所属成套资源:2022年中考数学二轮专题复习《压轴题-二次函数》培优练习(含答案)
2022年中考数学二轮专题复习《压轴题-二次函数》培优练习03(含答案)
展开
这是一份2022年中考数学二轮专题复习《压轴题-二次函数》培优练习03(含答案),共10页。试卷主要包含了25,∴M2等内容,欢迎下载使用。
2022年中考数学二轮专题复习《压轴题-二次函数》培优练习031.如图,抛物线y=ax2+bx﹣4经过A(﹣3,0)、B(2,0)两点,与y轴的交点为C,连接AC、BC,D为线段AB上的动点,DE∥BC交AC于E,A关于DE的对称点为F,连接DF、EF.(1)求抛物线的解析式;(2)EF与抛物线交于点G,且EG:FG=3:2,求点D的坐标;(3)设△DEF与△AOC重叠部分的面积为S,BD=t,直接写出S与t的函数关系式. 2.已知抛物线的表达式为y=-x2+6x+c.(1)若抛物线与x轴有交点,求c的取值范围;(2)设抛物线与x轴两个交点的横坐标分别为x1,x2,若x12+x22=26,求c的值;(3)若P、Q是抛物线上位于第一象限的不同两点,PA、QB都垂直于x轴,垂足分别为A、B,且△OPA与△OQB全等,求证:c>-5.25. 3.如图,抛物线y=﹣x2+bx+c与x轴分别交于点A、B,与y轴交于点C,且OA=1,OB=3,顶点为D,对称轴交x轴于点Q.(1)求抛物线对应的二次函数的表达式;(2)点P是抛物线的对称轴上一点,以点P为圆心的圆经过A、B两点,且与直线CD相切,求点P的坐标;(3)在抛物线的对称轴上是否存在一点M,使得△DCM∽△BQC?如果存在,求出点M的坐标;如果不存在,请说明理由. 4.已知抛物线C1:y=(x-1)2-4和C2:y=x2(1)如何将抛物线C1平移得到抛物线C2?(2)如图1,抛物线C1与x轴正半轴交于点A,直线经过点A,交抛物线C1于另一点B.请你在线段AB上取点P,过点P作直线PQ∥y轴交抛物线C1于点Q,连接AQ①若AP=AQ,求点P的横坐标②若PA=PQ,直接写出点P的横坐标(3)如图2,△MNE的顶点M、N在抛物线C2上,点M在点N右边,两条直线ME、NE与抛物线C2均有唯一公共点,ME、NE均与y轴不平行.若△MNE的面积为2,设M、N两点的横坐标分别为m、n,求m与n的数量关系 5.特例感知(1)如图1,对于抛物线y1=﹣x2﹣x+1,y2=﹣x2﹣2x+1,y3=﹣x2﹣3x+1,下列结论正确的序号是 ;①抛物线y1,y2,y3都经过点C(0,1);②抛物线y2,y3的对称轴由抛物线y1的对称轴依次向左平移个单位得到;③抛物线y1,y2,y3与直线y=1的交点中,相邻两点之间的距离相等.形成概念(2)把满足yn=﹣x2﹣nx+1(n为正整数)的抛物线称为“系列平移抛物线”.知识应用在(2)中,如图2.①“系列平移抛物线”的顶点依次为P1,P2,P3,…,Pn,用含n的代数式表示顶点Pn的坐标,并写出该顶点纵坐标y与横坐标x之间的关系式;②“系列平移抛物线”存在“系列整数点(横、纵坐标均为整数的点)”:C1,C2,C3,…,∁n,其横坐标分别为﹣k﹣1,﹣k﹣2,﹣k﹣3,…,﹣k﹣n(k为正整数),判断相邻两点之间的距离是否都相等,若相等,直接写出相邻两点之间的距离;若不相等,说明理由.③在②中,直线y=1分别交“系列平移抛物线”于点A1,A2,A3,…,An,连接∁nAn,Cn﹣1An﹣1,判断∁nAn,Cn﹣1An﹣1是否平行?并说明理由.
