![2022年精品解析冀教版七年级数学下册第九章 三角形综合训练试题(含解析)第1页](http://m.enxinlong.com/img-preview/2/3/12767251/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年精品解析冀教版七年级数学下册第九章 三角形综合训练试题(含解析)第2页](http://m.enxinlong.com/img-preview/2/3/12767251/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年精品解析冀教版七年级数学下册第九章 三角形综合训练试题(含解析)第3页](http://m.enxinlong.com/img-preview/2/3/12767251/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
数学七年级下册第九章 三角形综合与测试同步达标检测题
展开
这是一份数学七年级下册第九章 三角形综合与测试同步达标检测题,共24页。试卷主要包含了如图,在中,AD,若一个三角形的三个外角之比为3等内容,欢迎下载使用。
冀教版七年级数学下册第九章 三角形综合训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各组数中,不能作为一个三角形三边长的是( )A.4,4,4 B.2,7,9 C.3,4,5 D.5,7,92、将一副直角三角板按如图所示的位置摆放,若含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则的度数是( )A.45° B.60° C.75° D.85°3、三角形的外角和是( )A.60° B.90° C.180° D.360°4、在△ABC中,∠A=50°,∠B、∠C的平分线交于O点,则∠BOC等于( )A.65° B.80° C.115° D.50°5、人字梯中间一般会设计一“拉杆”,这样做的道理是( )A.两点之间线段最短 B.三角形的稳定性C.两点确定一条直线 D.垂线段最短6、如图,在中,AD、AE分别是边BC上的中线与高,,CD的长为5,则的面积为( )A.8 B.10 C.20 D.407、下图中能体现∠1一定大于∠2的是( )A. B.C. D.8、如图, AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是( )A.6 B.5 C.4 D.39、若一个三角形的三个外角之比为3:4:5,则该三角形为( )A.直角三角形 B.等腰三角形 C.等边三角形 D.等腰直角三角形10、如图,直线l1、l2分别与△ABC的两边AB、BC相交,且l1∥l2,若∠B=35°,∠1=105°,则∠2的度数为( )A.45° B.50° C.40° D.60°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在三角形ABC中,,点D为射线CB上一点,过点D作交直线AB于点E,交直线AC于点F,CG平分交DF于点G.若,则______°.2、如图,在ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且ABC的面积等于24cm2,则阴影部分图形面积等于_____cm23、如图,,,BE平分交AD于点E,连接CE,AF交CD的延长线于点F,,若,,则的度数为______.4、如图,把△ABC绕点C顺时针旋转某个角度α得到,∠A=30°,∠1=70°,则旋转角α的度数为_____.5、如图,△ABC中,点D在BC的延长线上,,与的平分线相交于点,得;与的平分线相交于点,得;…;与的平分线相交于点,得,=__________.三、解答题(5小题,每小题10分,共计50分)1、若AE是边BC上的高,AD是的平分线且交BC于点D.若,,分别求和的度数.2、如图,ADEF,.请从以下三个条件:①平分,②,③中选择一个作为条件,使DGAB,你选的条件是______(填写序号).并说明理由. 3、如图,在ABC中,AC=6,BC=8,AD⊥BC于D,AD=5,BE⊥AC于E,求BE的长.4、如图,AD是的高,CE是的角平分线.若,,求的度数.5、已知,如图,在中,点E,F分别为边上的动点,和相交于点D,.(1)如果分别为上的高线时,求的度数;(2)如果分别平分时,求的度数. -参考答案-一、单选题1、B【解析】【分析】根据三角形两边之和大于第三边,两边之差小于第三边即可求解.