冀教版七年级下册第九章 三角形综合与测试课堂检测
展开冀教版七年级数学下册第九章 三角形重点解析
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列叙述正确的是( )
A.三角形的外角大于它的内角 B.三角形的外角都比锐角大
C.三角形的内角没有小于60°的 D.三角形中可以有三个内角都是锐角
2、如图,将的BC边对折,使点B与点C重合,DE为折痕,若,,则( ).
A.45° B.60° C.35° D.40°
3、如图,直线l1、l2分别与△ABC的两边AB、BC相交,且l1∥l2,若∠B=35°,∠1=105°,则∠2的度数为( )
A.45° B.50° C.40° D.60°
4、在下列长度的四根木棒中,能与3cm,9cm的两根木棒首尾顺次相接钉成一个三角形的是( )
A.3cm B.6cm C.10cm D.12cm
5、小东要从下面四组木棒中选择一组制作一个三角形作品,你认为他应该选( )组.
A.2,3,5 B.3,8,4 C.2,4,7 D.3,4,5
6、如图,是的中线,,则的长为( )
A. B. C. D.
7、如图,在△ABC中,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,∠D=15°,则∠A的度数为( )
A.30° B.45° C.20° D.22.5°
8、已知的三边长分别为a,b,c,则a,b,c的值可能分别是( )
A.1,2,3 B.3,4,7
C.2,3,4 D.4,5,10
9、下图中能体现∠1一定大于∠2的是( )
A. B.
C. D.
10、如图,在ABC中,∠A=55°,∠B=45°,那么∠ACD的度数为( )
A.110 B.100 C.55 D.45
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、一个等腰三角形的一边长为2,另一边长为9,则它的周长是________________.
2、在△ABC中,已知∠B是∠A的2倍,∠C比∠A大20°,则∠A=_____________.
3、在△ABC中,D、E分别是BC、AD的中点,S△ABC=4cm2,则S△ABE=_____.
4、如图,已知BE、CD分别是 △ABC的内角平分线,BE和CD相交于点O,且∠A=40°,则∠DOE=____________
5、已知三角形的三边分别为n,5,7,则n的范围是 _____.
三、解答题(5小题,每小题10分,共计50分)
1、已知,如图,在△ABC中,AH平分∠BAC交BC于点H,D、E分别在CA、BA 的延长线上,DB∥AH,∠D=∠E.
(1))求证:DB∥EC;
(2)若∠ABD=2∠ABC,∠DAB比∠AHC大5°.求∠D的度数.
2、如图,BD是的角平分线,BE是的AC边上的中线.
(1)若的周长为13,,,求AB的长.
(2)若,,求的度数.
3、如图,△ABC中,∠BAC=90°,点D是BC上的一点,将△ABC沿AD翻折后,点B恰好落在线段CD上的B'处,且AB'平分∠CAD.求∠BAB'的度数.
4、(1)如图,AB//CD,CF平分∠DCE,若∠DCF=30°,∠E=20°,求∠ABE的度数;
(2)如图,AB//CD,∠EBF=2∠ABF,CF平分∠DCE,若∠F的2倍与∠E的补角的和为190°,求∠ABE的度数.
(3)如图,P为(2)中射线BE上一点,G是CD上任一点,PQ平分∠BPG,GN//PQ,GM平分∠DGP,若∠B=30°,求∠MGN的度数.
5、完成下面的证明已知:如图,点D,E,F分别是三角形ABC的边BC,CA,AB上的点,DE//BA,DF//CA.
求证:∠A+∠B+∠C=180°.
证明:∵DE//BA,
∴∠3= ( ),
∠2= ( ).
∵DF//CA,
∴∠1= ( ),
∠BFD= ( ).
∴∠2= ( ).
∵∠1+∠2+∠3=180°(平角的定义),
∴∠A+∠B+∠C=180°(等量代换).
-参考答案-
一、单选题
1、D
【解析】
【分析】
结合直角三角形,钝角三角形,锐角三角形的内角与外角的含义与大小逐一分析即可.
【详解】
解:三角形的外角不一定大于它的内角,锐角三角形的任何一个外角都大于内角,故A不符合题意;
三角形的外角可以是锐角,不一定比锐角大,故B不符合题意;
三角形的内角可以小于60°,一个三角形的三个角可以为: 故C不符合题意;
三角形中可以有三个内角都是锐角,这是个锐角三角形,故D符合题意;
故选D
【点睛】
本题考查的是三角形的的内角与外角的含义与大小,掌握“直角三角形,钝角三角形,锐角三角形的内角与外角”是解本题的关键.
