


2021-2022学年湖北省枣阳市蔡阳中学中考数学猜题卷含解析
展开
这是一份2021-2022学年湖北省枣阳市蔡阳中学中考数学猜题卷含解析,共19页。
2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.下列生态环保标志中,是中心对称图形的是( )
A. B. C. D.
2.下列计算正确的是
A. B. C. D.
3.的值是( )
A.1 B.﹣1 C.3 D.﹣3
4.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是( )
A.x(x+1)=210 B.x(x﹣1)=210
C.2x(x﹣1)=210 D.x(x﹣1)=210
5.如图,已知正方形ABCD的边长为12,BE=EC,将正方形边CD沿DE折叠到DF,延长EF交
AB于G,连接DG,现在有如下4个结论:①≌;②;③∠GDE=45°;④
DG=DE在以上4个结论中,正确的共有( )个
A.1个 B.2 个 C.3 个 D.4个
6.在六张卡片上分别写有,π,1.5,5,0,六个数,从中任意抽取一张,卡片上的数为无理数的概率是( )
A. B. C. D.
7.如图,若△ABC内接于半径为R的⊙O,且∠A=60°,连接OB、OC,则边BC的长为( )
A. B. C. D.
8.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E给好落在AB的延长线上,连接AD,下列结论不一定正确的是( )
A.AD∥BC B.∠DAC=∠E C.BC⊥DE D.AD+BC=AE
9.正方形ABCD和正方形BPQR的面积分别为16、25,它们重叠的情形如图所示,其中R点在AD上,CD与QR相交于S点,则四边形RBCS的面积为( )
A.8 B. C. D.
10.在2014年5月崇左市教育局举行的“经典诗朗诵”演讲比赛中,有11名学生参加决赛,他们决赛的成绩各不相同,其中的一名学生想知道自己能否进入前6名,不仅要了解自己的成绩,还要了解这11名学生成绩的( )
A.众数 B.中位数 C.平均数 D.方差
二、填空题(共7小题,每小题3分,满分21分)
11.如图,在⊙O中,直径AB⊥弦CD,∠A=28°,则∠D=_______.
12.分解因式:=_______.
13.如果把抛物线y=2x2﹣1向左平移1个单位,同时向上平移4个单位,那么得到的新的抛物线是_____.
14.a、b、c是实数,点A(a+1、b)、B(a+2,c)在二次函数y=x2﹣2ax+3的图象上,则b、c的大小关系是b____c(用“>”或“<”号填空)
15.如图,△ABC内接于⊙O,DA、DC分别切⊙O于A、C两点,∠ABC=114°,则∠ADC的度数为_______°.
16.不等式组的最大整数解是__________.
17.如图,已知△ABC和△ADE均为等边三角形,点OAC的中点,点D在A射线BO上,连接OE,EC,若AB=4,则OE的最小值为_____.
三、解答题(共7小题,满分69分)
18.(10分)如图,△ABC中,∠C=90°,AC=BC,∠ABC的平分线BD交AC于点D,DE⊥AB于点E.
(1)依题意补全图形;
(2)猜想AE与CD的数量关系,并证明.
19.(5分)如图,已知⊙O经过△ABC的顶点A、B,交边BC于点D,点A恰为的中点,且BD=8,AC=9,sinC=,求⊙O的半径.
20.(8分)试探究:
小张在数学实践活动中,画了一个△ABC,∠ACB=90°,BC=1,AC=2,再以点B为圆心,BC为半径画弧交AB于点D,然后以A为圆心,AD长为半径画弧交AC于点E,如图1,则AE= ;此时小张发现AE2=AC•EC,请同学们验证小张的发现是否正确.
拓展延伸:
小张利用图1中的线段AC及点E,构造AE=EF=FC,连接AF,得到图2,试完成以下问题:
(1)求证:△ACF∽△FCE;
(2)求∠A的度数;
(3)求cos∠A的值;
应用迁移:利用上面的结论,求半径为2的圆内接正十边形的边长.
21.(10分)如图,在△ABC中,点D在边BC上,联结AD,∠ADB=∠CDE,DE交边AC于点E,DE交BA延长线于点F,且AD2=DE•DF.