0.2022年中考数学二轮专题复习《压轴题-二次函数》培优练习03(含答案)答案解析 一 、综合题1.解:(1)将A(﹣3,0)和B(2,0)代入y=ax2+bx﹣4,∴,解得:,∴抛物线的解析式为:y=x2+x﹣4;(2)令x=0代入y=x2+x﹣4,∴y=﹣4,∴C(0,﹣4),∴OC=4,∵OA=3,∴由勾股定理可求得:AC=5,∵OB=2,∴AB=OA+OB=5,∴∠ACB=∠ABC,∵A与F关于DE对称,∴∠ADE=∠AED,∴∠ADE=∠FED,∴AB∥EF,设点G的坐标为(a, a2+a﹣4),∴E的纵坐标为a2+a﹣4,设直线AC的解析式为:y=kx+b,把A(﹣3,0)和C(0,﹣4)代入y=kx+b,∴,解得:,∴直线AC的解析式为:y=﹣x﹣4,把y=a2+a﹣4代入y=﹣x﹣4,∴x=﹣a2﹣a,∴E的坐标为(﹣a2﹣a, a2+a﹣4),∴EG=a﹣(﹣a2﹣a)=a2+a,过点E作EH⊥x轴于点H,如图2,∴sin∠EAH=,∴=,∴AE=HE=(4﹣a2﹣a),∴AE=EF=(4﹣a2﹣a),∵EG:FG=3:2,∴EG=EF,∴a2+a=×(4﹣a2﹣a),∴解得a=﹣3或a=1,当a=﹣3时,此时G与A重合,∴a=﹣3不合题意,舍去,当a=1时,∴AD=AE=(4﹣a2﹣a)=,∴D的坐标为(,0);(3)如图2,当≤t<5时,此时△DEF与△AOC重叠部分为△DEF,∵BD=t,∴AD=AB﹣BD=5﹣t,∴AE=AD=5﹣t,过点E作EH⊥x轴于点H,由(2)可知:sin∠EAH=,∴=,∴EH=(5﹣t),∴S=AD•EH=(5﹣t)2,如图3,当2≤t<时,过点D左DI⊥EF于点I,设EF与y轴交于点M,DF与y轴交于点N,此时△DEF与△AOC重叠部分为四边形EMND,∵AE=AD=5﹣t,∴CE=AC﹣AE=t,∵EF∥AB,△CEM∽△CAO,∴=,∴,∴EM=t,∵AE=EF,∴MF=EF﹣EM=5﹣t,∵∠CAB=∠EFD,∴tan∠EFD=tan∠CAB=,∴,∴MN=(5﹣t),∵DI=EH=(5﹣t),∴S=DI•EF﹣MF•MN=×(5﹣t)2﹣×(5﹣t)2=﹣t2+t﹣,如图4,当0<t<2时,设DE与y轴交于点M,EF与y轴交于点N,此时△DEF与△AOC重叠部分为△EMN,∵AE=5﹣t,∴CE=t,∵EF∥AB,∴△CEN∽△CAO,∴=,∴,∴EN=t,∵∠MEN=∠ADE=∠ABC,∴tan∠MEN=tan∠ABC==2,∴,∴MN=2EN=t,∴S=EN•MN=×t×t=t2,综上所述,当0<t<2时,S=t2;当2≤t<时,S=﹣t2+t﹣;当≤t<5时,S=(5﹣t)2. 2.解: 3.解:(1)∵OA=1,OB=3,∴A(﹣1,0),B(3,0).代入y=﹣x2+bx+c,得解得 b=2,c=3.∴抛物线对应二次函数的表达式为:y=﹣x2+2x+3;(2)如图,设直线CD切⊙P于点E.连结PE、PA,作CF⊥DQ于点F.∴PE⊥CD,PE=PA. 由y=﹣x2+2x+3,得对称轴为直线x=1,C(0,3)、D(1,4).∴DF=4﹣3=1,CF=1,∴DF=CF,∴△DCF为等腰直角三角形.∴∠CDF=45°,∴∠EDP=∠EPD=45°,∴DE=EP,∴△DEP为等腰三角形.设P(1,m),∴EP2=(4﹣m)2. 在△APQ中,∠PQA=90°,∴AP2=AQ2+PQ2=[1﹣(﹣1)]2+m2∴(4﹣m)2=[1﹣(﹣1)]2+m2.整理,得m2+8m﹣8=0,解得,m=﹣4±2.∴点P的坐标为(1,﹣4+2)或(1,﹣4﹣2).(3)存在点M,使得△DCM∽△BQC.如图,连结CQ、CB、CM,∵C(0,3),OB=3,∠COB=90°,∴△COB为等腰直角三角形,∴∠CBQ=45°,BC=3.由(2)可知,∠CDM=45°,CD=,∴∠CBQ=∠CDM.∴△DCM∽△BQC分两种情况.当=时,∴=,解得 DM=.∴QM=DQ﹣DM=4﹣=.∴M1(1,).当时,∴=,解得 DM=3.∴QM=DQ﹣DM=4﹣3=1.∴M2(1,1).综上,点M的坐标为(1,)或(1,1). 4.解: 5.解:(1)①当x=0时,分别代入抛物线y1,y2,y3,即可得y1=y2=y3=1;①正确;②y2=﹣x2﹣2x+1,y3=﹣x2﹣3x+1的对称轴分别为x=﹣1,x=﹣,y1=﹣x2﹣x+1的对称轴x=﹣,由x=﹣向左移动得到x=﹣1,再向左移动得到x=﹣,②正确;③当y=1时,则﹣x2﹣x+1=1,∴x=0或x=﹣1;﹣x2﹣2x+1=1,∴x=0或x=﹣2;﹣x2﹣3x+1=1,∴x=0或x=﹣3;∴相邻两点之间的距离都是1,③正确;故答案为①②③;(2)①yn=﹣x2﹣nx+1的顶点为(﹣,),令x=﹣,y=,∴y=x2+1;②∵横坐标分别为﹣k﹣1,﹣k﹣2,﹣k﹣3,…,﹣k﹣n(k为正整数),当x=﹣k﹣n时,y=﹣k2﹣nk+1,∴纵坐标分别为﹣k2﹣k+1,﹣k2﹣2k+1,﹣k2﹣3k+1,…,﹣k2﹣nk+1,∴相邻两点间距离分别为;∴相邻两点之间的距离都相等;③当y=1时,﹣x2﹣nx+1=1,∴x=0或x=﹣n,∴A1(﹣1,1),A2(﹣2,1),A3(﹣3,1),…,An(﹣n,1),C1(﹣k﹣1,﹣k2﹣k+1),C2(﹣k﹣2,﹣k2﹣2k+1),C3(﹣k﹣3,﹣k2﹣3k+1),…,∁n(﹣k﹣n,﹣k2﹣nk+1),∵=k+1, =k+1, =k+1,…, =k+1,∴∁nAn∥Cn﹣1An﹣1;
相关试卷
这是一份中考数学二轮专题复习 二次函数 压轴题专项培优练习(教师版),共62页。试卷主要包含了已知等内容,欢迎下载使用。
这是一份2022年中考数学二轮专题复习《压轴题-二次函数》培优练习10(含答案),共9页。
这是一份2022年中考数学二轮专题复习《压轴题-二次函数》培优练习08(含答案),共9页。