还剩23页未读,
继续阅读
六年级下册数学教案-2.3 圆柱圆锥 ︳西师大版
展开
这是一份六年级下册数学教案-2.3 圆柱圆锥 ︳西师大版,共26页。
圆柱圆锥
单元教学计划
一、教学目标:
1、 在现实情境中,通过观察、操作、比较等活动,认识圆柱和圆锥,掌握它们的特征。
2、 结合具体情境,通过探索与发现,理解并掌握圆柱的侧面积、表面积和圆柱、圆锥体积的计算方法,并能解决简单的实际问题。
3、 经历探索圆柱、圆锥有关知识的过程,进一步发展空间观念。
4、 在观察与实验、猜测与验证、交流与反思等活动中,初步体会数学知识的产生、形成于发展的过程,体验数学活动充满着探索与创造,初步了解并掌握一些数学思想方法。
二、教材分析
本单元是在学生掌握了圆、长方体、正方体等有关知识的基础上进行教学的,是小学阶段几何知识的最后一部分内容,是以后进一步学习几何知识的基础。圆柱和圆锥的侧面是曲面,本单元的学习会使学生对立体图形的认识更深入、更全面,有利于进一步发展学生的空间观念。
本单元的主要教学内容是:圆柱和圆锥的特征、圆柱的侧面积和表面积、圆柱和圆锥的体积。教学重点是圆柱、圆锥的特征及圆柱表面积和体积的计算。
三、教学策略
1、 加强学生的动手操作和实验,让学生充分地经历探索知识的过程。
2、 密切联系学生的生活实际。
3、 加强相关知识的对比,帮助学生形成完整的认知结构。
4、 让学生充分经历“猜想——验证”的学习过程,做好数学思想方法的渗透。
5、 教学课时:12课时
信息窗一 :圆柱和圆锥
教学内容:
(青岛版)六年级下册第二单元第15、16页信息窗1。
教学简析:
该信息窗呈现了学生在日常生活中经常接触到的圆柱和圆锥形的冰淇淋盒,引发学生提出“这些物体都是什么形状的”、“圆柱和圆锥各有什么特点”等问题,引入对圆柱、圆锥的认识。
圆柱、圆锥是人们在生产、生活经常遇到的几何形体,认识圆柱、圆锥有利于进一步发展学生的空间观念,为进一步学习和解
决实际问题打下基础。
教学目标:
一、使学生认识圆柱和圆锥,知道圆柱、圆锥各部分的名称并掌握它们的特征。
二、通过观察、操作、思考、讨论等活动,培养学生发现问题、分析问题、解决问题的能力。
三、从实际生活入手,培养学生的思维能力,发展学生的空间观念。
教学重点:掌握圆柱、圆锥的特征。
教学难点:认识圆柱、圆锥的高
教学准备:
学生每人准备一个茶筒或一个圆锥形实物。
教师准备多媒体课件。
第一课时
教学过程:
一、创设情境,初步感知。
1、课件出示:圆柱、圆锥、正方体、长方体的实物图片(茶筒、铅笔、烟囱、圆木、冰淇凌盒、沙堆、铅锤、牙膏盒、化妆品盒)
谈话:同学们知道这些物品的名称吗?
2、教师:这么多物品,你知道它们各是什么形状吗?
指名学生分别说。
谈话:回忆一下它们各有什么特征?学生回答。
谈话:不论长方体还是正方体,它们都是由一些平面图形围成的立体图形,你知道茶筒是什么形状吗?学生回答,教师板书:圆柱
铅锤是什么形状?板书:圆锥
这节课就让我们一起进一步认识圆柱、圆锥。
【设计意图】:兴趣是学习成功的动力,通过实物图形,引起学生的学习兴趣,让学生感知生活中处处有圆柱、圆锥,通过复习旧知,为学习新知做铺垫,使学生很快进入有目地的探究状态。
二、主动探究,认知特征
(一)认识圆柱的特征
1、自主提出问题
谈话:对于圆柱和圆锥,你想知道有关它们的什么问题?
学生回答,学生可能提出如下问题:
①:我想知道圆柱有几个面?
②:我想知道圆锥有几个面?
③:我想知道圆柱的高在哪儿?
④:我想知道圆柱、圆锥每个面的是什么形状?
圆柱和圆锥各有什么特点?……
谈话:同学们提了这么多问题,今天这节课我们就先来认识一下圆柱、圆锥的特点,其它问题我们下一节课再来研究,好吗?
【设计意图】:让学生提出自己想要解决的问题,可以调动起学生的自主学习意识和探究欲望。
2、认识圆柱的底面和侧面
教师出示圆柱实物并将三角尺的直角边靠在圆柱实物边上,告诉学生我们学习的圆柱上下粗细相同,叫直圆柱。
谈话:在我们的生活中你见过哪些物品是圆柱形的?
指名学生说几个圆柱形物体。
谈话:请同学们拿出自己准备的茶筒,观察手中的圆柱形物体。
①先看一看,你认为它有几个面?
②再摸一摸每个面有什么特征?
③然后小组内互相说一说自己的发现。
④最后讨论一下你的发现正确吗?
教师巡视指导
汇报观察结果:
谈话:谁来说说你的发现?还有谁再来试一试?
指名学生拿着实物到前面介绍自己的发现,师生及时共同进行评价、质疑。
谈话:你是怎么知道上下2个面大小相同的?
指名说,鼓励学生用不同的方法来解决问题。学生解决的办法有:
①将茶筒盖拿下与底面重合
②将茶筒底面放在纸上描下来,然后将另一个面放在上边,完全重合。
③侧圆的直径
教师适时加以引导,让学生明确:圆柱上、下两个面是圆形,是个平面,大小相等,叫圆柱的底面,中间有一个曲面,叫圆柱的侧面。
底面
底面
侧面
课件随时演示,将茶筒的底面和侧面抽象出的圆柱立体图形
板书:底面 2个完全相同的圆
侧面 1个曲面
3、认识圆柱的高
教师出示两个高矮、粗细不同的圆柱,提问:你有什么发现?
圆柱为什么会有粗有细?使学生明确圆柱的底面大就粗。
圆柱为什么有高有矮?使学生知道圆柱的高不同。
出示圆柱实物,
谈话:那是圆柱的高,谁来指一指?
出示圆柱形塑料牙签筒
谈话:里面的牙签是不是牙签筒的高?每个牙签的长度怎样?想象一下,假如牙签细一些,再细一些,能装多少根?想一想圆柱的高有多少条?
谈话:你知道你的圆柱形茶筒有多高吗?
同桌合作动手量一量圆柱的高,记下测量数据,多量几条,你能发现什么?
教师巡视指导
高
汇报测量结果:
谈话:你们是怎样测量的?
指名一组到讲台前演示,
使学生明确:测量边上的高最方便,圆柱的高长度相等,有无数条。
侧面
高
高
提问:什么是圆柱的高?
学生回答,教师板书:上下两底面之间的距离叫圆柱的高。
教师出示课件演示圆柱的高
板书:高 无数条
4、同桌相互交流对圆柱的认识。
【设计意图】:通过课件演示,学生看一看、摸一摸、想一想、量一量、议一议等活动,让学生亲身经历知识的形成过程,进一步整体感知圆柱,加深对圆柱的认识,培养学生的空间观念;通过茶筒、牙签筒等实物,将抽象的数学知识形象化,便于理解;通过小组合作,交流认识、动手测量,培养了学生的合作能力。
(二)认识圆锥
1、谈话:刚才我们认识了圆柱,现在请同学们拿出自己准备的圆锥形物体,观察圆锥体,你能发现什么?它与圆柱有什么不同?把你看到的、摸到的与小组内的同学交流交流。
学生小组内交流。
教师巡视指导。
指名汇报观察结果。
使学生明确圆锥有一个底面是圆形,有一个侧面是曲面。圆锥是尖的有一个顶点。
教师出示圆锥实物课件
质疑:圆锥有几条高?
怎样测量圆锥的高?
学生讨论,教师启发学生用平移的方法将藏在圆锥中的高平移出来测量,指名学生到讲台前动手测量圆锥模形的高。
通过动手实践,使学生明确圆锥有一个顶点,只有一条高。
板书:底面 1个 圆形
侧面 1个 曲面
高 1条
2、讨论比较圆柱与圆锥的有什么区别与联系?
3、同桌交流对圆锥的认识
4、生活中你还见过那些物体是圆锥形的?
5、学生阅读课本15、16页的内容。
【设计意图】:前面有了对圆柱的特点的学习,圆锥的学习放手让学生自主探究,建立对圆锥的表象认识,体验获取成功的喜悦,提高学生的学习能力。
三、巩固练习、运用新知
1、课本自主练习17页第1题。
2、判断下面哪些图形是圆柱?哪些是圆锥?为什么?(课本P17页第2题)
3、写出下面图形各部分的名称
4、课堂游戏,猜猜看,可以抢答。
我这儿有一个物体,它有两个完全相同圆形底面,一个侧面,有无数条高,它是谁?……
【设计意图】:通过多个不同层次的练习,目地是让学生在练习中加深对圆柱圆锥的认识,提高学生思维的深刻性和灵活性,体现数学知识“有用”。
四、课堂小结 回顾新知
今天这节课你有什么收获?
使学生巩固圆柱与圆锥的区别与联系
【设计意图】:学生自主回顾、梳理所学新知,进一步提高了学生的思维能力。
教后反思:本节教学的最大亮点是让学生经历圆柱圆锥实物图到平面图的过程。
第2课时
教学内容:
教学目标:
1. 通过练习使学生进一步认识圆柱和圆锥的特点,进一步加深对它们区别的认识。
2. 通过动手操作,知道圆柱的侧面展开得到一个长方形,圆锥的侧面展开是一个扇形。
3. 发展空间观念,为下面学习表面积和体积做准备。
教学过程:
一、复习旧知:
谈话:同学们,上节课我们初步认识了圆柱圆锥,下面我们先来复习一下上节课的知识,再来做些练习。
1、圆柱和圆锥的特点是什么?它们各部分的名称是什么?
(点名让学生回答)
2、圆柱和圆锥的区别是什么?
(点名让学生回答)
3、动手操作延伸上节课内容,让学生拿出用纸做的圆柱和圆锥,然后沿着圆柱侧面的一条高剪开,沿着圆锥侧面的一条直线剪开,看看得到什么形状?
