初中数学冀教版七年级下册第九章 三角形综合与测试课堂检测
展开冀教版七年级数学下册第九章 三角形章节测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知三角形的两边长分别是3cm和7cm,则下列长度的线段中能作为第三边的是( )
A.3cm B.4cm C.7cm D.10cm
2、以下列各组线段为边,能组成三角形的是( )
A.3cm,4cm,5cm B.3cm,3cm,6cm C.5cm,10cm,4cm D.1cm,2cm,3cm
3、如图,点B、G、C在直线FE上,点D在线段AC上,下列是△ADB的外角的是( )
A.∠FBA B.∠DBC C.∠CDB D.∠BDG
4、如果一个三角形的两边长都是6cm,则第三边的长不能是( )
A.3cm B.6cm C.9cm D.13cm
5、如图,图形中的的值是( )
A.50 B.60 C.70 D.80
6、下列所给的各组线段,能组成三角形的是:( )
A.2,11,13 B.5,12,7 C.5,5,11 D.5,12,13
7、如图,已知为的外角,,,那么的度数是( )
A.30° B.40° C.50° D.60°
8、如图,△AOB绕点O逆时针旋转65°得到△COD,若∠COD=30°,则∠BOC的度数是( )
A.30° B.35° C.45° D.60°
9、已知,一块含30°角的直角三角板如图所示放置,,则等于( )
A.140° B.150° C.160° D.170°
10、以下列长度的各组线段为边,能组成三角形的是( )
A.,, B.,,
C.,, D.,,
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,已知AE∥BD,∠1=88°,∠2=28°.则∠C=_____.
2、如图,三角形ABC的面积为1,,E为AC的中点,AD与BE相交于P,那么四边形PDCE的面积为______.
3、在中,,则的取值范围是_______.
4、如图,已知△ABC,通过测量、计算得△ABC的面积约为________cm2(结果保留一位小数).
5、两根长度分别为3,5的木棒,若想钉一个三角形木架,第三根木棒的长度可以是________.(写一个值即可)
三、解答题(5小题,每小题10分,共计50分)
1、已知射线是的外角平分线.
(1)如图1,当射线与的延长线能交于一点时,则 (选填“>”“<”或“=”),并说明理由;
(2)如图2,当时,请判断与的数量关系,并证明.
2、如图,中,BE为AC边上的高,CD平分,CD、BE相交于点F.若,,求的度数.
3、如图,在中,点D、E分别在边AB、AC上,BE与CD交于点F,,,.求和的度数.
4、如图,在中(),,边上的中线把的周长分成和两部分,求和的长.
5、已知直线MNPQ,点A是直线MN上一个定点,点B在直线PQ上运动.点H为平面上一点,且满足∠AHB=90°.设∠HBQ=α.
(1)如图1,当α=70°时,∠HAN= .
(2)过点H作直线l平分∠AHB,直线l交直线MN于点C.
①如图2,当α=60°时,求∠ACH的度数;
②当∠ACH=30°时,直接写出α的值.
-参考答案-
一、单选题
1、C
【解析】
【分析】
设三角形第三边的长为x cm,再根据三角形的三边关系求出x的取值范围,找出符合条件的x的值即可.
【详解】
解:设三角形的第三边是xcm.则
7-3<x<7+3.
即4<x<10,
四个选项中,只有选项C符合题意,
故选:C.
【点睛】
本题主要考查了三角形三边关系的应用.此类求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.
2、A
【解析】
【分析】
三角形的任意两条之和大于第三边,任意两边之差小于第三边,根据原理再分别计算每组线段当中较短的两条线段之和,再与最长的线段进行比较,若和大于最长的线段的长度,则三条线段能构成三角形,否则,不能构成三角形,从而可得答案.
