终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    (全国通用)2022年中考数学命题点及重难题型分类突破练 类型四 抛物线型问题(原卷版+解析版)

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      (全国通用)2022年中考数学命题点及重难题型分类突破练 类型四 抛物线型问题(原卷版).docx
    • 解析
      (全国通用)2022年中考数学命题点及重难题型分类突破练 类型四 抛物线型问题(解析版).docx
    (全国通用)2022年中考数学命题点及重难题型分类突破练 类型四 抛物线型问题(原卷版)第1页
    (全国通用)2022年中考数学命题点及重难题型分类突破练 类型四 抛物线型问题(原卷版)第2页
    (全国通用)2022年中考数学命题点及重难题型分类突破练 类型四 抛物线型问题(原卷版)第3页
    (全国通用)2022年中考数学命题点及重难题型分类突破练 类型四 抛物线型问题(解析版)第1页
    (全国通用)2022年中考数学命题点及重难题型分类突破练 类型四 抛物线型问题(解析版)第2页
    (全国通用)2022年中考数学命题点及重难题型分类突破练 类型四 抛物线型问题(解析版)第3页
    还剩3页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    (全国通用)2022年中考数学命题点及重难题型分类突破练 类型四 抛物线型问题(原卷版+解析版)

    展开

    这是一份(全国通用)2022年中考数学命题点及重难题型分类突破练 类型四 抛物线型问题(原卷版+解析版),文件包含全国通用2022年中考数学命题点及重难题型分类突破练类型四抛物线型问题解析版docx、全国通用2022年中考数学命题点及重难题型分类突破练类型四抛物线型问题原卷版docx等2份试卷配套教学资源,其中试卷共30页, 欢迎下载使用。
    类型四抛物线形问题1.在平面直角坐标系中,已知抛物线和直线l:y=kx+b,点A(-3,-3),B(1,-1)均在直线l上.(1)若抛物线C与直线l有交点,求a的取值范围;(2)当a=-1,二次函数的自变量x满足m≤x≤m+2时,函数y的最大值为-4,求m的值;(3)若抛物线C与线段AB有两个不同的交点,请直接写出a的取值范围.      2.已知平面直角坐标系(如图1),直线的经过点和点.(1)求的值;(2)如果抛物线经过点,该抛物线的顶点为点,求的值;(3)设点在直线上,且在第一象限内,直线轴的交点为点,如果,求点的坐标.        3.已知函数为常数)的图象经过点.(1)求满足的关系式;(2)设该函数图象的顶点坐标是,当的值变化时,求关于的函数解析式;(3)若该函数的图象不经过第三象限,当时,函数的最大值与最小值之差为16,求的值.        4.如图在直角坐标平面内,抛物线y轴交于点A,与x轴分别交于点B(-1,0)、点C(3,0),点D是抛物线的顶点.(1)求抛物线的表达式及顶点D的坐标;(2)联结ADDC,求的面积;(3)点P在直线DC上,联结OP,若以OPC为顶点的三角形与△ABC相似,求点P的坐标.         5.如图,抛物线经过点A(-1,0)、B(3,0)、C(0,),连接AC、BC,将△ABC绕点C逆时针旋转,使点A落在x轴上,得到△DCE,此时,DE所在直线与抛物线交于第一象限的点F.(1)求抛物线对应的函数关系式.(2)求点A所经过的路线长.(3)抛物线的对称轴上是否存在点P使△PDF是等腰三角形.若存在,求点P的坐标;若不存在,说明理由.      6.已知抛物线经过点(1)求抛物线的解析式;(2)联结ACBCAB,求的正切值;(3)点P是该抛物线上一点,且在第一象限内,过点P轴于点,当点在点的上方,且相似时,求点P的坐标.          7.已知:如图9,在平面直角坐标系xOy中,抛物线的图像与x轴交于点A(3,0),与y轴交于点B,顶点C在直线上,将抛物线沿射线AC的方向平移,当顶点C恰好落在y轴上的点D处时,点B落在点E(1)求这个抛物线的解析式;(2)求平移过程中线段BC所扫过的面积; (3)已知Fx轴上,点G在坐标平面内,且以点CEFG为顶点的四边形是矩形,求点F的坐标.         8.如图,已知抛物线y=ax2+bx的顶点为C(1,),P是抛物线上位于第一象限内的一点,直线OP交该抛物线对称轴于点B,直线CPx轴于点A(1)求该抛物线的表达式;(2)如果点P的横坐标为m,试用m的代数式表示线段BC的长;(3)如果△ABP的面积等于△ABC的面积,求点P坐标.       9.已知抛物线经过点A(1,0)和B(0,3),其顶点为D.(1)求此抛物线的表达式;(2)求△ABD的面积;(3)设P为该抛物线上一点,且位于抛物线对称轴右侧,作PH⊥对称轴,垂足为H,若△DPH与△AOB似,求点P的坐标.     10.平面直角坐标系xOy中(如图8),已知抛物线经过点A(1,0)和B(3,0),y轴相交于点C,顶点为P   (1)求这条抛物线的表达式和顶点P的坐标; (2)点E在抛物线的对称轴上,且EA=EC求点E的坐标;(3)在(2)的条件下,记抛物线的对称轴为直线MN,点Q在直线MN右侧的抛物线上,∠MEQ=∠NEB,求点Q的坐标.   11.如图,抛物线y=﹣x2﹣2x+3的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.(1)求点A、B、C的坐标;(2)点M(m,0)为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N,可得矩形PQNM.如图,点P在点Q左边,试用含m的式子表示矩形PQNM的周长;(3)当矩形PQNM的周长最大时,m的值是多少?并求出此时的△AEM的面积;(4)在(3)的条件下,当矩形PMNQ的周长最大时,连接DQ,过抛物线上一点F作y轴的平行线,与直线AC交于点G(点G在点F的上方).若FG=2DQ,求点F的坐标.   12.在平面直角坐标系xOy中,已知点B(8,0)和点C(9,).抛物线ac是常数,a≠0)经过点BC,且与x轴的另一交点为A.对称轴上有一点M ,满足MA=MC(1) 求这条抛物线的表达式; (2) 求四边形ABCM的面积; (3) 如果坐标系内有一点D,满足四边形ABCD是等腰梯形,AD//BC,求点D的坐标.      13.如图,已知在平面直角坐标系xOy中,抛物线x轴交于A和点B(1,0),与y轴相交于点C(0,3).(1)求抛物线的解析式和顶点D的坐标;(2)求证:∠DAB=ACB(3)点Q在抛物线上,且△ADQ是以AD底的等腰三角形,求Q点的坐标        14.如图8,在平面直角坐标系中,直线轴、轴分别相交于点,并与抛物线的对称轴交于点,抛物线的顶点是点(1)求的值;(2)点轴上一点,且以点为顶点的三角形与△相似,求点的坐标;(3)在抛物线上是否存在点:它关于直线的对称点恰好在轴上.如果存在,直接写出点的坐标,如果不存在,试说明理由.     