学生集体交流。
【设计意图】通过复习旧知,对上节课的知识进行回顾整理延伸,起到很好的铺垫作用,便于学生更准确的进行下面的练习。
二、巩固练习:
1、填空。
(1)圆柱的上、下两个面叫做( ),它们是( )的两个圆。
(2)圆柱有一个( )面,叫做侧面。圆柱两底之间的( )叫做高。一个圆柱有( )条高。
(3)圆柱的侧面沿着它的一条( )展开,可以得到一个长方形。它的长等于圆柱底面的( ),宽等于圆柱的( )。
(4)把圆锥的侧面展开,可以得到一个( )形。
(5)圆锥的底面是个( ),侧面是个( )。从圆锥的( )到( )的距离是圆锥的高。一个圆锥有( )条高。
2、判断题。(对的在括号内打“√”,错的在括号内打“×”。)
(1)圆柱的侧面展开图一定是长方形。 ( )
(2)圆柱两底面之间的连线叫作圆柱的高。 ( )
(3)如果一个圆柱的侧面展开是正方形,它的底面周长和高一定相等。 )
(4)圆柱圆锥的侧面展开都是长方形。 ( )
(5)圆柱和圆锥的高都有无数条。 ( )
【设计意图】以上练习是认识圆柱圆锥的基本练习,不同的题型,旨在拓宽学生的练习广度,使学生能灵活掌握圆柱圆锥的特征,会很快的区分他们,教师在授课时要注意学生做题的正确率,使大部分学生都能掌握这部分知识。
三、综合练习
1、17页第3题。“连一连”。学生自主连线,全班交流。
2、17页第4题。学生读题后,教师让学生拿出准备好的长方形的纸卷成圆柱直筒,观察后学生自主解答问题,然后全班交流。
3、18页第5题。学生读题后先想象一下,用手比划一下,然后再连线,最后全班交流。
4、18页第6题。这是一道思考题,先让学生认真读题,弄明白丝带的长度与蛋糕盒的哪几部分有关系,然后再认真思考独立解决,全班交流。
(综合练习是课本自主练习的题目,旨在拓宽学生知识面,使学生较全面的了解生活中常见的圆柱圆锥的全面特征,使学生感受到数学与生活的紧密联系,激发学生学习的兴趣。)
四、全课总结
在今天的学习中,你有哪些收获呢?
通过今天的课,大家进一步认识了圆柱和圆锥,希望同学们以后都能像这节课一样这么认真、这么仔细学好以后的知识。
五、课后作业
P18课外实践:找一找生活中哪些物体的形状是圆柱或圆锥。想办法测量它们的底面直径和高。填入课本上的表中。
教后反思:通过练习,学生对圆柱圆锥的认识进一步加深,为表面积体积的学习奠定了坚实基础。
信息窗2:圆柱的表面积
教学内容:
义务教育课程标准试验教科书青岛版六年级下册小学数学教科书第19—20页。
教材简析:
圆柱表面积包括圆柱体的侧面积、表面积的概念,表面积的计算方法。由于学生已了解长方体、正方体的表面积,又制作过圆柱模型,所以对圆柱表面积理解并不困难。因此教材一开始就提出问题:圆柱的表面积指的是什么?让学生在交流中逐步理解圆柱表面积的含义。对于表面积的计算,由于空间想像力有限,学生往往不能将圆柱的底面半径(直径)及圆柱的高,和圆柱侧面的长、宽建立起联系。因此,教材加强了操作,让学生将课前做好的圆柱模型展开,观察展开后的形状,并在展开后的图形中标明圆柱的底面和侧面,以便于把展开后的每个面与展开前的位置对应起来,得出:圆柱的表面积=圆柱的侧面积+两个底面的面积。接着引导学生再借助表面展开图,推出:圆柱的侧面积=底面周长×高。
教学目标:
1. 通过动手操作,认识圆柱的展开图,理解圆柱侧面积和表面积的含义。
2. 探索和掌握圆柱侧面积和表面积的计算方法,并能解决生活中相应的实际问题。
3. 进一步培养学生的动手操作能力,发展学生的空间观念。
教具准备:
剪刀、直尺、一些容易剪开的圆柱形纸筒。
教学过程:
第1课时
一、创设情境,提出问题
1、感知情境,收集信息。
谈话:你想了解一下这种纸筒是怎样生产出来的吗?下面我们一起到生产车间去参观一下。(多媒体播放纸筒的生产过程。)
(学生在了解圆柱体纸筒的基础上,明确圆柱体的组成部分,利用学生好奇的心理,激发学生探究新知的欲望。)
2、提出问题,明确目标。
谈话:根据屏幕展示情境图右侧的圆柱形纸筒成品及其数据,你能提出什么数学问题?
学生可能提出:纸筒包括哪几部分?做一个圆柱体纸筒需要多少纸板?……
(创设问题情境,引导学生搜集信息,提出问题,有利于激发学生的学习兴趣,激活学生对数学知识学习的欲望,明确探究目标。)
二、自主探究,解决问题
1、提出问题
谈话:求“做一个这样的圆柱形纸筒,至少需要多少纸板” ,实际上是求什么?
教师根据学生的回答,适时总结求需要多少纸板,就是求圆柱体纸筒的表面积。
[设计意图]从学生提出的问题中,筛选出有价值的数学问题,明确问题的方向,在观察纸筒制作过程后,让学生对表面积有了初步的感受,对于表面积的计算方法的探索起到积极的作用。
2、动手操作
谈话:利用你们手中用纸围成的圆柱剪一剪,一个圆柱的展开图,看你有什么发现?
学生分组动手操作。
[设计意图]学生动手剪一剪,有利于培养学生的动手能力,也有利于培养学生的空间想象能力。表面积的计算不仅仅是计算的问题,更重要的是学生在解决问题之前能在大脑中想象出需要计算的是哪几个面的面积。
3、总结概念
谈话:哪个小组来交流一下你们的剪法和发现?
根据学生的回答,得出结论:圆柱底面的面积叫圆柱的底面积,侧面的面积叫圆柱的侧面积。圆柱的侧面积加上两个底面的面积就是圆柱的表面积。
谈话:圆柱体的底面是两个完全一样的圆,底面的面积就是圆的面积。圆柱体的侧面展开后得到了什么图形?
学生可能得到长方形和平行四边形。
4、归纳方法
谈话:圆柱体侧面展开的不论是长方形,与圆柱体的底面和高有什么关系呢?
谈话:请各小组研究一下圆柱侧面展开得到的长方形的长和宽与圆柱的哪些部分有关系,有什么样的关系。想一想圆柱的侧面积应该如何计算。
根据学生讨论得出:圆柱体的侧面积=底面周长×高
↓ ↓ ↓
长方形的面积= 长 × 宽
师:应用我们的发现,你能求出下面圆柱的侧面积吗?(只列式,不计算。)
(1) 底面周长4cm,高5cm。
(2) 底面直径2cm,高10cm。
口头列式并说说怎么想的。
谈话:圆柱体的表面积怎样计算呢?
圆柱体的表面积等于侧面积加两个底面的面积。
[设计意图]转化的方法是学生学习的重要方法,把新的问题转化成已经学过的问题是学生解决问题的重要方法。通过转化学生把圆柱体的表面积转化成一个长方形和两个圆面积的方法。
三、综合练习,深化提高
1、自主练习第1题。
师:请你先说说侧面积和表面积的计算方法,然后列式计算。
2、自主练习第2题。
学生回答、列式计算。
学生独立解答。
关注学生是否理解和掌握了侧面积和表面积的计算方法。
3、布置作业,课后拓展
谈话:课下,请你选择一个圆柱形的盒子,测量有关数据并计算它的侧面积和表面积。
[设计意图]练习的目的有三个方面:一是在巩固所学知识的基础上培养学生的空间观念,二是进一步掌握圆柱体侧面积和表面积的计算方法,三是通过实践性的作业,培养学生学习数学的兴趣。
教后反思:本节教学充分利用表面展开教具形象直观,学生较好的掌握了圆柱侧面积、表面积的求法。
第2课时
一、创设情境,激发兴趣
谈话:上节课我们学习了圆柱体表面积的计算方法,这是一个同学做的圆柱体的纸盒,要计算使用了多少纸板,应该怎么样计算?
根据学生的回答,教师提供数据,学生计算。
[设计意图]这样的谈话,充分调动了学生的学习兴趣,把学生的注意力很快集中起来,为下面的闯关做好准备。
二、巩固练习、深化提高
1、基本练习
自主练习3
学生读题,思考前轮压过一周的面积是指圆柱体的什么?
学生独立解答,并订正。
自主练习4
学生独立解答,集体订正,学生说明计算的理由。
2、综合练习(自主练习5、6、8、9、10)
自主练习5
选择哪些材料可以作成圆柱体的盒子,为什么?
学生独立思考,有困难的学生可以提前准备好材料,拼一拼,试一试。
动手操作以后要引导学生分析,长方形的长和宽与做底面的圆相符。
自主练习6
填表,注意找出已知数据与未知数据之间的关系。
自主练习8、9
学生独立解答,并交流解决问题的方法。
3、拓展练习
自主练习12
可以利用手中的材料演示(如:粉笔),明确截面的面积与底面积的关系,找出截的段数与增加的面数之间的关系。
[设计意图] 练习设计由浅入深,从基本的仿例练习到拓展练习,让学习困难的学生有机会赶上来,让优秀的学生有展示自己才华的机会。在练习中,学生的思维得到发展,解决问题的能力有所提高。
三、课外延伸
一个圆柱体侧面展开是一个正方形,正方形的边长是12.56厘米,圆柱体的表面积是多少平方厘米?
[设计意图] 通过课外延伸的题目,拓展学生的思维,引导学生找到正方形边长与底面周长、正方形的面积与圆柱体的侧面积之间的关系,提高学生解决问题的能力。
教后反思:通过练习,学生进一步掌握了圆柱侧面积与表面积的求法,并能分析解决一些生活中的实际问题。
信息窗3 圆柱和圆锥的体积
教学内容:
教材简析:
该信息窗呈现的是圆柱和圆锥形状的冰淇淋盒,并分别标出了它们的底面直径和高。引导学生提出问题,引入对圆柱、圆锥体积计算的探索和学习。“合作探索”中第一个红点部分是学习圆柱的体积;第二个红点部分是学习圆锥的体积。
教学目标:
1. 结合具体情境,通过探索与发现,理解并掌握圆柱、圆锥体积的计算方法,并能解决简单的实际问题。
2. 经历探索圆柱、圆锥体积计算公式的过程,进一步发展空间观念。
3. 在观察与实验、猜测与验证、交流与反思等活动中,初步体会数学知识的产生、形成与发展的过程,体验数学活动充满着探索与创造,初步了解并掌握一些数学思想方法。
教学重点和难点:
圆柱、圆锥体积的计算方法,以及体积公式的探索推导过程。
教具准备:多媒体课件、圆锥、圆柱体积学具、沙子等。
第一课时
教学过程:
一、创设情境,激趣引入。
谈话:同学们,天气渐渐热了,在夏季同学们最喜欢的冷饮是什么?(生回答)
课件出示:两个圆柱体冰淇淋。
谈话:看,小明买了两个冰淇淋,你能猜猜哪种包装盒体积大吗?
(生猜测)这节课我们就来研究圆柱的体积。(板书课题——圆柱体的体积。)
【设计意图】:从生活中常见的例子导入新课,从中培养学生在生活中发现数学问题、提出问题的意识。学生的猜测为后面的实验验证做好了铺垫,激发学生探究新知的欲望。
二、回忆旧知,实现迁移。
谈话:怎样求圆柱的体积呢?我们也许能从以前研究问题的方法里得到启示,找到解决问题的办法。请大家想一想,在学习圆的面积时,我们是怎样推导出圆的面积计算公式的?
