2022年安师大附中重点名校中考数学四模试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.某校有35名同学参加眉山市的三苏文化知识竞赛,预赛分数各不相同,取前18名同学参加决赛. 其中一名同学知道自己的分数后,要判断自己能否进入决赛,只需要知道这35名同学分数的( ).
A.众数 B.中位数 C.平均数 D.方差
2.如图,空心圆柱体的左视图是( )
A. B. C. D.
3.下列解方程去分母正确的是( )
A.由,得2x﹣1=3﹣3x
B.由,得2x﹣2﹣x=﹣4
C.由,得2y-15=3y
D.由,得3(y+1)=2y+6
4.某市初中学业水平实验操作考试,要求每名学生从物理,化学、生物三个学科中随机抽取一科参加测试,小华和小强都抽到物理学科的概率是( )
A. B. C. D.
5.如图是反比例函数(k为常数,k≠0)的图象,则一次函数的图象大致是( )
A. B. C. D.
6.如图,等腰直角三角形位于第一象限,,直角顶点在直线上,其中点的横坐标为,且两条直角边,分别平行于轴、轴,若反比例函数的图象与有交点,则的取值范围是( ).
A. B. C. D.
7.下列各式计算正确的是( )
A.(b+2a)(2a﹣b)=b2﹣4a2 B.2a3+a3=3a6
C.a3•a=a4 D.(﹣a2b)3=a6b3
8.如图,点ABC在⊙O上,OA∥BC,∠OAC=19°,则∠AOB的大小为( )
A.19° B.29° C.38° D.52°
9.将弧长为2πcm、圆心角为120°的扇形围成一个圆锥的侧面,则这个圆锥的高是( )
A. cm B.2 cm C.2cm D. cm
10.下列几何体中三视图完全相同的是( )
A. B. C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.半径为2的圆中,60°的圆心角所对的弧的弧长为_____.
12.太极揉推器是一种常见的健身器材.基本结构包括支架和转盘,数学兴趣小组的同学对某太极揉推器的部分数据进行了测量:如图,立柱AB的长为125cm,支架CD、CE的长分别为60cm、40cm,支点C到立柱顶点B的距离为25cm.支架CD,CE与立柱AB的夹角∠BCD=∠BCE=45°,转盘的直径FG=MN=60cm,D,E分别是FG,MN的中点,且CD⊥FG,CE⊥MN,则两个转盘的最低点F,N距离地面的高度差为_____cm.(结果保留根号)
13.已知二次函数y=ax2+bx(a≠0)的最小值是﹣3,若关于x的一元二次方程ax2+bx+c=0有实数根,则c的最大值是_____.
14.已知:如图,AB为⊙O的直径,点C、D在⊙O上,且BC=6cm,AC=8cm,∠ABD=45º.则图中阴影部分的面积是____________.
15.如图,在平面直角坐标系xOy中,直线l:y=x-与x轴交于点B1,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x轴,交直线l于点B3,以A2B3为边长作等边三角形A3A2B3,…,按此规律进行下去,则点A3的横坐标为______;点A2018的横坐标为______.
16.如图,正五边形ABCDE和正三角形AMN都是⊙O的内接多边形,则∠BOM=_______.
三、解答题(共8题,共72分)
17.(8分)小马虎做一道数学题,“已知两个多项式,,试求.”其中多项式的二次项系数印刷不清楚.小马虎看答案以后知道,请你替小马虎求出系数“”;在(1)的基础上,小马虎已经将多项式正确求出,老师又给出了一个多项式,要求小马虎求出的结果.小马虎在求解时,误把“”看成“”,结果求出的答案为.请你替小马虎求出“”的正确答案.
18.(8分)九(3)班“2017年新年联欢会”中,有一个摸奖游戏,规则如下:有4张纸牌,背面都是喜羊羊头像,正面有2张笑脸、2张哭脸.现将4张纸牌洗匀后背面朝上摆放到桌上,然后让同学去翻纸牌.
(1)现小芳有一次翻牌机会,若正面是笑脸的就获奖,正面是哭脸的不获奖.她从中随机翻开一张纸牌,求小芳获奖的概率.
(2)如果小芳、小明都有翻两张牌的机会.小芳先翻一张,放回后再翻一张;小明同时翻开两张纸牌.他们翻开的两张纸牌中只要出现一张笑脸就获奖.他们获奖的机会相等吗?通过树状图分析说明理由.