(1)求证:△BFD∽△CAD;
(2)求证:BF•DE=AB•AD.
22.(10分)我市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了如图两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题:
(1)接受问卷调查的学生共有______人,扇形统计图中“了解”部分所对应扇形的圆心角为______°.
(2)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为_______人.
(3)若从对校园安全知识达到“了解”程度的3个女生A、B、C和2个男生M、N中分别随机抽取1人参加校园安全知识竞赛,请用树状图或列表法求出恰好抽到女生A的概率.
23.(12分)已知:关于x的方程x2﹣(2m+1)x+2m=0
(1)求证:方程一定有两个实数根;
(2)若方程的两根为x1,x2,且|x1|=|x2|,求m的值.
24.(14分)如图,已知∠AOB与点M、N求作一点P,使点P到边OA、OB的距离相等,且PM=PN(保留作图痕迹,不写作法)
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、B
【解析】试题分析:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;
C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.
故选B.
【考点】中心对称图形.
2、B
【解析】
试题分析:根据合并同类项的法则,可知,故A不正确;
根据同底数幂的除法,知,故B正确;
根据幂的乘方,知,故C不正确;
根据完全平方公式,知,故D不正确.
故选B.
点睛:此题主要考查了整式的混合运算,解题关键是灵活应用合并同类项法则,同底数幂的乘除法法则,幂的乘方,乘法公式进行计算.
3、B
【解析】
直接利用立方根的定义化简得出答案.
【详解】
因为(-1)3=-1,
=﹣1.
故选:B.
【点睛】
此题主要考查了立方根,正确把握立方根的定义是解题关键.,
4、B
【解析】
设全组共有x名同学,那么每名同学送出的图书是(x−1)本;
则总共送出的图书为x(x−1);
又知实际互赠了210本图书,
则x(x−1)=210.
故选:B.
5、C
【解析】
【分析】根据正方形的性质和折叠的性质可得AD=DF,∠A=∠GFD=90°,于是根据“HL”判定△ADG≌△FDG,再由GF+GB=GA+GB=12,EB=EF,△BGE为直角三角形,可通过勾股定理列方程求出AG=4,BG=8,根据全等三角形性质可求得∠GDE==45〫,再抓住△BEF是等腰三角形,而△GED显然不是等腰三角形,判断④是错误的.
【详解】由折叠可知,DF=DC=DA,∠DFE=∠C=90°,
∴∠DFG=∠A=90°,
∴△ADG≌△FDG,①正确;
∵正方形边长是12,
∴BE=EC=EF=6,
设AG=FG=x,则EG=x+6,BG=12﹣x,
由勾股定理得:EG2=BE2+BG2,
即:(x+6)2=62+(12﹣x)2,
解得:x=4
∴AG=GF=4,BG=8,BG=2AG,②正确;
∵△ADG≌△FDG,△DCE≌△DFE,
∴∠ADG=∠FDG,∠FDE=∠CDE
∴∠GDE==45〫.③正确;
BE=EF=6,△BEF是等腰三角形,易知△GED不是等腰三角形,④错误;
∴正确说法是①②③
故选:C
【点睛】本题综合性较强,考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,有一定的难度.
6、B
【解析】
无限不循环小数叫无理数,无理数通常有以下三种形式:一是开方开不尽的数,二是圆周率π,三是构造的一些不循环的数,如1.010010001……(两个1之间0的个数一次多一个).然后用无理数的个数除以所有书的个数,即可求出从中任意抽取一张,卡片上的数为无理数的概率.
【详解】
∵这组数中无理数有,共2个,
∴卡片上的数为无理数的概率是 .
故选B.
【点睛】
本题考查了无理数的定义及概率的计算.
7、D
【解析】
延长BO交圆于D,连接CD,则∠BCD=90°,∠D=∠A=60°;又BD=2R,根据锐角三角函数的定义得BC=R.
【详解】
解:延长BO交⊙O于D,连接CD,
则∠BCD=90°,∠D=∠A=60°,
∴∠CBD=30°,
∵BD=2R,
∴DC=R,
∴BC=R,
故选D.