2、A
【解析】
【分析】
由折叠得到∠B=∠BCD,根据三角形的内角和得∠A+∠B+∠ACB=180°,代入度数计算即可.
【详解】
解:由折叠得∠B=∠BCD,
∵∠A+∠B+∠ACB=180°,,,
∴65°+2∠B+25°=180°,
∴∠B=45°,
故选:A.
【点睛】
此题考查了折叠的性质,三角形内角和定理,熟记折叠的性质是解题的关键.
3、C
【解析】
【分析】
根据三角形内角和定理球场∠3的度数,利用平行线的性质求出答案.
【详解】
解:∵∠B=35°,∠1=105°,
∴∠3=180-∠1-∠B=,
∵l1∥l2,
∴∠2=∠3=,
故选:C.
.
【点睛】
此题考查三角形内角和定理,两直线平行内错角相等的性质,熟记三角形内角和等于180度及平行线的性质并熟练解决问题是解题的关键.
4、C
【解析】
【分析】
设第三根木棒的长度为cm,再确定三角形第三边的范围,再逐一分析各选项即可得到答案.
【详解】
解:设第三根木棒的长度为cm,则
所以A,B,D不符合题意,C符合题意,
故选C
【点睛】
本题考查的是三角形的三边的关系,掌握“利用三角形的三边关系确定第三边的范围”是解本题的关键.
5、D
【解析】
【分析】
根据“三角形任意两边之和大于第三边,任意两边之差小于第三边”对各选项进行进行逐一分析即可.
【详解】
解:根据三角形的三边关系,得
A、2+3=5,不能组成三角形,不符合题意;
B、3+4<8,不能够组成三角形,不符合题意;
C、2+4<7,不能够组成三角形,不符合题意;
D、3+4>5,不能够组成三角形,不符合题意.
故选:D.
【点睛】
本题主要考查了三角形三边关系,判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.
6、B
【解析】
【分析】
直接根据三角形中线定义解答即可.
【详解】
解:∵是的中线,,
∴BM= ,
故选:B.
【点睛】
本题考查三角形的中线,熟知三角形的中线是三角形的顶点和它对边中点的连线是解答的关键.
7、A
【解析】
【分析】
由三角形的外角的性质可得再结合角平分线的性质进行等量代换可得从而可得答案.
【详解】
解: ∠ABC与∠ACE的平分线相交于点D,
故选A
【点睛】
本题考查的是三角形的角平分线的性质,三角形的外角的性质,熟练的利用三角形的外角的性质结合等量代换得到是解本题的关键.
8、C
【解析】
【分析】
三角形的三边应满足两边之和大于第三边,两边之差小于第三边,据此求解.
【详解】
解:A、1+2=3,不能组成三角形,不符合题意;
B、3+4=7,不能组成三角形,不符合题意;
C、2+3>4,能组成三角形,符合题意;
D、4+5<10,不能组成三角形,不符合题意;
故选:C.
【点睛】
本题考查了三角形的三边关系,满足两条较小边的和大于最大边即可.
9、C
【解析】
【分析】
由对顶角的性质可判断A,由平行线的性质可判断B,由三角形的外角的性质可判断C,由直角三角形中同角的余角相等可判断D,从而可得答案.
【详解】
解:A、∠1和∠2是对顶角,∠1=∠2.故此选项不符合题意;
B、如图,
若两线平行,则∠3=∠2,则
若两线不平行,则大小关系不确定,所以∠1不一定大于∠2.故此选项不符合题意;
C、∠1是三角形的外角,所以∠1>∠2,故此选项符合题意;
D、根据同角的余角相等,可得∠1=∠2,故此选项不符合题意.
故选:C.
【点睛】
本题考查的是对顶角的性质,平行线的性质,直角三角形中两锐角互余,三角形的外角的性质,同角的余角相等,掌握几何基本图形,基本图形的性质是解本题的关键.
10、B
【解析】
【分析】
根据三角形的外角的性质计算即可.
【详解】
解:由三角形的外角的性质可知,∠ACD=∠A+∠B=100°,
故选:B.
【点睛】
本题考查了三角形外角的性质,熟练掌握三角形外角的性质是解答本题的关键.三角形的一个外角等于与它不相邻的两个内角的和,三角形的一个外角大于任何一个与它不相邻的内角.
二、填空题
1、20
【解析】
【分析】
题目给出等腰三角形有两条边长为2和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.
【详解】
解:分两种情况:当腰为2时,2+2<9,所以不能构成三角形;
当腰为9时,2+9>9,所以能构成三角形,周长是:2+9+9=20.
