分式方程与分式方程综合(中上)学案(无答案)
展开这是一份分式方程与分式方程综合(中上)学案(无答案),共7页。学案主要包含了下列方程中是分式方程的是,填空题,解答与计算题等内容,欢迎下载使用。
2.理解分式方程的概念。
3.了解分式方程的基本思想和方法。
4.理解分式方程可能无解的原因,并掌握检验的方法
知识梳理(分式方程)
知识点1.解分式方程的基本思想
在学习简单的分式方程的解法时,是将分式方程化为一元一次方程,复杂的(可化为一元二次方程)分式方程的基本思想也一样,就是设法将分式方程“转化”为整式方程.即
分式方程 整式方程
知识点2.解分式方程的基本方法
(1)去分母法
去分母法是解分式方程的一般方法,在方程两边同时乘以各分式的最简公分母,使分式方程转化为整式方程.但要注意,可能会产生增根。所以,必须验根。
产生增根的原因:
当最简公分母等于0时,这种变形不符合方程的同解原理(方程的两边都乘以或除以同一个不等于零的数,所得方程与原方程同解),这时得到的整式方程的解不一定是原方程的解.
检验根的方法:
将整式方程得到的解代入原方程进行检验,看方程左右两边是否相等。
为了简便,可把解得的根直接代入最简公分母中,如果不使公分母等于0,就是原方程的根;如果使公分母等于0,就是原方程的增根。必须舍去.
注意:增根是所得整式方程的根,但不是原方程的根,增根使原方程的公分母为0.
用去分母法解分式方程的一般步骤:
(i)去分母,将分式方程转化为整式方程;
(ii)解所得的整式方程;
(iii)验根做答
(2)换元法
为了解决某些难度较大的代数问题,可通过添设辅助元素(或者叫辅助未知数)来解决.辅助元素的添设是使原来的未知量替换成新的未知量,从而把问题化繁为简,化难为易,使未知量向已知量转化,这种思维方法就是换元法.换元法是解分式方程的一种常用技巧,利用它可以简化求解过程.
用换元法解分式方程的一般步骤:
(i)设辅助未知数,并用含辅助未知数的代数式去表示方程中另外的代数式;
(ii)解所得到的关于辅助未知数的新方程,求出辅助未知数的值;
(iii)把辅助未知数的值代回原设中,求出原未知数的值;
(iv)检验做答.
(分式类应用题)
分式方程的应用主要就是列方程解应用题,它与学习一元一次方程时列方程解应用题的基本思路和方法是一样的,不同的是,表示关系的代数式是分式而已。
一般地,列分式方程(组)解应用题的一般步骤:
1.审清题意;
2.设未知数;
3.根据题意找等量关系,列出分式方程;
4.解分式方程,并验根;
5.检验分式方程的根是否符合题意,并根据检验结果写出答案
典例精讲
题型一:识别分式方程
例一、下列方程中是分式方程的是( )
A. B. C. D.
题型二:解分式方程
【例1】,求的值.
已知,求(1),(2)的值.
【例2】 若,求的值.
【例3】如果,试化简.
【例4】若-=,则--3的值_______。 若-=2,则的值是______。
【例5】;换元法 裂项法/分离常数
练习:
题型三:求待定字母的值
1.若关于的分式方程有增根,求的值.
2.若分式方程有增根x=2,求a的值。
3.分式方程+1=有增根,则m=
4.当k的值等于 时,关于x的方程不会产生增根;
5.若解关于x的分式方程会产生增根,求m的值。
6.若分式方程的解是正数/负数/无解,求的取值范围/值.
7.已知:关于x的方程无解,求a的值。
题型四:分式类应用题
【行程问题】
(1)一般行程问题
1、从甲地到乙地有两条公路:一条是全长600Km的普通公路,另一条是全长480Km的告诉公路。某客车在高速公路上行驶的平均速度比在普通公路上快45Km,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需要的时间。
(2)水航问题
2、轮船顺水航行80千米所需要的时间和逆水航行60千米所用的时间相同。已知水流的速度是3千米/时,求轮船在静水中的速度。
【工程问题】
一台甲型拖拉机4天耕完一块地的一半,加一天乙型拖拉机,两台合耕,1天耕完这块地的另一半。乙型拖拉机单独耕这块地需要几天?
2、某 市为治理污水,需要铺设一段全长3000米的污水输送管道,为了尽量减少施工对城市交通造成的影响,实际施工时每天的工效比原计划增加25%,结果提前30天完成了任务,实际每天铺设多长管道?