(学生回答后,教师利用多媒体课件动态演示把圆等分切割,拼成一个近似的长方形,找出圆与所拼成的长方形之间的关系,进而推导出圆面积计算公式的过程。)
【设计意图】:通过回顾圆的面积的推导方法,巧妙地运用旧知识进行迁移。
三、利用素材,探索新知。
㈠交流猜测
谈话:通过刚才的回顾,你们能想办法将圆柱转化成我们已经学过的立体图形来求体积吗?
生:我们学过长方体的体积,可不可以将圆柱转化成长方体呢?
师谈话:你的想法很好,怎样转化呢?
生讨论,交流。
生汇报,可能会有以下几种想法:
1.先在圆柱的底面上画一个最大的正方形,再竖着切掉四周,得到一个长方体,然后把切下的四块拼在一起。
2.可以把圆柱的底面分成许多相同的扇形,然后竖着切开,重新拼一拼。
3.如果是橡皮泥那样的,可以把它重新捏成一个长方体,就能计算出它的体积了。
谈话:请同学讨论和评价一下,哪一种方法更合理呢?引导学生按照第二种方法进行验证。
㈡实验验证
学生动手进行实验。
谈话:请每个小组拿出学具,按照刚才第3小组的方法把它转化为近似的长方体,并研究转化后的长方体和原来圆柱体积、底面积、高之间的关系。
学生合作操作,集体研究、讨论、记录。
【设计意图】本环节让学生亲自动手 操作,再次感受“化圆为方”的思想。动手操作,是学生发现规律和获取数学思想的重要途径。
四、分析关系,总结公式
1.全班交流
谈话:哪个小组愿意展示一下你们小组的研究结果?
引导学生发现:
转化后的形状变了,但是体积没有变,底面的面积没有变,高也没有变。
2.分析关系
引导说出:圆柱体转化成长方体后,虽然形状变了,但是长方体的体积和原来圆柱的体积相等,长方体的底面积等于圆柱的底面积,长方体的高等于圆柱的高。
3.总结公式。
谈话:同学们真了不起!你们的发现非常正确。我们来看一看课件演示。
(课件分别演示将圆柱等分成16份、32份、64份的割拼过程,学生观察、思考。)
谈话:你发现了什么?
引导观察:分的份数越多,拼成的图形就越接近长方体。
(课件动态演示:圆柱的高——长方体的高,圆柱的底面积——长方体的底面积。)
谈话:其实大家刚才又采用了“化圆为方”的方法将圆柱转化成了长方体。你现在能总结出圆柱体积的计算公式吗?说一说你是怎样想的。
根据学生的回答教师板书:
长方体的体积 = 底面积 × 高
圆柱的体积 = 底面积 × 高
谈话:你能用字母表示圆柱的体积计算公式吗?V=Sh
【设计意图】教师给予适当的演示,沟通圆面积计算公式的推导方法与圆柱体积计算公式推导方法的共同点——转化法,便于学生顺利推导出圆柱体积的计算公式 。
五、利用公式,解决问题。
自主练习第1题、第2题、第3题
【设计意图】巩固练习及时让学生利用结论解决问题,感受自己研究的重要价值,激发学习数学的兴趣。
六、课堂总结
教后反思:关于圆柱的体积计算方法的推导是本节课的重难点,教学中,启发学生在已有知识经验基础上大胆猜想圆柱的体积计算方法,然后通过学具操作、教具演示,学生较好的经历了过程,达到了教学目标。
第二课时
一、串联情境 唤醒旧知。
1.谈话:同学们,上节课我们通过研究冰淇淋盒的体积问题,学会了如何求圆柱的体积。你能说说如何求圆柱的体积吗?计算公式是怎样推出的?
2.口答练习:
你能借助公式计算下面圆柱的体积吗?
(1)底面半径 15厘米,高8厘米。
(2)底面直径 6米,高18米。
【设计意图】:通过复习公式,唤起学生的回忆,为下面利用公式解决打下基础。
二、巧用公式,解决问题。
1.出示课后练习第3题。
在美国加利福尼亚洲发现了一棵高达142米的巨衫。它的树干上下几乎一样粗,横截面周长约是38米。
师谈话:你能提出什么问题?
生:树干的体积会是多大呢?
师:知道了树干横截面的周长,该如何求体积呢?
2.学生独立解答。
3.交流算法。
4.师生总结解决此类问题的步骤:
(1)根据周长求出底面的半径。
(2)根据半径求出底面的面积。
(3)根据体积公式求出树干的体积。
【设计意图】:让学生明确已知圆柱底面周长,求圆柱体积的计算方法。
三、综合练习,统一公式。
1.出示课后练习第10题:计算下面图形的体积。
2.交流算法。
3.师谈话:你能把上面三种图形的体积公式统一成一个吗?
引导发现:体积=底面积×高
【设计意图】:通过计算,发现长方体、正方体、圆柱体的体积公式可以统一成一个,感受到它们之间的密切联系,有助于提高学生的综合实践能力。
四.拓展练习,提高能力。
1.出示练习第12题。
引导学生发现:体积相等、底面积也相等的圆柱和圆锥,圆锥的高是圆柱高的3倍。
2.出示练习13题。
(1)用62.8厘米的边长做圆柱形小桶的底面周长,47.1厘米的边长做圆柱小桶的高。
(2)用47.1厘米的边长做圆柱形小桶的底面周长,62.8厘米的边长做圆柱小桶的高。
3.课后思考:练习第14题。
【设计意图】:在拓展练习中提高学生的解决实际问题的能力。
教后反思:通过练习,学生进一步掌握了圆柱体积计算方法,并能分析解决一些生活中的实际问题。
第三课时
一、创设情境,提出问题。
谈话:在炎热的夏季里,同学们一定很喜欢吃冰淇淋吧!(出示课件),看:超市里正在搞促销活动呢,圆柱形的冰淇淋每个5元,圆锥形的冰淇淋每个2元。(图中圆柱形和圆锥形的雪糕是等底等高的。)用10元钱怎样买冰淇淋最合算呢?
谈话:要解决这个问题,需要先解决哪些问题?你有什么困难吗?
谈话:是啊,今天我们就一起来学习 “圆锥的体积”,相信你一定会自己找到答案的。引出课题:圆锥的体积
[设计意图]联系学生熟悉的生活情境,激活学生思维,让学生主动思考,提出问题,有效激发了学生的学习热情和探究欲望。
二、猜想验证、研究问题。
1、引导猜想:
谈话:请同学们猜测一下,圆锥的体积可能与什么有关系?有怎样的关系?
[设计意图]让学生运用已有的知识和生活经验进行猜测,大胆提出假想,既让学生实现了创造性的学,又激发了学生急于验证假想的探究欲望。
2、实验验证:
①分组实验,验证猜想:
谈话:下面,请同学们利用老师提供的实验材料分组操作,自己找一找屏幕上的圆柱与圆锥体积间的关系,解决电脑博士给我们提出的问题。
课件出示思考题:
(1) 通过实验,你们发现圆柱的体积和圆锥体积之间有什么关系?
(2) 你们的小组是怎样进行实验的?
学生分组操作实验,教师巡回指导。(其中多数小组的实验材料:沙子、水、水槽、量杯、等底等高的圆柱形和圆锥形容器各一个;另外2个小组的实验材料:沙子等,既不等底也不等高的圆柱形和圆锥形容器各一个,体积有8倍关系的,也有5倍关系的。
同组的学生做完实验后,进行交流,并把实验结果填写在表格中。
②汇报交流。
展示不同的结论
⑴请这几个小组同学说出他们是怎样通过实验得出这一结论的?(圆锥的体积是等底等高的圆柱体积的 。)
⑵讨论:哪个小组得出的结论更加科学合理一些?
(请他们拿出实验用的器材,自己比划、验证这个结论。)
⑶引导学生自主修正另外两个结论。
③总结圆锥体积的计算方法:V= Sh
④回归课前问题:你能分别算出这两个冰淇淋的体积吗?在练习本上试一试吧。
谈话:用10元钱怎样买冰淇淋最合算?说说你是怎样想的?
[设计意图]让学生带着问题动手实验、自己研究、分析问题,留给学生创新时空,并通过小组合作交流、共同探讨,初步得出计算圆锥体积的方法,既突出主体地位又培养了创新精神。
三、应用公式、解决问题。
1、判断。
① 圆锥的体积等于圆柱体积的 。 ( )
② 两个体积相等的等底圆柱和圆锥, 圆锥的高一定是圆柱高的3倍。 ( )
③ 一个圆锥形物体,底面积是 a 平方米,高是 b 米,它的体积是 ab 立方米。 ( )
④ 把一根圆体木头,削成一个最大的圆锥体, 削去体积是圆锥体积的2倍。 ( )
2、求下列各圆锥的体积:
a、底面面积是7.8平方米,高是1.8米;
b、底面半径是4厘米,高是21厘米;
c、底面直径是6分米,高是6分米;
3、解决问题。
① 一堆圆锥形的煤堆,底面半径是 1.5 米,高是 1.2 米。如果每立方米煤约重 1.4 吨,这堆煤有多少吨?
②有一块正方体的木材,它的棱长是9分米,把这块木料加工成一个最大的圆锥体,被削去的体积是多少?
[设计意图]通过有层次、有顺序、有梯度的循序渐进的练习,给学生提供自主探索的机会。通过这样的练习活动,逐步培养学生的创新意识,形成初步的探索和解决问题的能力。
四、全课总结
谈话:通过本节课的学习,你有哪些收获?