故答案为:20.
【点睛】
本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.
2、40°##40度
【解析】
【分析】
根据已知得出∠B=2∠A,∠C=∠A+20°,代入∠A+∠B+∠C=180°得出方程∠A+2∠A+∠A+20°=180°,求出即可.
【详解】
解:∵∠B是∠A的2倍,∠C比∠A大20°,
∴∠B=2∠A,∠C=∠A+20°,
∵∠A+∠B+∠C=180°,
∴∠A+2∠A+∠A+20°=180°,
∴∠A=40°,
故答案为:40°.
【点睛】
本题考查了三角形内角和定理的应用,注意:三角形的内角和等于180°,用了方程思想.
3、1cm2
【解析】
【分析】
根据三角形的中线把三角形分成两个面积相等的三角形的性质分析,即可得到答案.
【详解】
∵D是BC的中点,S△ABC=4cm2
∴S△ABD=S△ABC=×4=2cm2
∵E是AD的中点,
∴S△ABE=S△ABD=×2=1cm2
故答案为:1cm2.
【点睛】
本题考查了三角形中线的知识;解题的关键是熟练掌握三角形中线的性质,从而完成求解.
4、110°##110度
【解析】
【分析】
根据∠A=40°求出∠ABC+∠ACB=140°,根据角平分线的定义求出∠EBC+∠BCD=70°,进而求出∠BOC=110°,最后根据对顶角相等即可求解.
【详解】
解:如图,∵∠A=40°,
∴∠ABC+∠ACB=180°-∠A=140°,
∵BE、CD分别是 △ABC的内角平分线,
∴∠EBC=∠ABC,∠BCD==∠ACB,
∴∠EBC+∠BCD=∠ABC+∠ACB=(∠ABC+∠ACB)=70°,
∴∠BOC=180°-(∠EBC+∠BCD)=110°,
∴∠DOE=∠BOC=110°.
故答案为:110°
【点睛】
本题考查了三角形内角和定理,角平分线的定义,对顶角相等等知识,熟知相关知识,运用整体思想求出∠EBC+∠BCD=70°是解题关键.
5、2<n<12
【解析】
【分析】
根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边,即可求第三边长的范围.
【详解】
解:由三角形三边关系定理得:7﹣5<n<7+5,即2<n<12
故n的范围是2<n<12.
故答案为:2<n<12.
【点睛】
本题考查的是三角形三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.
三、解答题
1、(1)见解析;(2)50°
【解析】
【分析】
(1)根据平行线的性质可得∠D=∠CAH,根据角平分线的定义可得∠BAH=∠CAH,再根据已知条件和等量关系可得∠BAH=∠E,再根据平行线的判定即可求解;
(2)可设∠ABC=x,则∠ABD=2x,则∠BAH=2x,可得∠DAB=180°−4x,可得∠AHC=175°−4x,可得175°−4x=3x,解方程求得x,进一步求得∠D的度数.
【详解】
(1)证明:∵DBAH,
∴∠D=∠CAH,
∵AH平分∠BAC,
∴∠BAH=∠CAH,
∵∠D=∠E,
∴∠BAH=∠E,
∴AHEC,
∴DBEC;
(2)解:设∠ABC=x,则∠ABD=2x,∠BAH=2x,
∠DAB=180°−4x,
∠DAB比∠AHC大5°
∠AHC=175°−4x,
DBAH,
即:175°−4x=3x,
解得x=25°,
则∠D=∠CAH=∠BAH=∠ABD=2x=50°.
【点睛】
考查了三角形内角和定理,平行线的判定与性质,求角的度数常常要用到“三角形的内角和是180°”这一隐含的条件.
2、(1)3;(2).
【解析】
【分析】
(1)首先根据中线的性质得到,然后根据的周长为13,即可求出AB的长;
(2)首先根据BD是的角平分线得到,然后根据三角形内角和定理即可求出的度数.
【详解】
(1)∵BE是的AC边上的中线,
∴,
又∵的周长为13,
∴;
(2)∵BD是的角平分线,
∴,
又∵,
∴.
【点睛】
此题考查三角形中线和角平分线的概念,三角形内角和定理的运用,解题的关键是熟练掌握三角形中线和角平分线的概念,三角形内角和定理.
3、60°
【解析】
【分析】
由折叠和角平分线可求∠BAD=30°,即可求出∠BAB'的度数.
【详解】
解:由折叠可知,∠BAD=∠B'AD,
∵AB'平分∠CAD.