19.(8分)学校实施新课程改革以来,学生的学习能力有了很大提高.王老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A:特别好,B:好,C:一般,D:较差)后,再将调查结果绘制成两幅不完整的统计图(如图1,2).请根据统计图解答下列问题:
本次调查中,王老师一共调查了 名学生;将条形统计图补充完整;为了共同进步,王老师从被调查的A类和D类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.
20.(8分)有4张正面分别标有数字﹣1,2,﹣3,4的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上,洗匀后从4张卡片中随机摸出一张不放回,将该卡片上的数字记为m,在随机抽取1张,将卡片的数字即为n.
(1)请用列表或树状图的方式把(m,n)所有的结果表示出来.
(2)求选出的(m,n)在二、四象限的概率.
21.(8分)如图所示,一堤坝的坡角,坡面长度米(图为横截面),为了使堤坝更加牢固,一施工队欲改变堤坝的坡面,使得坡面的坡角,则此时应将坝底向外拓宽多少米?(结果保留到 米)(参考数据:,,)
22.(10分)如图,在Rt△ABC中,,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.求证:CE=AD;当D在AB中点时,四边形BECD是什么特殊四边形?说明理由;若D为AB中点,则当=______时,四边形BECD是正方形.
23.(12分)如图,点在的直径的延长线上,点在上,且AC=CD,∠ACD=120°.求证:是的切线;若的半径为2,求图中阴影部分的面积.
24.随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:
请依据统计结果回答下列问题:本次调查中,一共调查了 位好友.已知A类好友人数是D类好友人数的5倍.
①请补全条形图;
②扇形图中,“A”对应扇形的圆心角为 度.
③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
分析:由于比赛取前18名参加决赛,共有35名选手参加,根据中位数的意义分析即可.
详解:35个不同的成绩按从小到大排序后,中位数及中位数之后的共有18个数,
故只要知道自己的成绩和中位数就可以知道是否进入决赛了.
故选B.
点睛:本题考查了统计量的选择,以及中位数意义,解题的关键是正确的求出这组数据的中位数
2、C
【解析】
根据从左边看得到的图形是左视图,可得答案.
【详解】
从左边看是三个矩形,中间矩形的左右两边是虚线,
故选C.
【点睛】
本题考查了简单几何体的三视图,从左边看得到的图形是左视图.
3、D
【解析】
根据等式的性质2,A方程的两边都乘以6,B方程的两边都乘以4,C方程的两边都乘以15,D方程的两边都乘以6,去分母后判断即可.
【详解】
A.由,得:2x﹣6=3﹣3x,此选项错误;
B.由,得:2x﹣4﹣x=﹣4,此选项错误;
C.由,得:5y﹣15=3y,此选项错误;
D.由,得:3( y+1)=2y+6,此选项正确.
故选D.
【点睛】
本题考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.
4、A
【解析】
作出树状图即可解题.
【详解】
解:如下图所示
一共有9中可能,符合题意的有1种,故小华和小强都抽到物理学科的概率是,
故选A.
【点睛】
本题考查了用树状图求概率,属于简单题,会画树状图是解题关键.
5、B
【解析】
根据图示知,反比例函数的图象位于第一、三象限,
∴k>0,
∴一次函数y=kx−k的图象与y轴的交点在y轴的负半轴,且该一次函数在定义域内是增函数,
∴一次函数y=kx−k的图象经过第一、三、四象限;
故选:B.
6、D
【解析】
设直线y=x与BC交于E点,分别过A、E两点作x轴的垂线,垂足为D、F,则A(1,1),而AB=AC=2,则B(3,1),△ABC为等腰直角三角形,E为BC的中点,由中点坐标公式求E点坐标,当双曲线与△ABC有唯一交点时,这个交点分别为A、E,由此可求出k的取值范围.
解:∵,..又∵过点,交于点,∴,
∴,∴.故选D.
7、C
【解析】
各项计算得到结果,即可作出判断.
解:A、原式=4a2﹣b2,不符合题意;
B、原式=3a3,不符合题意;
C、原式=a4,符合题意;
D、原式=﹣a6b3,不符合题意,
故选C.
8、C
【解析】
由AO∥BC,得到∠ACB=∠OAC=19°,根据圆周角定理得到∠AOB=2∠ACB=38°.
【详解】
∵AO∥BC,
∴∠ACB=∠OAC,
而∠OAC=19°,
∴∠ACB=19°,
∴∠AOB=2∠ACB=38°.
故选:C.
【点睛】
本题考查了圆周角定理与平行线的性质.解题的关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半定理的应用是解此题的关键.