教后反思:关于圆锥体积计算方法的探究发现,让学生在大胆猜想的基础上,通过实验验证,从而得出了结论。
《圆锥的体积》教学反思
教学圆锥的体积是在掌握了圆锥的认识和圆柱的体积的基础上教学的。教学目标是让学生通过观察实验来发现圆锥与等底等高的圆柱之间的关系,从而得出圆锥的体积等于和它等底等高的圆柱体积的三分之一,并能运用这个关系计算圆锥的体积。由于六年级的学生对圆锥的认识和圆柱的体积的知识掌握较牢固,学生感到简单易懂,因此学起来并不感到困难。 新课一开始,出示一个圆柱体和一个圆锥体让学生观察并猜测圆锥的体积和什么有关,学生联系到了圆柱的体积,在猜想中激发学生的学习兴趣,使学生明白学习目标。然后实验过程,让学生从实验中得出结论:等底等高的圆锥体体积是圆柱体体积的三分之一,从而推出圆锥的体积公式。对圆锥的体积建立了鲜明的印象之后,再应用公式解决实际的生活问题,起到巩固深化知识点的作用。在运用阶段,我主要设计了以下四种类型问题帮助学生尽快地巩固、内化所学。1、已知底面积和高,求体积。2、已知底面半径和高,求体积。3、已知底面直径和高,求体积。4、已知底面周长和高,求体积。
不足之处:没让学生动手实际操作,如果每个小组准备一套学具,让他们以小组合作学习的方式使每个学生都能真切的参与到探究中去,最大限度的发挥每个学生的自主学习的能力,这样的学习不仅使学生学会更多的知识,更重要的是能培养学生的能力。
回顾整理
教学内容
教材简析
“回顾整理”部分由上、下两部分组成。上半部分是以学生对话的方式引发学生对圆柱和圆锥的有关知识进行回顾,并以表格的形式从圆柱和圆锥的特征、体积计算公式两方面进行整理。下半部分以框图的形式呈现出圆柱体积计算公式的推导过程。这样在注重“知识与技能”的同时,着力凸显了“过程与方法”。旨在引导学生对圆柱和圆锥有关知识及研究问题的过程进行系统的回顾,从知识与方法等不同的角度,自主完成对圆柱和圆锥有关知识的整理和复习。
教学目标,
1过引导学生回顾整理,加深学生对圆柱和圆锥的特征、圆柱的侧面积、表面积和圆柱、圆锥体积计算公式的理解,进一步将知识系统化,形成知识网络。
2主动参与数学知识的整理过程,经历系统整理和复习所学数学知识的过程。
3进一步经历数学知识的应用过程,提高应用所学数学知识解决简单实际问题的能力培养创新意识,在应用数学解决问题的过程中进一步体会数学的价值。
教学过程:
一、情境激趣,回顾旧知
谈话:同学们在本单元的学习过程中,我们借助平时大家喜欢吃的冰淇淋的包装盒认识了两种常见的立体图形——圆柱和圆锥,想一想通过本单元的学习,你都学到了哪些知识?有什么收获?咱们交流一下吧!(学生自由发言)
[设计意图]学生自主对学过的知识进行回顾,激发学习热情,使学生很快进入学习状态。
二、合作整理、归网建构
1、自主整理,初步归网
谈话:刚才同学们回顾了我们学过的圆柱和圆锥的知识,下面你能用你喜欢的方式把这一单元的主要知识点整理出来吗?。(整理时要全面、系统、有条理而且重点要突出。)
学生自主整理,师巡视指导。
2、组内交流,补充完善
(在学生交流的过程中,教师巡视,把整理的有特色的教师要做到心中有数,便于稍后的交流。)
3、全班交流。
谈话:哪个小组愿意把你们合作整理的成果向大家展示一下?
学生利用实物投影展示自己整理的成果。展示的同时给大家介绍一下整理的内容。
你们比较喜欢哪一种整理方法?为什么?
4、归纳总结。
老师把这个单元的主要内容整理成一个表格,看同学们能不能填写出来。
电脑出示表格
图形
特点
体积公式
侧面积表面积公式
圆柱
圆锥
5、回顾知识的形成过程,初步建构研究问题的策略。
谈话 :我们在这一单元的信息窗3中求冰淇淋盒的体积时,大家想到求冰淇淋的体积也就是求圆柱的体积,大家联系我们以前学过的知识,想办法推导出了圆柱的体积公式,你还记得我们是怎样推导的吗?
(学生自由发言,如果学生说不到的,可以引导学生说。)
[设计意图]让学生主动参与数学知识的整理过程,经历系统整理和复习所学数学知识的过程,并在这个过程中进一步感受立体图形的内在联系和相似内容之间的差异。学生在小组内交流方法,集体总结方法,有利于学生自主学习,将知识点重新建构,形成知识网络。让他们合作设计,也较大程度地激发了学生的创造性与合作性。这一过程中既要让学生大胆地表达自己的想法,又要提醒学生注意倾听别人的意见,养成良好的学习习惯。
三、基本练习,形成技能
谈话:刚才同学们对本单元的知识进行了回顾整理,比一比看谁在练习中表现的最出色。
1.出示综合练习第1题
学生独立完成,集体订正,提高学生的基本计算技能。
2.出示综合练习第2题
先让学生仔细读题,然后独立完成,集体订正。
3.出示“综合练习”第3题
教师先简要介绍雨量器的作用和构造。雨量器的外壳只有一个底面,内部的储水瓶底部是圆柱形的。学生独立解决,再集体订正。
4.出示“综合练习”第6题
这是一道综合应用正方体、圆柱和圆锥有关知识解决实际问题的题目。练习时,先引导学生理解题意,明确雕成的最大圆柱和圆锥的底面积等于正方体底面内切圆的面积,高等于正方体的棱长,然后计算,再集体订正。
5.出示“综合练习”第7题
这是一道求组合图形容积的题目。练习时,要先使学生明确解题的思路,即粮仓的下半部分是圆柱形,上半部分是圆锥形,求粮仓的占地面积就是求圆柱体的底面积,求粮仓的容积就是求圆柱和圆锥的体积之和。然后让学生独立解决,再集体订正.
6.出示“综合练习”第8题
这是一道综合应用所学知识解决实际问题的题目。练习时,要引导学生认识到挤出的牙膏是一个小的圆柱体,它的底面积等于管口的面积,高就是挤出的牙膏的长度。提醒学生注意单位要统一。
[设计意图]练习的设计由浅入深,由易到难,既兼顾了习题的针对性、层次性、灵活性,又发展了学生的思维,使不同水平的学生都有所提高,并注重培养学生利用公式来解决实际生活中的问题,提高了学生解决实际问题的能力。
四、课堂小结
这节课你有什么收获和体会?与同伴相互交流一下。
[设计意图]为学生提供独立解答的空间,教师可以通过个别检查,组织交流、作业批改等形式掌握一些较典型的错误,及时进行纠正,努力实现全体学生的共同进步。
【课后反思】以学生为主体,引导其自我回顾整理,然后解决问题,从而提高技能。
综合应用:水与冰
教学内容:
义务教育课程标准实验教科书青岛版小学数学六年级下册33---34页。
教材简析:
该综合应用是在学生已学过圆柱、圆锥的体积以及分数百分数等知识的基础上安排的,旨在引导学生综合运用所学过的体积、百分数等有关知识,通过实验探索水和冰在变化的过程中,体积之间的变化规律。该综合应用由两个板块组成。第一个板块是4幅反映水结成冰、冰化成水的自然现象情境图。4幅图分别是:河水结冰、雪糕融化、水瓶胀破、水管冻裂,并以对话的方式揭示了“水结成冰体积会增大,冰化成水体积会减小”。目的是在唤起学生生活经验的同时,进一步让学生感受和认识水结成冰、冰化成水时的体积变化情况,引发学生提出研究课题。第二个板块是实验过程,包括实验准备、实验步骤、注意事项、实验记录、实验总结5个部分。
教学目标:
1、综合运用学习过的有关知识,探索水结成冰,冰化成水的过程中体积变化的一般规律,进一步提高学生综合运用所学知识解决实际问题的能力。
2、经历实验研究的基本过程,获得一些研究问题的经验和基本策略,发展思维能力,提高数学素养。
3、同过亲身经历实验的全过程及获得成功的体验,进一步激发学生学习数学和探究自然奥秘的兴趣,增强应用数学的意识和自信心。
教学准备:烧杯(或塑料瓶)、水、冰、尺子等
教学过程:
一、创设情境,激发探究欲望
谈话:同学们,观察这些自然现象,这是怎么回事呢?(水结冰、冰化水体积会发生变化)
水结冰体积会增加多少?冰化水体积会减少多少?水和冰在变化过程中,体积之间存在怎样的关系?想不想设计一个实验来探究一下?
[设计意图]用学生生活中经常见到的自然现象作为切入点,可以更好的引起学生的思维共鸣,再加上学生本身就具有好奇的思维特点,这样可以更好的激发学生探究水和冰之间体积变化规律的愿望。
二、小组合作,设计实验过程
谈话:水结成冰,体积会增加,我们要研究水结成冰体积是怎样变化的,我们应怎样设计这个实验?冰化成水的实验应该怎样设计?
1. 组内交流,设计实验过程。
谈话:请同学们把你的想法告诉小组的同学,注意从实验的准备、步骤、注意事项和基本过程等方面进行讨论交流,并设计好实验记录单。
学生组内活动。
2. 组间交流,补充完善实验。
谈话:哪个小组愿意派代表交流自己的实验设想。
学生交流。
引导学生相互评价各个小组设计的实验设想,对一些实验的细节问题进行完善补充。
[设计意图]这样设计,学生会在杯子的选择、冰块形状的选择、实验记录单的设计等细节问题上进行考虑,为实验做好准备。
3. 阅读教材,优化实验过程。
谈话:请同学们拿出课本,阅读教材设计的实验过程,并与自己组内的实验过程进行对比,设计好如下实验单。
实验一
水的体积
冰的体积
体积增加了百分之几
1
2
3
结论
实验二
冰的体积
水的体积
体积增加了百分之几
1
2
3
结论
[设计意图]通过这样一个过程学生可以对实验的过程有一个比较清晰的认识,为下一步的实验做好了铺垫。同时通过让学生经历实验的设计过程可以更好的提高学生的实验能力,真正使学生的活动都有思维的痕迹,让学生的动手与动脑有效的结合。
三、教师引领,分组完成实验
谈话:请同学们做好分工,团结协作;选择合适的杯子,便于精确测量里面的相关数据;杯子里的水不要超过五分之四;按实验的要求进行,记录好相关的数据;注意安全。
学生分组进行活动,师巡视予以指导。
填写记录单,组内做好数据分析,初步形成结论。
注意:实验一和实验二可同时进行准备。
[设计意图]让学生经历实验的过程,动手操作可以更好的调动学生的学习兴趣;同时在实验的过程中注意组内成员要团结协作,可以更好的培养学生的合作意识;在对数据进行分析的过程中可以更好的感受到数学在日常生活中的重要性。
四、组间交流,形成结论
谈话:哪个小组想把你们组的实验的过程展示给同学们?
让每各个小组派同学交流自己的实验过程,并把自己小组的实验记录单呈现出来,并说出自己小组探究的结论。学生随时对各个小组交流的实验过程和实验结论进行评价。
实验一,学生可能会得出水结成冰体积会增加11%左右,实验二可能会得出冰化成水体积会减少10%左右。
学生在交流的时候可能出现不同的结果,我们可以组织学生适时进行分析评价最终形成一个比较合理的结论。
[设计意图]通过组间交流,可以组织学生更好对数学实验的数据进行分析,形成结论,学生在讨论交流的过程中可以更好的渗透一些数学科学探究的方法,感受数学的魅力所在。
五、相关链接,学以致用
1.如果冰块的形状不规则,如何测出它的体积?写出你的设计方案。
2.水结成冰后,体积增加10%,有一块冰体积55立方厘米,化成水后体积是多少立方厘米?