【利润(成本、产量、价格、合格)问题】
1、某煤矿现在平均每天比原计划多采330吨,已知现在采煤33000吨煤所需的时间和原计划采23100吨煤的时间相同,问现在平均每天采煤多少吨。
2、某商品的标价比成本高p%,当该商品降价出售,为了不亏本,降价幅度不得超过d%,请用p表示d。
3、一个批发兼零售的文具店规定:凡一次购买铅笔300枝以上,(不包括300枝),可以按批发价付款,购买300枝以下,(包括300枝)只能按零售价付款。小明来该店购买铅笔,如果给八年级学生每人购买1枝,那么只能按零售价付款,需用120元,如果购买60枝,那么可以按批发价付款,同样需要120元,
(1) 这个八年级的学生总数在什么范围内?
(2) 若按批发价购买6枝与按零售价购买5枝的款相同,那么这个学校八年级学生有多少人?
巩固练习
一、选择题:
1.化简的结果为( )
A. B.a﹣1 C.a D.1
2.已知x+y=4,x﹣y=,则式子(x﹣y+)(x+y﹣)的值是( )
A.48 B.12 C.16D.12
3.若y=有意义,则x的取值范围是 ( )
A.x≤且x≠0 B.x≠ C.x≤ D.x≠0
4.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是( )
A. B.
C.D.
5.如果解关于x的分式方程﹣=1时出现增根,那么m的值为( )
A.—2 B.2 C.4 D.—4
6.若数a使关于x的不等式组有且仅有四个整数解,且使关于y的分式方程+=2有非负数解,则所以满足条件的整数a的值之和是( )
A.3 B.1 C.0 D.-3
7.关于x的分式方程+5=有增根,则m的值为( )
A.1 B.3 C.4 D.5
8.某工厂新引进一批电子产品,甲工人比乙工人每小时多搬运30件电子产品,已知甲工人搬运300件电子产品所用时间与乙工人搬运200件电子产品所用的时间相同.若设乙工人每小时搬运x件电子产品,可列方程为( )
A. B. C. D.
二、填空题:
8.分式与的和为4,则x的值为 .
9.若•|m|=,则m=
10.《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,问该直角三角形能容纳的正方形边长最大是多少步?”该问题的答案是 步.
11.已知关于x的分式方程 -2= 有一个正数解,则k的取值范围为________.
12.当m= 时,解分式方程=会出现增根.
三、解答与计算题:
13.先化简,再求值:÷(﹣x﹣2),其中=2.
14.先化简再求值(﹣y)÷﹣(x﹣2y)(x+y),其中x=﹣1,y=2.
15. 先化简,再求值:,其中x是不等式组的整数解.
17. (2018·广西梧州·10分)我市从2018年1月1日开始,禁止燃油助力车上路,于是电动自行车的市场需求量日渐增多.某商店计划最多投入8万元购进A.B两种型号的电动自行车共30辆,其中每辆B型电动自行车比每辆A型电动自行车多500元.用5万元购进的A型电动自行车与用6万元购进的B型电动自行车数量一样.
(1)求A.B两种型号电动自行车的进货单价;
(2)若A型电动自行车每辆售价为2800元,B型电动自行车每辆售价为3500元,设该商店计划购进A型电动自行车m辆,两种型号的电动自行车全部销售后可获利润y元.写出y与m之间的函数关系式;
(3)该商店如何进货才能获得最大利润?此时最大利润是多少元?
18.为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.
(1)甲、乙两工程队每天能改造道路的长度分别是多少米?
(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?
19. (2018·山东泰安·9分)文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.
(1)甲乙两种图书的售价分别为每本多少元?
(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)
20. (2018·湖北省孝感·10分)“绿水青山就是金山银山”,随着生活水平的提高,人们对饮水品质的需求越来越高,孝感市槐荫公司根据市场需求代理A,B两种型号的净水器,每台A型净水器比每台B型净水器进价多200元,用5万元购进A型净水器与用4.5万元购进B型净水器的数量相等.
(1)求每台A型、B型净水器的进价各是多少元?
(2)槐荫公司计划购进A,B两种型号的净水器共50台进行试销,其中A型净水器为x台,购买资金不超过9.8万元.试销时A型净水器每台售价2500元,B型净水器每台售价2180元,槐荫公司决定从销售A型净水器的利润中按每台捐献a(70<a<80)元作为公司帮扶贫困村饮水改造资金,设槐荫公司售完50台净水器并捐献扶贫资金后获得的利润为W,求W的最大值.
课后总结
相关学案
这是一份分式方程及应用学案-无答案,共10页。学案主要包含了分式方程题型分析,行程问题,工程问题等内容,欢迎下载使用。
这是一份分式及分式方程 中上学案(无答案),共11页。学案主要包含了分式的意义,分式的化简及求值等内容,欢迎下载使用。
这是一份分式与分式方程综合-中下学案(无答案),共6页。学案主要包含了典例精讲,课堂作业,课后作业,课后总结等内容,欢迎下载使用。