9、B
【解析】
由弧长公式可求解圆锥母线长,再由弧长可求解圆锥底面半径长,再运用勾股定理即可求解圆锥的高.
【详解】
解:设圆锥母线长为Rcm,则2π=,解得R=3cm;设圆锥底面半径为rcm,则2π=2πr,解得r=1cm.由勾股定理可得圆锥的高为=2cm.
故选择B.
【点睛】
本题考查了圆锥的概念和弧长的计算.
10、A
【解析】
找到从物体正面、左面和上面看得到的图形全等的几何体即可.
【详解】
解:A、球的三视图完全相同,都是圆,正确;
B、圆柱的俯视图与主视图和左视图不同,错误;
C、圆锥的俯视图与主视图和左视图不同,错误;
D、四棱锥的俯视图与主视图和左视图不同,错误;
故选A.
【点睛】
考查三视图的有关知识,注意三视图都相同的常见的几何体有球和正方体.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、
【解析】
根据弧长公式可得:=,
故答案为.
12、10
【解析】
作FP⊥地面于P,CJ⊥PF于J,FQ∥PA交CD于Q,QH⊥CJ于H.NT⊥地面于T.解直角三角形求出FP、NT即可解决问题.
【详解】
解:作FP⊥地面于P,CJ⊥PF于J,FQ∥PA交CD于Q,QH⊥CJ于H.NT⊥地面于T.
由题意△QDF,△QCH都是等腰直角三角形,四边形FQHJ是矩形,
∴DF=DQ=30cm,CQ=CD−DQ=60−30=30cm,
∴FJ=QH=15cm,
∵AC=AB−BC=125−25=100cm,
∴PF=(15+100)cm,
同法可求:NT=(100+5),
∴两个转盘的最低点F,N距离地面的高度差为=(15+100)-(100+5)=10
故答案为: 10
【点睛】
本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.
13、3
【解析】
由一元二次方程ax2+bx+c=0有实数根,可得y=ax2+bx(a≠0)和y=-c有交点,由此即可解答.
【详解】
∵一元二次方程ax2+bx+c=0有实数根,
∴抛物线y=ax2+bx(a≠0)和直线y=-c有交点,
∴-c≥-3,即c≤3,
∴c的最大值为3.
故答案为:3.
【点睛】
本题考查了一元二次方程与二次函数,根据一元二次方程有实数根得到抛物线y=ax2+bx(a≠0)和直线y=-c有交点是解决问题的关键.
14、(-)cm2
【解析】
S阴影=S扇形-S△OBD= 52-×5×5=.
故答案是: .
15、
【解析】
利用一次函数图象上点的坐标特征可求出点B1的坐标,根据等边三角形的性质可求出点A1的坐标,同理可得出点B2、A2、A3的坐标,根据点An坐标的变化即可得出结论.
【详解】
当y=0时,有x-=0,
解得:x=1,
∴点B1的坐标为(1,0),
∵A1OB1为等边三角形,
∴点A1的坐标为(,).
当y=时.有x-=,
解得:x=,
∴点B2的坐标为(,),
∵A2A1B2为等边三角形,
∴点A2的坐标为(,).
同理,可求出点A3的坐标为(,),点A2018的坐标为(,).
故答案为;.
【点睛】
本题考查了一次函数图象上点的坐标特征、等边三角形的性质以及规律型中点的坐标,根据一次函数图象上点的坐标特征结合等边三角形的性质找出点An横坐标的变化是解题的关键.
16、48°
【解析】
连接OA,分别求出正五边形ABCDE和正三角形AMN的中心角,结合图形计算即可.
【详解】
连接OA,
∵五边形ABCDE是正五边形,
∴∠AOB==72°,
∵△AMN是正三角形,
∴∠AOM==120°,
∴∠BOM=∠AOM-∠AOB=48°,
故答案为48°.
点睛:本题考查的是正多边形与圆的有关计算,掌握正多边形的中心角的计算公式是解题的关键.
三、解答题(共8题,共72分)
17、(1)-3; (2)“A-C”的正确答案为-7x2-2x+2.
【解析】
(1)根据整式加减法则可求出二次项系数;
(2)表示出多项式,然后根据的结果求出多项式,计算即可求出答案.
【详解】
(1)由题意得,, A+2B=(4+)+2-8, 4+=1,=-3,即系数为-3.
(2)A+C=,且A=,C=4,AC=
【点睛】
本题主要考查了多项式加减运算,熟练掌握运算法则是解题关键.