∴∠B'AC=∠B'AD,
∴∠BAD=∠B'AC=∠B'AD,
∵∠BAC=90°,
∴∠BAD=∠B'AC=∠B'AD=30°,
∴∠BAB'=60°.
【点睛】
本题考查了折叠和角平分线,解题关键是掌握折叠角相等和角平分线的性质.
4、(1)∠ABE=40°;(2)∠ABE=30°;(3)∠MGN=15°.
【解析】
【分析】
(1)过E作EMAB,根据平行线的判定与性质和角平分线的定义解答即可;
(2)过E作EMAB,过F作FNAB,根据平行线的判定与性质,角平分线的定义以及解一元一次方程解答即可;
(3)过P作PLAB,根据平行线的判定与性质,三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义解答即可.
【详解】
解:(1)过E作EMAB,
∵ABCD,
∴CDEMAB,
∴∠ABE=∠BEM,∠DCE=∠CEM,
∵CF平分∠DCE,
∴∠DCE=2∠DCF,
∵∠DCF=30°,
∴∠DCE=60°,
∴∠CEM=60°,
又∵∠CEB=20°,
∴∠BEM=∠CEM﹣∠CEB=40°,
∴∠ABE=40°;
(2)过E作EMAB,过F作FNAB,
∵∠EBF=2∠ABF,
∴设∠ABF=x,∠EBF=2x,则∠ABE=3x,
∵CF平分∠DCE,
∴设∠DCF=∠ECF=y,则∠DCE=2y,
∵ABCD,
∴EMABCD,
∴∠DCE=∠CEM=2y,∠BEM=∠ABE=3x,
∴∠CEB=∠CEM﹣∠BEM=2y﹣3x,
同理∠CFB=y﹣x,
∵2∠CFB+(180°﹣∠CEB)=190°,
∴2(y﹣x)+180°﹣(2y﹣3x)=190°,
∴x=10°,
∴∠ABE=3x=30°;
(3)过P作PLAB,
∵GM平分∠DGP,
∴设∠DGM=∠PGM=y,则∠DGP=2y,
∵PQ平分∠BPG,
∴设∠BPQ=∠GPQ=x,则∠BPG=2x,
∵PQGN,
∴∠PGN=∠GPQ=x,
∵ABCD,
∴PLABCD,
∴∠GPL=∠DGP=2y,
∠BPL=∠ABP=30°,
∵∠BPL=∠GPL﹣∠BPG,
∴30°=2y﹣2x,
∴y﹣x=15°,
∵∠MGN=∠PGM﹣∠PGN=y﹣x,
∴∠MGN=15°.
【点睛】
此题考查平行线的判定与性质,角平分线的定义,三角形的内角和定理,解题关键在于作辅助线和掌握判定定理.
5、∠B,两直线平行,同位角相等;∠BFD,两直线平行,内错角相等;∠C,两直线平行,同位角相等;∠A,两直线平行,同位角相等;∠A,等量代换
【解析】
【分析】
先根据平行线的性质得出∠A=∠2,∠1=∠C,∠3=∠B,再由平角的定义即可得出结论.
【详解】
证明:∵DE//B
∴∠3=∠B(两直线平行,同位角相等),
∠2=∠BFD(两直线平行,内错角相等),
∵DF//CA,
∴∠1=∠C(两直线平行,同位角相等),
∠A=∠BFD(两直线平行,同位角相等),
∴∠2=∠A(等量代换).
∵∠1+∠2+∠3=180°(平角的定义),
∴∠A+∠B+∠C=180°(等量代换).
故答案为:∠B,两直线平行,同位角相等;∠BFD,两直线平行,内错角相等;∠C,两直线平行,同位角相等;∠A,两直线平行,同位角相等;∠A,等量代换.
【点睛】
本题考查了平行线的性质,熟练掌握平行线的性质是解答本题的关键.平行线的性质:①两直线平行同位角相等,②两直线平行内错角相等,③两直线平行同旁内角互补.
初中数学第九章 三角形综合与测试课后作业题: 这是一份初中数学第九章 三角形综合与测试课后作业题,共21页。
初中数学冀教版七年级下册第九章 三角形综合与测试课时练习: 这是一份初中数学冀教版七年级下册第九章 三角形综合与测试课时练习,共22页。试卷主要包含了如图,直线l1,如图,等内容,欢迎下载使用。
冀教版七年级下册第九章 三角形综合与测试课时训练: 这是一份冀教版七年级下册第九章 三角形综合与测试课时训练,共22页。试卷主要包含了如图,是的中线,,则的长为,如图,,,,则的度数是等内容,欢迎下载使用。