【详解】
解: 所以以3cm,4cm,5cm为边能构成三角形,故A符合题意;
所以以3cm,3cm,6cm为边不能构成三角形,故B不符合题意;
所以以5cm,10cm,4cm为边不能构成三角形,故C不符合题意;
所以以1cm,2cm,3cm为边不能构成三角形,故D不符合题意;
故选A
【点睛】
本题考查的是三角形的三边之间的关系,掌握“利用三角形三边之间的关系判定三条线段能否组成三角形”是解本题的关键.
3、C
【解析】
【分析】
根据三角形的外角的概念解答即可.
【详解】
解:A.∠FBA是△ABC的外角,故不符合题意;
B. ∠DBC不是任何三角形的外角,故不符合题意;
C.∠CDB是∠ADB的外角,符合题意;
D. ∠BDG不是任何三角形的外角,故不符合题意;
故选:C.
【点睛】
本题考查的是三角形的外角的概念,三角形的一边与另一边的延长线组成的角,叫做三角形的外角.
4、D
【解析】
【分析】
根据三角形的三边关系“两边之和大于第三边,两边之差小于第三边”,这样就可求出第三边长的范围,进而选出答案
【详解】
解:设它的第三条边的长度为xcm,
依题意有 ,
即,
故只有D符合题意,
故选:D.
【点睛】
本题考查的是三角形的三边关系,掌握三角形三边关系:三角形两边之和大于第三边、三角形的两边差小于第三边是解题的关键.
5、B
【解析】
【分析】
根据三角形外角的性质:三角形一个外角的度数等于与其不相邻的两个内角的度数和进行求解即可.
【详解】
解:由题意得:
∴,
∴,
故选B.
【点睛】
本题主要考查了三角形外角的性质,解一元一次方程,熟知三角形外角的性质是解题的关键.
6、D
【解析】
【分析】
根据三角形三边关系定理,判断选择即可.
【详解】
∵2+11=13,
∴A不符合题意;
∵5+7=12,
∴B不符合题意;
∵5+5=10<11,
∴C不符合题意;
∵5+12=17>13,
∴D符合题意;
故选D.
【点睛】
本题考查了构成三角形的条件,熟练掌握三角形三边关系是解题的关键.
7、B
【解析】
【分析】
根据三角形的外角性质解答即可.
【详解】
解:∵∠ACD=60°,∠B=20°,
∴∠A=∠ACD−∠B=60°−20°=40°,
故选:B.
【点睛】
此题考查三角形的外角性质,关键是根据三角形外角性质解答.
8、B
【解析】
【分析】
由旋转的性质可得∠AOC=65°,由∠AOB=30°,即可求∠BOC的度数.
【详解】
解:∵△AOB绕点O逆时针旋转65°得到△COD,
∴∠AOC=65°,
∵∠AOB=30°,
∴∠BOC=∠AOC−∠AOB=35°.
故选:B.
【点睛】
本题考查了旋转的性质,三角形内角和定理,熟练运用旋转的性质是本题的关键.
9、D
【解析】
【分析】
利用三角形外角与内角的关系,先求出∠3,利用平行线的性质得到∠4的度数,再利用三角形外角与内角的关系求出∠1.
【详解】
解:∵∠C=90°,∠2=∠CDE=50°,
∠3=∠C+∠CDE
=90°+50°
=140°.
∵a∥b,
∴∠4=∠3=140°.
∵∠A=30°
∴∠1=∠4+∠A
=140°+30°
=170°.
故选:D.
【点睛】
本题考查了平行线的性质,三角形的外角的性质,熟练掌握平行线的性质是解题的关键.
10、C
【解析】
【分析】
根据三角形三条边的关系计算即可.
【详解】
解:A. ∵2+4=6,∴,,不能组成三角形;
B. ∵2+5<9,∴,,不能组成三角形;
C. ∵7+8>10,∴,,能组成三角形;
D. ∵6+6<13,∴,,不能组成三角形;
故选C.
【点睛】
本题考查了三角形三条边的关系,熟练掌握三角形三条边的关系是解答本题的关键.三角形任意两边之和大于第三边,任意两边之差小于第三边.