18、(1);(2)他们获奖机会不相等,理由见解析.
【解析】
(1)根据正面有2张笑脸、2张哭脸,直接利用概率公式求解即可求得答案;(2)根据题意分别列出表格,然后由表格即可求得所有等可能的结果与获奖的情况,再利用概率公式求解即可求得他们获奖的概率.
【详解】
(1)∵有4张纸牌,背面都是喜羊羊头像,正面有2张笑脸、2张哭脸,翻一次牌正面是笑脸的就获奖,正面是哭脸的不获奖,
∴获奖的概率是;
故答案为;
(2)他们获奖机会不相等,理由如下:
小芳:
笑1
笑2
哭1
哭2
笑1
笑1,笑1
笑2,笑1
哭1,笑1
哭2,笑1
笑2
笑1,笑2
笑2,笑2
哭1,笑2
哭2,笑2
哭1
笑1,哭1
笑2,哭1
哭1,哭1
哭2,哭1
哭2
笑1,哭2
笑2,哭2
哭1,哭2
哭2,哭2
∵共有16种等可能的结果,翻开的两张纸牌中只要出现笑脸的有12种情况,
∴P(小芳获奖)=;
小明:
笑1
笑2
哭1
哭2
笑1
笑2,笑1
哭1,笑1
哭2,笑1
笑2
笑1,笑2
哭1,笑2
哭2,笑2
哭1
笑1,哭1
笑2,哭1
哭2,哭1
哭2
笑1,哭2
笑2,哭2
哭1,哭2
∵共有12种等可能的结果,翻开的两张纸牌中只要出现笑脸的有10种情况,
∴P(小明获奖)=,
∵P(小芳获奖)≠P(小明获奖),
∴他们获奖的机会不相等.
【点睛】
本题考查了列表法或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.
19、(1)20;(2)作图见试题解析;(3).
【解析】
(1)由A类的学生数以及所占的百分比即可求得答案;
(2)先求出C类的女生数、D类的男生数,继而可补全条形统计图;
(3)首先根据题意列出表格,再利用表格求得所有等可能的结果与恰好选中一名男生和一名女生的情况,继而求得答案.
【详解】
(1)根据题意得:王老师一共调查学生:(2+1)÷15%=20(名);
故答案为20;
(2)∵C类女生:20×25%﹣2=3(名);
D类男生:20×(1﹣15%﹣50%﹣25%)﹣1=1(名);
如图:
(3)列表如下:A类中的两名男生分别记为A1和A2,
男A1
男A2
女A
男D
男A1男D
男A2男D
女A男D
女D
男A1女D
男A2女D
女A女D
共有6种等可能的结果,其中,一男一女的有3种,所以所选两位同学恰好是一位男生和一位女生的概率为:.
20、(1)详见解析;(2)P=.
【解析】
试题分析:(1)树状图列举所有结果.(2)用在第二四象限的点数除以所有结果.
试题解析:
(1)画树状图得:
则(m,n)共有12种等可能的结果:(2,-1),(2,﹣3),(2, 4),(-1,2),(-1,﹣3),(1, 4),(﹣3,2),(﹣3,-1),(﹣3, 4),(﹣4,2),(4,-1),(4,﹣3).
(2)(m,n)在二、四象限的(2,-1),(2,﹣3),(-1,2),(﹣3,2),(﹣3, 4),(﹣4,2),(4,-1),(4,﹣3),
∴所选出的m,n在第二、三四象限的概率为:P==
点睛:(1)利用频率估算法:大量重复试验中,事件A发生的频率会稳定在某个常数p附近,那么这个常数P就叫做事件A的概率(有些时候用计算出A发生的所有频率的平均值作为其概率).
(2)定义法:如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,考察事件A包含其中的m中结果,那么事件A发生的概率为P.
(3)列表法:当一次试验要设计两个因素,可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法.其中一个因素作为行标,另一个因素作为列标.
(4)树状图法:当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率.
21、6.58米
【解析】
试题分析:过A点作AE⊥CD于E.在Rt△ABE中,根据三角函数可得AE,BE,在Rt△ADE中,根据三角函数可得DE,再根据DB=DE﹣BE即可求解.
试题解析:过A点作AE⊥CD于E. 在Rt△ABE中,∠ABE=62°. ∴AE=AB•sin62°=25×0.88=22米,
BE=AB•cos62°=25×0.47=11.75米, 在Rt△ADE中,∠ADB=50°, ∴DE==18米,
∴DB=DE﹣BE≈6.58米. 故此时应将坝底向外拓宽大约6.58米.