3.查阅相关资料比较一下自己的实验结论,根据整个实验过程写一篇数学日记。
[设计意图]将相关的数学练习与实验相结合,可以让学生更好的把数学与生活联系起来,感受数学的价值;另外第三题可作为课外作业对课堂实验进行延伸,体现数学的趣味性。
相关说明:本节课是一节综合应用课,里面设计的实验应该让学生动手操作,亲身经历,这样才能更好的激发学生的学习兴趣。不过实验的过程可以根据自己学校的实际情况进行安排。方便的话可在课堂上完成实验,条件不允许我们也可以把探究活动放在课外,然后再组织交流。即便是我们课堂做过实验,也可以布置学生课外与家长一起再进行一次实验。
圆柱圆锥
单元教学计划
一、教学目标:
1、 在现实情境中,通过观察、操作、比较等活动,认识圆柱和圆锥,掌握它们的特征。
2、 结合具体情境,通过探索与发现,理解并掌握圆柱的侧面积、表面积和圆柱、圆锥体积的计算方法,并能解决简单的实际问题。
3、 经历探索圆柱、圆锥有关知识的过程,进一步发展空间观念。
4、 在观察与实验、猜测与验证、交流与反思等活动中,初步体会数学知识的产生、形成于发展的过程,体验数学活动充满着探索与创造,初步了解并掌握一些数学思想方法。
二、教材分析
本单元是在学生掌握了圆、长方体、正方体等有关知识的基础上进行教学的,是小学阶段几何知识的最后一部分内容,是以后进一步学习几何知识的基础。圆柱和圆锥的侧面是曲面,本单元的学习会使学生对立体图形的认识更深入、更全面,有利于进一步发展学生的空间观念。
本单元的主要教学内容是:圆柱和圆锥的特征、圆柱的侧面积和表面积、圆柱和圆锥的体积。教学重点是圆柱、圆锥的特征及圆柱表面积和体积的计算。
三、教学策略
1、 加强学生的动手操作和实验,让学生充分地经历探索知识的过程。
2、 密切联系学生的生活实际。
3、 加强相关知识的对比,帮助学生形成完整的认知结构。
4、 让学生充分经历“猜想——验证”的学习过程,做好数学思想方法的渗透。
5、 教学课时:12课时
信息窗一 :圆柱和圆锥
教学内容:
(青岛版)六年级下册第二单元第15、16页信息窗1。
教学简析:
该信息窗呈现了学生在日常生活中经常接触到的圆柱和圆锥形的冰淇淋盒,引发学生提出“这些物体都是什么形状的”、“圆柱和圆锥各有什么特点”等问题,引入对圆柱、圆锥的认识。
圆柱、圆锥是人们在生产、生活经常遇到的几何形体,认识圆柱、圆锥有利于进一步发展学生的空间观念,为进一步学习和解
决实际问题打下基础。
教学目标:
一、使学生认识圆柱和圆锥,知道圆柱、圆锥各部分的名称并掌握它们的特征。
二、通过观察、操作、思考、讨论等活动,培养学生发现问题、分析问题、解决问题的能力。
三、从实际生活入手,培养学生的思维能力,发展学生的空间观念。
教学重点:掌握圆柱、圆锥的特征。
教学难点:认识圆柱、圆锥的高
教学准备:
学生每人准备一个茶筒或一个圆锥形实物。
教师准备多媒体课件。
第一课时
教学过程:
一、创设情境,初步感知。
1、课件出示:圆柱、圆锥、正方体、长方体的实物图片(茶筒、铅笔、烟囱、圆木、冰淇凌盒、沙堆、铅锤、牙膏盒、化妆品盒)
谈话:同学们知道这些物品的名称吗?
2、教师:这么多物品,你知道它们各是什么形状吗?
指名学生分别说。
谈话:回忆一下它们各有什么特征?学生回答。
谈话:不论长方体还是正方体,它们都是由一些平面图形围成的立体图形,你知道茶筒是什么形状吗?学生回答,教师板书:圆柱
铅锤是什么形状?板书:圆锥
这节课就让我们一起进一步认识圆柱、圆锥。
【设计意图】:兴趣是学习成功的动力,通过实物图形,引起学生的学习兴趣,让学生感知生活中处处有圆柱、圆锥,通过复习旧知,为学习新知做铺垫,使学生很快进入有目地的探究状态。
二、主动探究,认知特征
(一)认识圆柱的特征
1、自主提出问题
谈话:对于圆柱和圆锥,你想知道有关它们的什么问题?
学生回答,学生可能提出如下问题:
①:我想知道圆柱有几个面?
②:我想知道圆锥有几个面?
③:我想知道圆柱的高在哪儿?
④:我想知道圆柱、圆锥每个面的是什么形状?
圆柱和圆锥各有什么特点?……
谈话:同学们提了这么多问题,今天这节课我们就先来认识一下圆柱、圆锥的特点,其它问题我们下一节课再来研究,好吗?
【设计意图】:让学生提出自己想要解决的问题,可以调动起学生的自主学习意识和探究欲望。
2、认识圆柱的底面和侧面
教师出示圆柱实物并将三角尺的直角边靠在圆柱实物边上,告诉学生我们学习的圆柱上下粗细相同,叫直圆柱。
谈话:在我们的生活中你见过哪些物品是圆柱形的?
指名学生说几个圆柱形物体。
谈话:请同学们拿出自己准备的茶筒,观察手中的圆柱形物体。
①先看一看,你认为它有几个面?
②再摸一摸每个面有什么特征?
③然后小组内互相说一说自己的发现。
④最后讨论一下你的发现正确吗?
教师巡视指导
汇报观察结果:
谈话:谁来说说你的发现?还有谁再来试一试?
指名学生拿着实物到前面介绍自己的发现,师生及时共同进行评价、质疑。
谈话:你是怎么知道上下2个面大小相同的?
指名说,鼓励学生用不同的方法来解决问题。学生解决的办法有:
①将茶筒盖拿下与底面重合
②将茶筒底面放在纸上描下来,然后将另一个面放在上边,完全重合。
③侧圆的直径
教师适时加以引导,让学生明确:圆柱上、下两个面是圆形,是个平面,大小相等,叫圆柱的底面,中间有一个曲面,叫圆柱的侧面。
底面
底面
侧面
课件随时演示,将茶筒的底面和侧面抽象出的圆柱立体图形
板书:底面 2个完全相同的圆
侧面 1个曲面
3、认识圆柱的高
教师出示两个高矮、粗细不同的圆柱,提问:你有什么发现?
圆柱为什么会有粗有细?使学生明确圆柱的底面大就粗。
圆柱为什么有高有矮?使学生知道圆柱的高不同。
出示圆柱实物,
谈话:那是圆柱的高,谁来指一指?
出示圆柱形塑料牙签筒
谈话:里面的牙签是不是牙签筒的高?每个牙签的长度怎样?想象一下,假如牙签细一些,再细一些,能装多少根?想一想圆柱的高有多少条?
谈话:你知道你的圆柱形茶筒有多高吗?
同桌合作动手量一量圆柱的高,记下测量数据,多量几条,你能发现什么?
教师巡视指导
高
汇报测量结果:
谈话:你们是怎样测量的?
指名一组到讲台前演示,
使学生明确:测量边上的高最方便,圆柱的高长度相等,有无数条。
侧面
高
高
提问:什么是圆柱的高?
学生回答,教师板书:上下两底面之间的距离叫圆柱的高。
教师出示课件演示圆柱的高
板书:高 无数条
4、同桌相互交流对圆柱的认识。
【设计意图】:通过课件演示,学生看一看、摸一摸、想一想、量一量、议一议等活动,让学生亲身经历知识的形成过程,进一步整体感知圆柱,加深对圆柱的认识,培养学生的空间观念;通过茶筒、牙签筒等实物,将抽象的数学知识形象化,便于理解;通过小组合作,交流认识、动手测量,培养了学生的合作能力。
(二)认识圆锥
1、谈话:刚才我们认识了圆柱,现在请同学们拿出自己准备的圆锥形物体,观察圆锥体,你能发现什么?它与圆柱有什么不同?把你看到的、摸到的与小组内的同学交流交流。
学生小组内交流。
教师巡视指导。
指名汇报观察结果。
使学生明确圆锥有一个底面是圆形,有一个侧面是曲面。圆锥是尖的有一个顶点。
教师出示圆锥实物课件
质疑:圆锥有几条高?
怎样测量圆锥的高?
学生讨论,教师启发学生用平移的方法将藏在圆锥中的高平移出来测量,指名学生到讲台前动手测量圆锥模形的高。
通过动手实践,使学生明确圆锥有一个顶点,只有一条高。
板书:底面 1个 圆形
侧面 1个 曲面
高 1条
2、讨论比较圆柱与圆锥的有什么区别与联系?
3、同桌交流对圆锥的认识
4、生活中你还见过那些物体是圆锥形的?
5、学生阅读课本15、16页的内容。
【设计意图】:前面有了对圆柱的特点的学习,圆锥的学习放手让学生自主探究,建立对圆锥的表象认识,体验获取成功的喜悦,提高学生的学习能力。
三、巩固练习、运用新知
1、课本自主练习17页第1题。
2、判断下面哪些图形是圆柱?哪些是圆锥?为什么?(课本P17页第2题)
3、写出下面图形各部分的名称
4、课堂游戏,猜猜看,可以抢答。
我这儿有一个物体,它有两个完全相同圆形底面,一个侧面,有无数条高,它是谁?……
【设计意图】:通过多个不同层次的练习,目地是让学生在练习中加深对圆柱圆锥的认识,提高学生思维的深刻性和灵活性,体现数学知识“有用”。
四、课堂小结 回顾新知
今天这节课你有什么收获?
使学生巩固圆柱与圆锥的区别与联系
【设计意图】:学生自主回顾、梳理所学新知,进一步提高了学生的思维能力。
教后反思:本节教学的最大亮点是让学生经历圆柱圆锥实物图到平面图的过程。
第2课时
教学内容:
教学目标:
1. 通过练习使学生进一步认识圆柱和圆锥的特点,进一步加深对它们区别的认识。
2. 通过动手操作,知道圆柱的侧面展开得到一个长方形,圆锥的侧面展开是一个扇形。
3. 发展空间观念,为下面学习表面积和体积做准备。
教学过程:
一、复习旧知:
谈话:同学们,上节课我们初步认识了圆柱圆锥,下面我们先来复习一下上节课的知识,再来做些练习。
1、圆柱和圆锥的特点是什么?它们各部分的名称是什么?
(点名让学生回答)
2、圆柱和圆锥的区别是什么?
(点名让学生回答)
3、动手操作延伸上节课内容,让学生拿出用纸做的圆柱和圆锥,然后沿着圆柱侧面的一条高剪开,沿着圆锥侧面的一条直线剪开,看看得到什么形状?