【点睛】
此题综合运用了圆周角定理、直角三角形30°角的性质、勾股定理,注意:作直径构造直角三角形是解决本题的关键.
8、C
【解析】
利用旋转的性质得BA=BD,BC=BE,∠ABD=∠CBE=60°,∠C=∠E,再通过判断△ABD为等边三角形得到AD=AB,∠BAD=60°,则根据平行线的性质可判断AD∥BC,从而得到∠DAC=∠C,于是可判断∠DAC=∠E,接着利用AD=AB,BE=BC可判断AD+BC=AE,利用∠CBE=60°,由于∠E的度数不确定,所以不能判定BC⊥DE.
【详解】
∵△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB的延长线上,
∴BA=BD,BC=BE,∠ABD=∠CBE=60°,∠C=∠E,
∴△ABD为等边三角形,
∴AD=AB,∠BAD=60°,
∵∠BAD=∠EBC,
∴AD∥BC,
∴∠DAC=∠C,
∴∠DAC=∠E,
∵AE=AB+BE,
而AD=AB,BE=BC,
∴AD+BC=AE,
∵∠CBE=60°,
∴只有当∠E=30°时,BC⊥DE.
故选C.
【点睛】
本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的性质.
9、D
【解析】
根据正方形的边长,根据勾股定理求出AR,求出△ABR∽△DRS,求出DS,根据面积公式求出即可.
【详解】
∵正方形ABCD的面积为16,正方形BPQR面积为25,
∴正方形ABCD的边长为4,正方形BPQR的边长为5,
在Rt△ABR中,AB=4,BR=5,由勾股定理得:AR=3,
∵四边形ABCD是正方形,
∴∠A=∠D=∠BRQ=90°,
∴∠ABR+∠ARB=90°,∠ARB+∠DRS=90°,
∴∠ABR=∠DRS,
∵∠A=∠D,
∴△ABR∽△DRS,
∴,
∴,
∴DS=,
∴∴阴影部分的面积S=S正方形ABCD-S△ABR-S△RDS=4×4-×4×3-××1=,
故选:D.
【点睛】
本题考查了正方形的性质,相似三角形的性质和判定,能求出△ABR和△RDS的面积是解此题的关键.
10、B
【解析】
解:11人成绩的中位数是第6名的成绩.参赛选手要想知道自己是否能进入前6名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.
故选B.
【点睛】
本题考查统计量的选择,掌握中位数的意义是本题的解题关键.
二、填空题(共7小题,每小题3分,满分21分)
11、34°
【解析】
分析:首先根据垂径定理得出∠BOD的度数,然后根据三角形内角和定理得出∠D的度数.
详解:∵直径AB⊥弦CD, ∴∠BOD=2∠A=56°, ∴∠D=90°-56°=34°.
点睛:本题主要考查的是圆的垂径定理,属于基础题型.求出∠BOD的度数是解题的关键.
12、.
【解析】
将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.
【详解】
直接提取公因式即可:.
13、y=2(x+1)2+1.
【解析】
原抛物线的顶点为(0,-1),向左平移1个单位,同时向上平移4个单位,那么新抛物线的顶点为(-1,1);
可设新抛物线的解析式为y=2(x-h)2+k,代入得:y=2(x+1)2+1.
14、<
【解析】
试题分析:将二次函数y=x2-2ax+3转换成y=(x-a)2-a2+3,则它的对称轴是x=a,抛物线开口向上,所以在对称轴右边y随着x的增大而增大,点A点B均在对称轴右边且a+1
相关试卷
这是一份湖北省枣阳市蔡阳中学2023-2024学年数学九上期末教学质量检测模拟试题含答案,共8页。试卷主要包含了若,,则的值为等内容,欢迎下载使用。
这是一份2023-2024学年湖北省襄阳市枣阳市蔡阳中学数学九上期末调研试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,下列运算中正确的是等内容,欢迎下载使用。
这是一份2022届湖北省枣阳市蔡阳中学中考猜题数学试卷含解析,共24页。试卷主要包含了如图,点P,下列图形是中心对称图形的是,如图,l1∥l2,AF等内容,欢迎下载使用。