考点:解直角三角形的应用-坡度坡角问题.
22、(1)详见解析;(2)菱形;(3)当∠A=45°,四边形BECD是正方形.
【解析】
(1)先求出四边形ADEC是平行四边形,根据平行四边形的性质推出即可;
(2)求出四边形BECD是平行四边形,求出CD=BD,根据菱形的判定推出即可;
(3)求出∠CDB=90°,再根据正方形的判定推出即可.
【详解】
(1)∵DE⊥BC,
∴∠DFP=90°,
∵∠ACB=90°,
∴∠DFB=∠ACB,
∴DE//AC,
∵MN//AB,
∴四边形ADEC为平行四边形,
∴CE=AD;
(2)菱形,理由如下:
在直角三角形ABC中,
∵D为AB中点,
∴BD=AD,
∵CE=AD,
∴BD=CE,
∴MN//AB,
∴BECD是平行四边形,
∵∠ACB=90°,D是AB中点,
∴BD=CD,(斜边中线等于斜边一半)
∴四边形BECD是菱形;
(3)若D为AB中点,则当∠A=45°时,四边形BECD是正方形,
理由:∵∠A=45°,∠ACB=90°,
∴∠ABC=45°,
∵四边形BECD是菱形,
∴DC=DB,
∴∠DBC=∠DCB=45°,
∴∠CDB=90°,
∵四边形BECD是菱形,
∴四边形BECD是正方形,
故答案为45°.
【点睛】
本题考查了平行四边形的判定与性质,菱形的判定、正方形的判定,直角三角形斜边中线的性质等,综合性较强,熟练掌握和灵活运用相关知识是解题的关键.
23、(1)见解析
(2)图中阴影部分的面积为π.
【解析】
(1)连接OC.只需证明∠OCD=90°.根据等腰三角形的性质即可证明;
(2)先根据直角三角形中30°的锐角所对的直角边是斜边的一半求出OD,然后根据勾股定理求出CD,则阴影部分的面积即为直角三角形OCD的面积减去扇形COB的面积.
【详解】
(1)证明:连接OC.
∵AC=CD,∠ACD=120°,
∴∠A=∠D=30°.
∵OA=OC,
∴∠2=∠A=30°.
∴∠OCD=∠ACD-∠2=90°,
即OC⊥CD,
∴CD是⊙O的切线;
(2)解:∠1=∠2+∠A=60°.
∴S扇形BOC==.
在Rt△OCD中,∠D=30°,
∴OD=2OC=4,
∴CD==.
∴SRt△OCD=OC×CD=×2×=.
∴图中阴影部分的面积为:-.
24、(1)30;(2)①补图见解析;②120;③70人.
【解析】
分析:(1)由B类别人数及其所占百分比可得总人数;
(2)①设D类人数为a,则A类人数为5a,根据总人数列方程求得a的值,从而补全图形;
②用360°乘以A类别人数所占比例可得;
③总人数乘以样本中C、D类别人数和所占比例.
详解:(1)本次调查的好友人数为6÷20%=30人,
故答案为:30;
(2)①设D类人数为a,则A类人数为5a,
根据题意,得:a+6+12+5a=30,
解得:a=2,
即A类人数为10、D类人数为2,
补全图形如下:
②扇形图中,“A”对应扇形的圆心角为360°×=120°,
故答案为:120;
③估计大约6月1日这天行走的步数超过10000步的好友人数为150×=70人.
点睛:此题主要考查了条形统计图、扇形统计图的综合运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.
江苏省兴化市安丰初中重点达标名校2021-2022学年中考数学四模试卷含解析: 这是一份江苏省兴化市安丰初中重点达标名校2021-2022学年中考数学四模试卷含解析,共21页。试卷主要包含了若等式,已知一次函数y=等内容,欢迎下载使用。
2022年山南市重点名校中考数学四模试卷含解析: 这是一份2022年山南市重点名校中考数学四模试卷含解析,共18页。试卷主要包含了考生要认真填写考场号和座位序号,下列算式中,结果等于a5的是,下列计算结果是x5的为等内容,欢迎下载使用。
2022年江西省重点名校中考数学四模试卷含解析: 这是一份2022年江西省重点名校中考数学四模试卷含解析,共23页。试卷主要包含了如图,在中,,3的相反数是,近似数精确到等内容,欢迎下载使用。