学生集体交流。
【设计意图】通过复习旧知,对上节课的知识进行回顾整理延伸,起到很好的铺垫作用,便于学生更准确的进行下面的练习。
二、巩固练习:
1、填空。
(1)圆柱的上、下两个面叫做( ),它们是( )的两个圆。
(2)圆柱有一个( )面,叫做侧面。圆柱两底之间的( )叫做高。一个圆柱有( )条高。
(3)圆柱的侧面沿着它的一条( )展开,可以得到一个长方形。它的长等于圆柱底面的( ),宽等于圆柱的( )。
(4)把圆锥的侧面展开,可以得到一个( )形。
(5)圆锥的底面是个( ),侧面是个( )。从圆锥的( )到( )的距离是圆锥的高。一个圆锥有( )条高。
2、判断题。(对的在括号内打“√”,错的在括号内打“×”。)
(1)圆柱的侧面展开图一定是长方形。 ( )
(2)圆柱两底面之间的连线叫作圆柱的高。 ( )
(3)如果一个圆柱的侧面展开是正方形,它的底面周长和高一定相等。 )
(4)圆柱圆锥的侧面展开都是长方形。 ( )
(5)圆柱和圆锥的高都有无数条。 ( )
【设计意图】以上练习是认识圆柱圆锥的基本练习,不同的题型,旨在拓宽学生的练习广度,使学生能灵活掌握圆柱圆锥的特征,会很快的区分他们,教师在授课时要注意学生做题的正确率,使大部分学生都能掌握这部分知识。
三、综合练习
1、17页第3题。“连一连”。学生自主连线,全班交流。
2、17页第4题。学生读题后,教师让学生拿出准备好的长方形的纸卷成圆柱直筒,观察后学生自主解答问题,然后全班交流。
3、18页第5题。学生读题后先想象一下,用手比划一下,然后再连线,最后全班交流。
4、18页第6题。这是一道思考题,先让学生认真读题,弄明白丝带的长度与蛋糕盒的哪几部分有关系,然后再认真思考独立解决,全班交流。
(综合练习是课本自主练习的题目,旨在拓宽学生知识面,使学生较全面的了解生活中常见的圆柱圆锥的全面特征,使学生感受到数学与生活的紧密联系,激发学生学习的兴趣。)
四、全课总结
在今天的学习中,你有哪些收获呢?
通过今天的课,大家进一步认识了圆柱和圆锥,希望同学们以后都能像这节课一样这么认真、这么仔细学好以后的知识。
五、课后作业
P18课外实践:找一找生活中哪些物体的形状是圆柱或圆锥。想办法测量它们的底面直径和高。填入课本上的表中。
教后反思:通过练习,学生对圆柱圆锥的认识进一步加深,为表面积体积的学习奠定了坚实基础。
信息窗2:圆柱的表面积
教学内容:
义务教育课程标准试验教科书青岛版六年级下册小学数学教科书第19—20页。
教材简析:
圆柱表面积包括圆柱体的侧面积、表面积的概念,表面积的计算方法。由于学生已了解长方体、正方体的表面积,又制作过圆柱模型,所以对圆柱表面积理解并不困难。因此教材一开始就提出问题:圆柱的表面积指的是什么?让学生在交流中逐步理解圆柱表面积的含义。对于表面积的计算,由于空间想像力有限,学生往往不能将圆柱的底面半径(直径)及圆柱的高,和圆柱侧面的长、宽建立起联系。因此,教材加强了操作,让学生将课前做好的圆柱模型展开,观察展开后的形状,并在展开后的图形中标明圆柱的底面和侧面,以便于把展开后的每个面与展开前的位置对应起来,得出:圆柱的表面积=圆柱的侧面积+两个底面的面积。接着引导学生再借助表面展开图,推出:圆柱的侧面积=底面周长×高。
教学目标:
1. 通过动手操作,认识圆柱的展开图,理解圆柱侧面积和表面积的含义。
2. 探索和掌握圆柱侧面积和表面积的计算方法,并能解决生活中相应的实际问题。
3. 进一步培养学生的动手操作能力,发展学生的空间观念。
教具准备:
剪刀、直尺、一些容易剪开的圆柱形纸筒。
教学过程:
第1课时
一、创设情境,提出问题
1、感知情境,收集信息。
谈话:你想了解一下这种纸筒是怎样生产出来的吗?下面我们一起到生产车间去参观一下。(多媒体播放纸筒的生产过程。)
(学生在了解圆柱体纸筒的基础上,明确圆柱体的组成部分,利用学生好奇的心理,激发学生探究新知的欲望。)
2、提出问题,明确目标。
谈话:根据屏幕展示情境图右侧的圆柱形纸筒成品及其数据,你能提出什么数学问题?
学生可能提出:纸筒包括哪几部分?做一个圆柱体纸筒需要多少纸板?……
(创设问题情境,引导学生搜集信息,提出问题,有利于激发学生的学习兴趣,激活学生对数学知识学习的欲望,明确探究目标。)
二、自主探究,解决问题
1、提出问题
谈话:求“做一个这样的圆柱形纸筒,至少需要多少纸板” ,实际上是求什么?
教师根据学生的回答,适时总结求需要多少纸板,就是求圆柱体纸筒的表面积。
[设计意图]从学生提出的问题中,筛选出有价值的数学问题,明确问题的方向,在观察纸筒制作过程后,让学生对表面积有了初步的感受,对于表面积的计算方法的探索起到积极的作用。
2、动手操作
谈话:利用你们手中用纸围成的圆柱剪一剪,一个圆柱的展开图,看你有什么发现?
学生分组动手操作。
[设计意图]学生动手剪一剪,有利于培养学生的动手能力,也有利于培养学生的空间想象能力。表面积的计算不仅仅是计算的问题,更重要的是学生在解决问题之前能在大脑中想象出需要计算的是哪几个面的面积。
3、总结概念
谈话:哪个小组来交流一下你们的剪法和发现?
根据学生的回答,得出结论:圆柱底面的面积叫圆柱的底面积,侧面的面积叫圆柱的侧面积。圆柱的侧面积加上两个底面的面积就是圆柱的表面积。
谈话:圆柱体的底面是两个完全一样的圆,底面的面积就是圆的面积。圆柱体的侧面展开后得到了什么图形?
学生可能得到长方形和平行四边形。
4、归纳方法
谈话:圆柱体侧面展开的不论是长方形,与圆柱体的底面和高有什么关系呢?
谈话:请各小组研究一下圆柱侧面展开得到的长方形的长和宽与圆柱的哪些部分有关系,有什么样的关系。想一想圆柱的侧面积应该如何计算。
根据学生讨论得出:圆柱体的侧面积=底面周长×高
↓ ↓ ↓
长方形的面积= 长 × 宽
师:应用我们的发现,你能求出下面圆柱的侧面积吗?(只列式,不计算。)
(1) 底面周长4cm,高5cm。
(2) 底面直径2cm,高10cm。
口头列式并说说怎么想的。
谈话:圆柱体的表面积怎样计算呢?
圆柱体的表面积等于侧面积加两个底面的面积。
[设计意图]转化的方法是学生学习的重要方法,把新的问题转化成已经学过的问题是学生解决问题的重要方法。通过转化学生把圆柱体的表面积转化成一个长方形和两个圆面积的方法。
三、综合练习,深化提高
1、自主练习第1题。
师:请你先说说侧面积和表面积的计算方法,然后列式计算。
2、自主练习第2题。
学生回答、列式计算。
学生独立解答。
关注学生是否理解和掌握了侧面积和表面积的计算方法。
3、布置作业,课后拓展
谈话:课下,请你选择一个圆柱形的盒子,测量有关数据并计算它的侧面积和表面积。
[设计意图]练习的目的有三个方面:一是在巩固所学知识的基础上培养学生的空间观念,二是进一步掌握圆柱体侧面积和表面积的计算方法,三是通过实践性的作业,培养学生学习数学的兴趣。
教后反思:本节教学充分利用表面展开教具形象直观,学生较好的掌握了圆柱侧面积、表面积的求法。
第2课时
一、创设情境,激发兴趣
谈话:上节课我们学习了圆柱体表面积的计算方法,这是一个同学做的圆柱体的纸盒,要计算使用了多少纸板,应该怎么样计算?
根据学生的回答,教师提供数据,学生计算。
[设计意图]这样的谈话,充分调动了学生的学习兴趣,把学生的注意力很快集中起来,为下面的闯关做好准备。
二、巩固练习、深化提高
1、基本练习
自主练习3
学生读题,思考前轮压过一周的面积是指圆柱体的什么?
学生独立解答,并订正。
自主练习4
学生独立解答,集体订正,学生说明计算的理由。
2、综合练习(自主练习5、6、8、9、10)
自主练习5
选择哪些材料可以作成圆柱体的盒子,为什么?
学生独立思考,有困难的学生可以提前准备好材料,拼一拼,试一试。
动手操作以后要引导学生分析,长方形的长和宽与做底面的圆相符。
自主练习6
填表,注意找出已知数据与未知数据之间的关系。
自主练习8、9
学生独立解答,并交流解决问题的方法。
3、拓展练习
自主练习12
可以利用手中的材料演示(如:粉笔),明确截面的面积与底面积的关系,找出截的段数与增加的面数之间的关系。
[设计意图] 练习设计由浅入深,从基本的仿例练习到拓展练习,让学习困难的学生有机会赶上来,让优秀的学生有展示自己才华的机会。在练习中,学生的思维得到发展,解决问题的能力有所提高。
三、课外延伸
一个圆柱体侧面展开是一个正方形,正方形的边长是12.56厘米,圆柱体的表面积是多少平方厘米?
[设计意图] 通过课外延伸的题目,拓展学生的思维,引导学生找到正方形边长与底面周长、正方形的面积与圆柱体的侧面积之间的关系,提高学生解决问题的能力。
教后反思:通过练习,学生进一步掌握了圆柱侧面积与表面积的求法,并能分析解决一些生活中的实际问题。
信息窗3 圆柱和圆锥的体积
教学内容:
教材简析:
该信息窗呈现的是圆柱和圆锥形状的冰淇淋盒,并分别标出了它们的底面直径和高。引导学生提出问题,引入对圆柱、圆锥体积计算的探索和学习。“合作探索”中第一个红点部分是学习圆柱的体积;第二个红点部分是学习圆锥的体积。
教学目标:
1. 结合具体情境,通过探索与发现,理解并掌握圆柱、圆锥体积的计算方法,并能解决简单的实际问题。
2. 经历探索圆柱、圆锥体积计算公式的过程,进一步发展空间观念。
3. 在观察与实验、猜测与验证、交流与反思等活动中,初步体会数学知识的产生、形成与发展的过程,体验数学活动充满着探索与创造,初步了解并掌握一些数学思想方法。
教学重点和难点:
圆柱、圆锥体积的计算方法,以及体积公式的探索推导过程。
教具准备:多媒体课件、圆锥、圆柱体积学具、沙子等。
第一课时
教学过程:
一、创设情境,激趣引入。
谈话:同学们,天气渐渐热了,在夏季同学们最喜欢的冷饮是什么?(生回答)
课件出示:两个圆柱体冰淇淋。
谈话:看,小明买了两个冰淇淋,你能猜猜哪种包装盒体积大吗?
(生猜测)这节课我们就来研究圆柱的体积。(板书课题——圆柱体的体积。)
【设计意图】:从生活中常见的例子导入新课,从中培养学生在生活中发现数学问题、提出问题的意识。学生的猜测为后面的实验验证做好了铺垫,激发学生探究新知的欲望。
二、回忆旧知,实现迁移。
谈话:怎样求圆柱的体积呢?我们也许能从以前研究问题的方法里得到启示,找到解决问题的办法。请大家想一想,在学习圆的面积时,我们是怎样推导出圆的面积计算公式的?