    相关试卷

    (全国通用)2022年中考数学命题点及重难题型分类突破练 类型七 与圆有关的问题(原卷版+解析版):

    这是一份(全国通用)2022年中考数学命题点及重难题型分类突破练 类型七 与圆有关的问题(原卷版+解析版),文件包含全国通用2022年中考数学命题点及重难题型分类突破练类型七与圆有关的问题解析版doc、全国通用2022年中考数学命题点及重难题型分类突破练类型七与圆有关的问题原卷版doc等2份试卷配套教学资源,其中试卷共39页, 欢迎下载使用。

    (全国通用)2022年中考数学命题点及重难题型分类突破练 类型三 角度问题(原卷版+解析版):

    这是一份(全国通用)2022年中考数学命题点及重难题型分类突破练 类型三 角度问题(原卷版+解析版),文件包含全国通用2022年中考数学命题点及重难题型分类突破练类型三角度问题解析版doc、全国通用2022年中考数学命题点及重难题型分类突破练类型三角度问题原卷版doc等2份试卷配套教学资源,其中试卷共36页, 欢迎下载使用。

    (全国通用)2022年中考数学命题点及重难题型分类突破练 类型二 交点问题(原卷版+解析版):

    这是一份(全国通用)2022年中考数学命题点及重难题型分类突破练 类型二 交点问题(原卷版+解析版),文件包含全国通用2022年中考数学命题点及重难题型分类突破练类型二交点问题解析版docx、全国通用2022年中考数学命题点及重难题型分类突破练类型二交点问题原卷版docx等2份试卷配套教学资源,其中试卷共31页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map