当a=1,b=1时,m=1m1+4m+1﹣4,
    解得m=或m=﹣1.
    所以点P的坐标是(,)或(﹣1,﹣1);
    (1)m=am1+(3b+1)m+b﹣3,
    △=9b1﹣4ab+11a.
    ①令y=9b1﹣4ab+11a,对于任意实数b,均有y>2,也就是说抛物线y=9b1﹣4ab+11的图象都在b轴(横轴)上方.
    ∴△=(﹣4a)1﹣4×9×11a<2.
    ∴2<a<17.
    ②由“和谐点”定义可设A(x1,y1),B(x1,y1),
    则x1,x1是ax1+(3b+1)x+b﹣3=2的两不等实根,.
    ∴线段AB的中点坐标是:(﹣,﹣).代入对称轴y=x﹣(+1),得
    ﹣=﹣(+1),
    ∴3b+1=+a.
    ∵a>2,>2,a•=1为定值,
    ∴3b+1=+a≥1=1,
    ∴b≥.
    ∴b的最小值是.
    【点睛】
    此题考查了二次函数综合题,其中涉及到了二次函数图象上点的坐标特征,抛物线与x轴的交点,一元二次方程与二次函数解析式间的关系,二次函数图象的性质等知识点,难度较大,解题时,掌握“和谐点”的定义是解题的难点.

    相关试卷

    湖北省黄石市黄石港区第十四中学2021-2022学年毕业升学考试模拟卷数学卷含解析: 这是一份湖北省黄石市黄石港区第十四中学2021-2022学年毕业升学考试模拟卷数学卷含解析,共18页。试卷主要包含了下列各数中是无理数的是等内容,欢迎下载使用。

    湖北省黄石市第十四中学2021-2022学年中考押题数学预测卷含解析: 这是一份湖北省黄石市第十四中学2021-2022学年中考押题数学预测卷含解析,共15页。试卷主要包含了已知点 A,下列事件中为必然事件的是,下列计算正确的是等内容,欢迎下载使用。

    湖北省黄石市2021-2022学年中考数学猜题卷含解析: 这是一份湖北省黄石市2021-2022学年中考数学猜题卷含解析,共21页。试卷主要包含了﹣22×3的结果是,在中,,,下列结论中,正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map