(学生回答后,教师利用多媒体课件动态演示把圆等分切割,拼成一个近似的长方形,找出圆与所拼成的长方形之间的关系,进而推导出圆面积计算公式的过程。)
【设计意图】:通过回顾圆的面积的推导方法,巧妙地运用旧知识进行迁移。
三、利用素材,探索新知。
㈠交流猜测
谈话:通过刚才的回顾,你们能想办法将圆柱转化成我们已经学过的立体图形来求体积吗?
生:我们学过长方体的体积,可不可以将圆柱转化成长方体呢?
师谈话:你的想法很好,怎样转化呢?
生讨论,交流。
生汇报,可能会有以下几种想法:
1.先在圆柱的底面上画一个最大的正方形,再竖着切掉四周,得到一个长方体,然后把切下的四块拼在一起。
2.可以把圆柱的底面分成许多相同的扇形,然后竖着切开,重新拼一拼。
3.如果是橡皮泥那样的,可以把它重新捏成一个长方体,就能计算出它的体积了。
谈话:请同学讨论和评价一下,哪一种方法更合理呢?引导学生按照第二种方法进行验证。
㈡实验验证
学生动手进行实验。
谈话:请每个小组拿出学具,按照刚才第3小组的方法把它转化为近似的长方体,并研究转化后的长方体和原来圆柱体积、底面积、高之间的关系。
学生合作操作,集体研究、讨论、记录。
【设计意图】本环节让学生亲自动手 操作,再次感受“化圆为方”的思想。动手操作,是学生发现规律和获取数学思想的重要途径。
四、分析关系,总结公式
1.全班交流
谈话:哪个小组愿意展示一下你们小组的研究结果?
引导学生发现:
转化后的形状变了,但是体积没有变,底面的面积没有变,高也没有变。
2.分析关系
引导说出:圆柱体转化成长方体后,虽然形状变了,但是长方体的体积和原来圆柱的体积相等,长方体的底面积等于圆柱的底面积,长方体的高等于圆柱的高。
3.总结公式。
谈话:同学们真了不起!你们的发现非常正确。我们来看一看课件演示。
(课件分别演示将圆柱等分成16份、32份、64份的割拼过程,学生观察、思考。)
谈话:你发现了什么?
引导观察:分的份数越多,拼成的图形就越接近长方体。
(课件动态演示:圆柱的高——长方体的高,圆柱的底面积——长方体的底面积。)
谈话:其实大家刚才又采用了“化圆为方”的方法将圆柱转化成了长方体。你现在能总结出圆柱体积的计算公式吗?说一说你是怎样想的。
根据学生的回答教师板书:
长方体的体积 = 底面积 × 高
圆柱的体积 = 底面积 × 高
谈话:你能用字母表示圆柱的体积计算公式吗?V=Sh
【设计意图】教师给予适当的演示,沟通圆面积计算公式的推导方法与圆柱体积计算公式推导方法的共同点——转化法,便于学生顺利推导出圆柱体积的计算公式 。
五、利用公式,解决问题。
自主练习第1题、第2题、第3题
【设计意图】巩固练习及时让学生利用结论解决问题,感受自己研究的重要价值,激发学习数学的兴趣。
六、课堂总结
教后反思:关于圆柱的体积计算方法的推导是本节课的重难点,教学中,启发学生在已有知识经验基础上大胆猜想圆柱的体积计算方法,然后通过学具操作、教具演示,学生较好的经历了过程,达到了教学目标。
第二课时
一、串联情境 唤醒旧知。
1.谈话:同学们,上节课我们通过研究冰淇淋盒的体积问题,学会了如何求圆柱的体积。你能说说如何求圆柱的体积吗?计算公式是怎样推出的?
2.口答练习:
你能借助公式计算下面圆柱的体积吗?
(1)底面半径 15厘米,高8厘米。
(2)底面直径 6米,高18米。
【设计意图】:通过复习公式,唤起学生的回忆,为下面利用公式解决打下基础。
二、巧用公式,解决问题。
1.出示课后练习第3题。
在美国加利福尼亚洲发现了一棵高达142米的巨衫。它的树干上下几乎一样粗,横截面周长约是38米。
师谈话:你能提出什么问题?
生:树干的体积会是多大呢?
师:知道了树干横截面的周长,该如何求体积呢?
2.学生独立解答。
3.交流算法。
4.师生总结解决此类问题的步骤:
(1)根据周长求出底面的半径。
(2)根据半径求出底面的面积。
(3)根据体积公式求出树干的体积。
【设计意图】:让学生明确已知圆柱底面周长,求圆柱体积的计算方法。
三、综合练习,统一公式。
1.出示课后练习第10题:计算下面图形的体积。
2.交流算法。
3.师谈话:你能把上面三种图形的体积公式统一成一个吗?
引导发现:体积=底面积×高
【设计意图】:通过计算,发现长方体、正方体、圆柱体的体积公式可以统一成一个,感受到它们之间的密切联系,有助于提高学生的综合实践能力。
四.拓展练习,提高能力。
1.出示练习第12题。
引导学生发现:体积相等、底面积也相等的圆柱和圆锥,圆锥的高是圆柱高的3倍。
2.出示练习13题。
(1)用62.8厘米的边长做圆柱形小桶的底面周长,47.1厘米的边长做圆柱小桶的高。
(2)用47.1厘米的边长做圆柱形小桶的底面周长,62.8厘米的边长做圆柱小桶的高。
3.课后思考:练习第14题。
【设计意图】:在拓展练习中提高学生的解决实际问题的能力。
教后反思:通过练习,学生进一步掌握了圆柱体积计算方法,并能分析解决一些生活中的实际问题。
第三课时
一、创设情境,提出问题。
谈话:在炎热的夏季里,同学们一定很喜欢吃冰淇淋吧!(出示课件),看:超市里正在搞促销活动呢,圆柱形的冰淇淋每个5元,圆锥形的冰淇淋每个2元。(图中圆柱形和圆锥形的雪糕是等底等高的。)用10元钱怎样买冰淇淋最合算呢?
谈话:要解决这个问题,需要先解决哪些问题?你有什么困难吗?
谈话:是啊,今天我们就一起来学习 “圆锥的体积”,相信你一定会自己找到答案的。引出课题:圆锥的体积
[设计意图]联系学生熟悉的生活情境,激活学生思维,让学生主动思考,提出问题,有效激发了学生的学习热情和探究欲望。
二、猜想验证、研究问题。
1、引导猜想:
谈话:请同学们猜测一下,圆锥的体积可能与什么有关系?有怎样的关系?
[设计意图]让学生运用已有的知识和生活经验进行猜测,大胆提出假想,既让学生实现了创造性的学,又激发了学生急于验证假想的探究欲望。
2、实验验证:
①分组实验,验证猜想:
谈话:下面,请同学们利用老师提供的实验材料分组操作,自己找一找屏幕上的圆柱与圆锥体积间的关系,解决电脑博士给我们提出的问题。
课件出示思考题:
(1) 通过实验,你们发现圆柱的体积和圆锥体积之间有什么关系?
(2) 你们的小组是怎样进行实验的?
学生分组操作实验,教师巡回指导。(其中多数小组的实验材料:沙子、水、水槽、量杯、等底等高的圆柱形和圆锥形容器各一个;另外2个小组的实验材料:沙子等,既不等底也不等高的圆柱形和圆锥形容器各一个,体积有8倍关系的,也有5倍关系的。
同组的学生做完实验后,进行交流,并把实验结果填写在表格中。
②汇报交流。
展示不同的结论
⑴请这几个小组同学说出他们是怎样通过实验得出这一结论的?(圆锥的体积是等底等高的圆柱体积的 。)
⑵讨论:哪个小组得出的结论更加科学合理一些?
(请他们拿出实验用的器材,自己比划、验证这个结论。)
⑶引导学生自主修正另外两个结论。
③总结圆锥体积的计算方法:V= Sh
④回归课前问题:你能分别算出这两个冰淇淋的体积吗?在练习本上试一试吧。
谈话:用10元钱怎样买冰淇淋最合算?说说你是怎样想的?
[设计意图]让学生带着问题动手实验、自己研究、分析问题,留给学生创新时空,并通过小组合作交流、共同探讨,初步得出计算圆锥体积的方法,既突出主体地位又培养了创新精神。
三、应用公式、解决问题。
1、判断。
① 圆锥的体积等于圆柱体积的 。 ( )
② 两个体积相等的等底圆柱和圆锥, 圆锥的高一定是圆柱高的3倍。 ( )
③ 一个圆锥形物体,底面积是 a 平方米,高是 b 米,它的体积是 ab 立方米。 ( )
④ 把一根圆体木头,削成一个最大的圆锥体, 削去体积是圆锥体积的2倍。 ( )
2、求下列各圆锥的体积:
a、底面面积是7.8平方米,高是1.8米;
b、底面半径是4厘米,高是21厘米;
c、底面直径是6分米,高是6分米;
3、解决问题。
① 一堆圆锥形的煤堆,底面半径是 1.5 米,高是 1.2 米。如果每立方米煤约重 1.4 吨,这堆煤有多少吨?
②有一块正方体的木材,它的棱长是9分米,把这块木料加工成一个最大的圆锥体,被削去的体积是多少?
[设计意图]通过有层次、有顺序、有梯度的循序渐进的练习,给学生提供自主探索的机会。通过这样的练习活动,逐步培养学生的创新意识,形成初步的探索和解决问题的能力。
四、全课总结
谈话:通过本节课的学习,你有哪些收获?