【详解】解:选项A:4,4,4可以构成等边三角形,故选项A正确;选项B:2+7=9,两边之和等于第三边,不能构成三角形,故选项B错误;选项C:3+4>5,这三边可以构成三角形,故选项C正确;选项D:任意两边之和大于第三边,两边之差小于第三边,可以构成三角形,故选项D正确;故选:B.【点睛】本题考查了构成三角形的三边的条件:两边之和大于第三边,两边之差小于第三边,由此即可求解.2、C【解析】【分析】先根据三角形的内角和得出∠CGF=∠DGB=45°,再利用∠α=∠D+∠DGB可得答案.【详解】解:如图:∵∠ACD=90°、∠F=45°,∴∠CGF=∠DGB=45°,∴∠α=∠D+∠DGB=30°+45°=75°.故选C.【点睛】本题主要考查三角形的外角的性质,掌握三角形的内角和定理和三角形外角的性质是解答本题的关键.3、D【解析】【分析】根据三角形的内角和定理、邻补角的性质即可得.【详解】解:如图,,,又,,即三角形的外角和是,故选:D.【点睛】本题考查了三角形的内角和定理、邻补角的性质,熟练掌握三角形的内角和定理是解题关键.4、C【解析】【分析】根据题意画出图形,求出∠ABC+∠ACB =130°,根据角平分线的定义得到∠CBD=∠ABC,∠ECB=∠ACB,再根据三角形内角和定理和角的代换即可求解.【详解】解:如图,∵∠A=50°,∴∠ABC+∠ACB=180°-∠A=130°,∵BD、CE分别是∠ABC、∠ACB的平分线,∴∠CBD=∠ABC,∠ECB=∠ACB,∴∠BOC=180°-∠CBD-∠ECB=180°-(∠CBD+∠ECB)=180°- (∠ABC+∠ACB)=180°- ×130°=115°.故选:C【点睛】本题考查了三角形内角和定理,角平分线的定义,熟知三角形内角和定理,并能根据角平分线的定义进行角的代换是解题关键.5、B【解析】【分析】首先要考虑梯子中间设置“拉杆”的原因,是为了让梯子更加稳固,而更加稳固的原因是“拉杆”与梯子两边形成了三角形.【详解】人字梯中间一般会设计一“拉杆”,是为了形成三角形,利用三角形具有稳定性来增加梯子的稳定性.故选:B.【点睛】本题考查三角形的稳定性,善于从生活中发现数学原理是解决本题的关键.6、C【解析】【分析】根据三角形中线的性质得出CB的长为10,再用三角形面积公式计算即可.【详解】解:∵AD是边BC上的中线,CD的长为5,∴CB=2CD=10,的面积为,故选:C.【点睛】本题考查了三角形中线的性质和面积公式,解题关键是明确中线的性质求出底边长.7、C【解析】【分析】由对顶角的性质可判断A,由平行线的性质可判断B,由三角形的外角的性质可判断C,由直角三角形中同角的余角相等可判断D,从而可得答案.【详解】解:A、∠1和∠2是对顶角,∠1=∠2.故此选项不符合题意;B、如图, 若两线平行,则∠3=∠2,则 若两线不平行,则大小关系不确定,所以∠1不一定大于∠2.故此选项不符合题意;C、∠1是三角形的外角,所以∠1>∠2,故此选项符合题意;D、根据同角的余角相等,可得∠1=∠2,故此选项不符合题意.故选:C.【点睛】本题考查的是对顶角的性质,平行线的性质,直角三角形中两锐角互余,三角形的外角的性质,同角的余角相等,掌握几何基本图形,基本图形的性质是解本题的关键.8、D【解析】【分析】过D作DF⊥AC于F,根据角平分线性质求出DF=DE=2,根据S△ADB+S△ADC=7和三角形面积公式求出即可.【详解】解:过D作DF⊥AC于F,∵AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,DE=2,∴DE=DF=2,∵S△ABC=7,∴S△ADB+S△ADC=7,∴×AB×DE+×AC×DF=7,∴×4×2+×AC×2=7,解得:AC=3.故选D .【点睛】本题考查了角平分线的性质,三角形面积公式的应用,能正确作出辅助线是解此题的关键,注意:角平分线上的点到角两边的距离相等.9、A【解析】【分析】根据三角形外角和为360°计算,求出内角的度数,判断即可.【详解】解:设三角形的三个外角的度数分别为3x、4x、5x,则3x+4x+5x=360°,解得,x=30°,∴三角形的三个外角的度数分别为90°、120°、150°,对应的三个内角的度数分别为90°、60°、30°,∴此三角形为直角三角形,故选:A.【点睛】本题考查的是三角形的外角和,掌握三角形外角和为360°是解题的关键.10、C【解析】【分析】根据三角形内角和定理球场∠3的度数,利用平行线的性质求出答案.【详解】解:∵∠B=35°,∠1=105°,∴∠3=180-∠1-∠B=,∵l1∥l2,∴∠2=∠3=,故选:C..【点睛】此题考查三角形内角和定理,两直线平行内错角相等的性质,熟记三角形内角和等于180度及平行线的性质并熟练解决问题是解题的关键.二、填空题1、80【解析】【分析】先求解 再求解 再利用三角形的外角的性质可得答案.