二、填空题
1、60°
【解析】
【分析】
根据平行线的性质可得∠3=88°,根据三角形的外角性质即可求得∠C
【详解】
解:∵
∴∠1=∠3=88°,
∵∠3=∠2+∠C,
∴∠C=∠3﹣∠2=88°﹣28°=60°,
故答案为:60°.
【点睛】
本题考查了平行线的性质与判定,三角形的外角的性质,求得∠3=88°是解题的关键.
2、
【解析】
【分析】
连接CP.设△CPE的面积是x,△CDP的面积是y.根据BD:DC=2:1,E为AC的中点,得△BDP的面积是2y,△APE的面积是x,进而得到△ABP的面积是4x.再根据△ABE的面积是△BCE的面积相等,得4x+x=2y+x+y,解得,再根据△ABC的面积是1即可求得x、y的值,从而求解.
【详解】
解:连接CP, 设△CPE的面积是x,△CDP的面积是y.
∵BD:DC=2:1,E为AC的中点,
∴△BDP的面积是2y,△APE的面积是x,
∵BD:DC=2:1,CE:AC=1:2,
∴△ABP的面积是4x.
∴4x+x=2y+x+y,
解得.
又∵4x+x=,
解得:x=,则
则四边形PDCE的面积为x+y=.
故答案为:.
【点睛】
本题能够根据三角形的面积公式求得三角形的面积之间的关系.等高的两个三角形的面积比等于它们的底的比;等底的两个三角形的面积比等于它们的高的比.
3、
【解析】
【分析】
由构成三角形的条件计算即可.
【详解】
∵中
∴
∴.
故答案为:.
【点睛】
本题考查了由构成三角形的条件判断第三条边的取值范围,在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边.
4、3.9
【解析】
【分析】
过点A作AD⊥BC的延长线于点D,测量出BC,AD的长,再利用三角形的面积公式即可求出△ABC的面积.
【详解】
解:过点C作CD⊥AB的延长线于点D,如图所示.
经过测量,BC=2.2cm,AD=3.5cm,
∴S△ABC=AB•CD=×2.2×3.5=3.85≈3.9(cm2).
故答案为:3.9.
【点睛】
本题考查了三角形的面积,牢记三角形的面积等于底边长与高线乘积的一半是解题的关键.
5、4(答案不唯一)
【解析】
【分析】
根据三角形中“两边之和大于第三边,两边之差小于第三边”,进行分析得到第三边的取值范围;再进一步找到符合条件的数值.
【详解】
解:根据三角形的三边关系,得
第三边应大于两边之差,即;而小于两边之和,即,
即第三边,
故第三根木棒的长度可以是4.
故答案为:4(答案不唯一).
【点睛】
本题主要考查了三角形三边关系,熟练掌握两边之和大于第三边,两边之差小于第三边是解题的关键.
三、解答题
1、(1)>,见解析;(2)∠BAC=∠B,见解析
【解析】
【分析】
(1)延长BA与射线CD交于点F,根据CD平分∠ACE,可得∠ACD=∠ECD,根据三角形外角性质可得∠BAC=∠ECD+∠AFC,∠ECD=∠B+∠AFC,得出∠BAC=∠B+2∠AFC即可;
(2)根据CD∥BA,可得∠BAC=∠ACD,∠B=∠ECD,根据CD平分∠ACE,解得∠ACD=∠ECD即可.
【详解】
解:(1)>
理由:如图,延长BA与射线CD交于点F,
∵CD平分∠ACE,
∴∠ACD=∠ECD,
∵∠BAC=∠ACD+∠AFC=∠ECD+∠AFC,
∠ECD=∠B+∠AFC,
∴∠BAC=∠B+2∠AFC,
∴∠BAC>∠B;
(2)∠BAC=∠B,
证明:∵CD∥BA,
∴∠BAC=∠ACD,∠B=∠ECD,
∵CD平分∠ACE,
∴∠ACD=∠ECD,
∴∠BAC=∠B.