教后反思:关于圆锥体积计算方法的探究发现,让学生在大胆猜想的基础上,通过实验验证,从而得出了结论。
《圆锥的体积》教学反思
教学圆锥的体积是在掌握了圆锥的认识和圆柱的体积的基础上教学的。教学目标是让学生通过观察实验来发现圆锥与等底等高的圆柱之间的关系,从而得出圆锥的体积等于和它等底等高的圆柱体积的三分之一,并能运用这个关系计算圆锥的体积。由于六年级的学生对圆锥的认识和圆柱的体积的知识掌握较牢固,学生感到简单易懂,因此学起来并不感到困难。 新课一开始,出示一个圆柱体和一个圆锥体让学生观察并猜测圆锥的体积和什么有关,学生联系到了圆柱的体积,在猜想中激发学生的学习兴趣,使学生明白学习目标。然后实验过程,让学生从实验中得出结论:等底等高的圆锥体体积是圆柱体体积的三分之一,从而推出圆锥的体积公式。对圆锥的体积建立了鲜明的印象之后,再应用公式解决实际的生活问题,起到巩固深化知识点的作用。在运用阶段,我主要设计了以下四种类型问题帮助学生尽快地巩固、内化所学。1、已知底面积和高,求体积。2、已知底面半径和高,求体积。3、已知底面直径和高,求体积。4、已知底面周长和高,求体积。
不足之处:没让学生动手实际操作,如果每个小组准备一套学具,让他们以小组合作学习的方式使每个学生都能真切的参与到探究中去,最大限度的发挥每个学生的自主学习的能力,这样的学习不仅使学生学会更多的知识,更重要的是能培养学生的能力。
回顾整理
教学内容
教材简析
“回顾整理”部分由上、下两部分组成。上半部分是以学生对话的方式引发学生对圆柱和圆锥的有关知识进行回顾,并以表格的形式从圆柱和圆锥的特征、体积计算公式两方面进行整理。下半部分以框图的形式呈现出圆柱体积计算公式的推导过程。这样在注重“知识与技能”的同时,着力凸显了“过程与方法”。旨在引导学生对圆柱和圆锥有关知识及研究问题的过程进行系统的回顾,从知识与方法等不同的角度,自主完成对圆柱和圆锥有关知识的整理和复习。
教学目标,
1过引导学生回顾整理,加深学生对圆柱和圆锥的特征、圆柱的侧面积、表面积和圆柱、圆锥体积计算公式的理解,进一步将知识系统化,形成知识网络。
2主动参与数学知识的整理过程,经历系统整理和复习所学数学知识的过程。
3进一步经历数学知识的应用过程,提高应用所学数学知识解决简单实际问题的能力培养创新意识,在应用数学解决问题的过程中进一步体会数学的价值。
教学过程:
一、情境激趣,回顾旧知
谈话:同学们在本单元的学习过程中,我们借助平时大家喜欢吃的冰淇淋的包装盒认识了两种常见的立体图形——圆柱和圆锥,想一想通过本单元的学习,你都学到了哪些知识?有什么收获?咱们交流一下吧!(学生自由发言)
[设计意图]学生自主对学过的知识进行回顾,激发学习热情,使学生很快进入学习状态。
二、合作整理、归网建构
1、自主整理,初步归网
谈话:刚才同学们回顾了我们学过的圆柱和圆锥的知识,下面你能用你喜欢的方式把这一单元的主要知识点整理出来吗?。(整理时要全面、系统、有条理而且重点要突出。)
学生自主整理,师巡视指导。
2、组内交流,补充完善
(在学生交流的过程中,教师巡视,把整理的有特色的教师要做到心中有数,便于稍后的交流。)
3、全班交流。
谈话:哪个小组愿意把你们合作整理的成果向大家展示一下?
学生利用实物投影展示自己整理的成果。展示的同时给大家介绍一下整理的内容。
你们比较喜欢哪一种整理方法?为什么?
4、归纳总结。
老师把这个单元的主要内容整理成一个表格,看同学们能不能填写出来。
电脑出示表格
图形
特点
体积公式
侧面积表面积公式
圆柱
圆锥
5、回顾知识的形成过程,初步建构研究问题的策略。
谈话 :我们在这一单元的信息窗3中求冰淇淋盒的体积时,大家想到求冰淇淋的体积也就是求圆柱的体积,大家联系我们以前学过的知识,想办法推导出了圆柱的体积公式,你还记得我们是怎样推导的吗?
(学生自由发言,如果学生说不到的,可以引导学生说。)
[设计意图]让学生主动参与数学知识的整理过程,经历系统整理和复习所学数学知识的过程,并在这个过程中进一步感受立体图形的内在联系和相似内容之间的差异。学生在小组内交流方法,集体总结方法,有利于学生自主学习,将知识点重新建构,形成知识网络。让他们合作设计,也较大程度地激发了学生的创造性与合作性。这一过程中既要让学生大胆地表达自己的想法,又要提醒学生注意倾听别人的意见,养成良好的学习习惯。
三、基本练习,形成技能
谈话:刚才同学们对本单元的知识进行了回顾整理,比一比看谁在练习中表现的最出色。
1.出示综合练习第1题
学生独立完成,集体订正,提高学生的基本计算技能。
2.出示综合练习第2题
先让学生仔细读题,然后独立完成,集体订正。
3.出示“综合练习”第3题
教师先简要介绍雨量器的作用和构造。雨量器的外壳只有一个底面,内部的储水瓶底部是圆柱形的。学生独立解决,再集体订正。
4.出示“综合练习”第6题
这是一道综合应用正方体、圆柱和圆锥有关知识解决实际问题的题目。练习时,先引导学生理解题意,明确雕成的最大圆柱和圆锥的底面积等于正方体底面内切圆的面积,高等于正方体的棱长,然后计算,再集体订正。
5.出示“综合练习”第7题
这是一道求组合图形容积的题目。练习时,要先使学生明确解题的思路,即粮仓的下半部分是圆柱形,上半部分是圆锥形,求粮仓的占地面积就是求圆柱体的底面积,求粮仓的容积就是求圆柱和圆锥的体积之和。然后让学生独立解决,再集体订正.
6.出示“综合练习”第8题
这是一道综合应用所学知识解决实际问题的题目。练习时,要引导学生认识到挤出的牙膏是一个小的圆柱体,它的底面积等于管口的面积,高就是挤出的牙膏的长度。提醒学生注意单位要统一。
[设计意图]练习的设计由浅入深,由易到难,既兼顾了习题的针对性、层次性、灵活性,又发展了学生的思维,使不同水平的学生都有所提高,并注重培养学生利用公式来解决实际生活中的问题,提高了学生解决实际问题的能力。
四、课堂小结
这节课你有什么收获和体会?与同伴相互交流一下。
[设计意图]为学生提供独立解答的空间,教师可以通过个别检查,组织交流、作业批改等形式掌握一些较典型的错误,及时进行纠正,努力实现全体学生的共同进步。
【课后反思】以学生为主体,引导其自我回顾整理,然后解决问题,从而提高技能。
综合应用:水与冰
教学内容:
义务教育课程标准实验教科书青岛版小学数学六年级下册33---34页。
教材简析:
该综合应用是在学生已学过圆柱、圆锥的体积以及分数百分数等知识的基础上安排的,旨在引导学生综合运用所学过的体积、百分数等有关知识,通过实验探索水和冰在变化的过程中,体积之间的变化规律。该综合应用由两个板块组成。第一个板块是4幅反映水结成冰、冰化成水的自然现象情境图。4幅图分别是:河水结冰、雪糕融化、水瓶胀破、水管冻裂,并以对话的方式揭示了“水结成冰体积会增大,冰化成水体积会减小”。目的是在唤起学生生活经验的同时,进一步让学生感受和认识水结成冰、冰化成水时的体积变化情况,引发学生提出研究课题。第二个板块是实验过程,包括实验准备、实验步骤、注意事项、实验记录、实验总结5个部分。
教学目标:
1、综合运用学习过的有关知识,探索水结成冰,冰化成水的过程中体积变化的一般规律,进一步提高学生综合运用所学知识解决实际问题的能力。
2、经历实验研究的基本过程,获得一些研究问题的经验和基本策略,发展思维能力,提高数学素养。
3、同过亲身经历实验的全过程及获得成功的体验,进一步激发学生学习数学和探究自然奥秘的兴趣,增强应用数学的意识和自信心。
教学准备:烧杯(或塑料瓶)、水、冰、尺子等
教学过程:
一、创设情境,激发探究欲望
谈话:同学们,观察这些自然现象,这是怎么回事呢?(水结冰、冰化水体积会发生变化)
水结冰体积会增加多少?冰化水体积会减少多少?水和冰在变化过程中,体积之间存在怎样的关系?想不想设计一个实验来探究一下?
[设计意图]用学生生活中经常见到的自然现象作为切入点,可以更好的引起学生的思维共鸣,再加上学生本身就具有好奇的思维特点,这样可以更好的激发学生探究水和冰之间体积变化规律的愿望。
二、小组合作,设计实验过程
谈话:水结成冰,体积会增加,我们要研究水结成冰体积是怎样变化的,我们应怎样设计这个实验?冰化成水的实验应该怎样设计?
1. 组内交流,设计实验过程。
谈话:请同学们把你的想法告诉小组的同学,注意从实验的准备、步骤、注意事项和基本过程等方面进行讨论交流,并设计好实验记录单。
学生组内活动。
2. 组间交流,补充完善实验。
谈话:哪个小组愿意派代表交流自己的实验设想。
学生交流。
引导学生相互评价各个小组设计的实验设想,对一些实验的细节问题进行完善补充。
[设计意图]这样设计,学生会在杯子的选择、冰块形状的选择、实验记录单的设计等细节问题上进行考虑,为实验做好准备。
3. 阅读教材,优化实验过程。
谈话:请同学们拿出课本,阅读教材设计的实验过程,并与自己组内的实验过程进行对比,设计好如下实验单。
实验一
水的体积
冰的体积
体积增加了百分之几
1
2
3
结论
实验二
冰的体积
水的体积
体积增加了百分之几
1
2
3
结论
[设计意图]通过这样一个过程学生可以对实验的过程有一个比较清晰的认识,为下一步的实验做好了铺垫。同时通过让学生经历实验的设计过程可以更好的提高学生的实验能力,真正使学生的活动都有思维的痕迹,让学生的动手与动脑有效的结合。
三、教师引领,分组完成实验
谈话:请同学们做好分工,团结协作;选择合适的杯子,便于精确测量里面的相关数据;杯子里的水不要超过五分之四;按实验的要求进行,记录好相关的数据;注意安全。
学生分组进行活动,师巡视予以指导。
填写记录单,组内做好数据分析,初步形成结论。
注意:实验一和实验二可同时进行准备。
[设计意图]让学生经历实验的过程,动手操作可以更好的调动学生的学习兴趣;同时在实验的过程中注意组内成员要团结协作,可以更好的培养学生的合作意识;在对数据进行分析的过程中可以更好的感受到数学在日常生活中的重要性。
四、组间交流,形成结论
谈话:哪个小组想把你们组的实验的过程展示给同学们?
让每各个小组派同学交流自己的实验过程,并把自己小组的实验记录单呈现出来,并说出自己小组探究的结论。学生随时对各个小组交流的实验过程和实验结论进行评价。
实验一,学生可能会得出水结成冰体积会增加11%左右,实验二可能会得出冰化成水体积会减少10%左右。
学生在交流的时候可能出现不同的结果,我们可以组织学生适时进行分析评价最终形成一个比较合理的结论。
[设计意图]通过组间交流,可以组织学生更好对数学实验的数据进行分析,形成结论,学生在讨论交流的过程中可以更好的渗透一些数学科学探究的方法,感受数学的魅力所在。
五、相关链接,学以致用
1.如果冰块的形状不规则,如何测出它的体积?写出你的设计方案。
2.水结成冰后,体积增加10%,有一块冰体积55立方厘米,化成水后体积是多少立方厘米?
3.查阅相关资料比较一下自己的实验结论,根据整个实验过程写一篇数学日记。
[设计意图]将相关的数学练习与实验相结合,可以让学生更好的把数学与生活联系起来,感受数学的价值;另外第三题可作为课外作业对课堂实验进行延伸,体现数学的趣味性。
相关说明:本节课是一节综合应用课,里面设计的实验应该让学生动手操作,亲身经历,这样才能更好的激发学生的学习兴趣。不过实验的过程可以根据自己学校的实际情况进行安排。方便的话可在课堂上完成实验,条件不允许我们也可以把探究活动放在课外,然后再组织交流。即便是我们课堂做过实验,也可以布置学生课外与家长一起再进行一次实验。
相关资料
更多