【点睛】
本题考查三角形的外角性质,角平分线定义,掌握三角形的外角性质,角平分线定义是解题关键.
2、.
【解析】
【分析】
先根据三角形的内角和定理可得,再根据角平分线的定义可得,然后根据垂直的定义可得,最后根据三角形的外角性质即可得.
【详解】
解:在中,,,
,
平分,
,
为边上的高,
,
.
【点睛】
本题考查了三角形的内角和定理、角平分线的定义、三角形的外角性质等知识点,熟练掌握三角形的内角和定理是解题关键.
3、87°,40°
【解析】
【分析】
根据三角形外角的性质可得,,代入计算即可求出,再根据三角形内角和定理求解即可.
【详解】
解:∵,,
∴,
∵,
∴.
【点睛】
本题考查了三角形内角和和外角的性质,解题关键是准确识图,理清角之间的关系,准确进行计算.
4、,
【解析】
【分析】
由题意可得,,由中线的性质得,故可求得,即可求得.
【详解】
由题意知,,
∵,D为BC中点
∴
∴
即
则BC=24,CD=BD=12
则
且28>24符合题意.
【点睛】
本题考查了中线的性质,中线是三角形中从某边的中点连向对角的顶点的线段.
5、 (1)20°
(2)①∠ACH=15°;②α=75°
【解析】
【分析】
(1)延长BH与MN相交于点D,根据平行线的性质可得∠ADH=∠HBQ=70°,再根据三角形外角定理可得AHB=∠HAN+∠ADH,代入计算即可得出答案;
(2)①延长CH与PQ相交于点E,如图4,根据角平分线的性质可得出∠BHE的度数,再根据三角形外角定理可得∠HBQ=∠HEB+∠BHE,即可得出∠HEB的度数,再根据平行线的性质即可得出答案;
②根据平行线的性质可得∠HEB的度数,再根据三角形外角和∠HBQ=∠HEB+∠BHE,即可得出答案.
【小题1】
解:延长BH与MN相交于点D,如图3,
∵MN∥PQ,
∴∠ADH=∠HBQ=70°,
∵∠AHB=90°,
∴∠AHB=∠HAN+∠ADH,
∴∠HAN=90°-70°=20°.
【小题2】
①延长CH与PQ相交于点E,如图4,
∵∠AHB=90°,CH平分∠AHB,
∴∠BHE=∠AHB=45°,
∵∠HBQ=∠HEB+∠BHE,
∴∠HEB=60°-45°=15°,
∵MN∥PQ,
∴∠ACH=∠HEB=15°;
②α=75°.如图4,
∵∠ACH=30°,
∴∠HEB=30°,
∵∠AHB=90°,CH平分∠AHB,
∴∠BHE=∠AHB=45°,
∴∠HBQ=∠HEB+∠BHE=30°+45°=75°,
∴α=75°.
【点睛】
本题主要考查了平行线的性质,熟练应用平行线的性质进行计算是解决本题的关键.
初中数学冀教版七年级下册第九章 三角形综合与测试随堂练习题: 这是一份初中数学冀教版七年级下册第九章 三角形综合与测试随堂练习题,共23页。试卷主要包含了如图,直线l1l2,被直线l3,若一个三角形的三个外角之比为3等内容,欢迎下载使用。
数学七年级下册第九章 三角形综合与测试测试题: 这是一份数学七年级下册第九章 三角形综合与测试测试题,共21页。试卷主要包含了下列图形中,不具有稳定性的是,如图,图形中的的值是等内容,欢迎下载使用。
初中数学冀教版七年级下册第九章 三角形综合与测试随堂练习题: 这是一份初中数学冀教版七年级下册第九章 三角形综合与测试随堂练习题,共24页。试卷主要包含了三角形的外角和是,如图,已知,,,则的度数为等内容,欢迎下载使用。