【详解】解: ,, , , CG平分, 故答案为:【点睛】本题考查的是角平分线的定义,平行线的性质,三角形的内角和定理,三角形的外角的性质,熟练的运用平行线的性质探究角之间的关系是解本题的关键.2、6【解析】【分析】因为点F是CE的中点,所以△BEF的底是△BEC的底的一半,△BEF高等于△BEC的高;同理,D、E、分别是BC、AD的中点,可得△EBC的面积是△ABC面积的一半;利用三角形的等积变换可解答.【详解】解:如图,点F是CE的中点,∴△BEF的底是EF,△BEC的底是EC,即EF=EC,而高相等,∴S△BEF=S△BEC,∵E是AD的中点,∴S△BDE=S△ABD,S△CDE=S△ACD,∴S△EBC=S△ABC,∴S△BEF=S△ABC,且S△ABC=24cm2,∴S△BEF=6cm2,即阴影部分的面积为6cm2.故答案为6.【点睛】本题考查了三角形面积的等积变换:若两个三角形的高(或底)相等,面积之比等于底边(高)之比.3、80°##80度【解析】【分析】先根据,,得出,可证AD∥BC,再证∠BAD=∠BCD,得出∠AEB=∠F,然后证∠ABC=2∠CBE=2∠F,得出∠ADC=2∠F,利用三角形内角和得出∠CED=180°-∠EDC-∠ECD=180°-2∠F-3∠F=180°-5∠F,根据平角得出∠AEB+∠CED=180°-∠BEC=180°-80°=100°,列方程∠F+180°-5∠F=100°求出∠F=20°即可.【详解】解:∵,∴∠ABC+∠BCD=180°,∵∴,∴AD∥BC,∵,∴∠BAD+∠ADC=180°,∠BAF+∠F=180°,∵∠ADC+∠BCD=180°,∴∠BAD=∠BCD,∵,∴,∵∠BAF=∠BAD+∠DAF,∴∠BAF+∠AEB=180°,∴∠AEB=∠F,∵AD∥BC,∴∠CBE=∠AEB,∵BE平分,∴∠ABC=2∠CBE=2∠F,∴∠ADC=2∠F,∵,在△CED中,∠CED=180°-∠EDC-∠ECD=180°-2∠F-3∠F=180°-5∠F,∵,∴∠AEB+∠CED=180°-∠BEC=180°-80°=100°,∴∠F+180°-5∠F=100°,解得∠F=20°,∴,故答案为80°.【点睛】本题考查平行线的判定与性质,三角形内角和,角平分线定义,平角,解一元一次方程,掌握平行线的判定与性质,三角形内角和,角平分线定义,平角,解一元一次方程,关键是证出∠ADC=2∠F.4、##度【解析】【分析】由旋转的性质可得再利用三角形的外角的性质求解从而可得答案.【详解】解: 把△ABC绕点C顺时针旋转某个角度α得到,∠A=30°, ∠1=70°, 故答案为:【点睛】本题考查的是旋转的性质,三角形的外角的性质,利用性质的性质求解是解本题的关键.5、【解析】【分析】结合题意,根据角平分线、三角形外角、三角形内角和的性质,得,同理得;再根据数字规律的性质分析,即可得到答案.【详解】解:根据题意,,与的平分线交于点,∴∠A1BC=,∠ACA1=,∴,∵,∴,∵,∴=,同理,得;;;…,∴.故答案为:.【点睛】本题考查了三角形性质和数字规律的知识;解题的关键是熟练掌握三角形内角和、三角形外角、角平分线、数字规律的性质,从而完成求解.三、解答题1、;【解析】【分析】根据△AEC的内角和定理可得:,根据角平分线的性质可得,根据△ABC的内角和定理可得∠BAC,又因为,,即可得解.【详解】解:∵AE是边BC上的高∴∴在中,有又∵∴∵AD是的平分线∴∵在中,有已知,∴∴∴【点睛】本题考查了三角形内角和定理及角平分线的性质,熟悉这些知识点,灵活应用等量代换是解决本题的关键.2、①或③,理由见解析.【解析】【分析】首先根据ADEF,,得到,然后根据平行线的判定定理逐个判断求解即可.【详解】解:∵ADEF,∴,∵,∴,当选择条件①平分时,∴,∴,∴DGAB,故选择条件①可以使DGAB;当选择条件②时,∵,,∴,同旁内角相等,不能证明两直线平行,∴选择条件②不可以使DGAB;当选择条件③时,∵,∴,∴DGAB,故选择条件③可以使DGAB,综上所述,使DGAB,可以选的条件是①或③.故答案为:①或③.【点睛】此题考查了平行线的性质和判定定理,三角形外角的性质和角平分线的概念,解题的关键是熟练掌握平行线的性质和判定定理.平行线的性质:两直线平行,内错角相等;两直线平行,同位角相等;两直线平行,同旁内角互补.平行线的判定:内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.3、.【解析】【分析】根据三角形面积公式计算即可.【详解】解:.【点睛】本题考查三角形面积的计算,利用等积法是解题关键.4、【解析】【分析】AD是的高,有;由知;CE是的角平分线可得;,;在中,.【详解】解:∵AD是的高∴∵∴∵CE是的角平分线∴∵∴∴在中,.【点睛】本题考查了角平分线.解题的关键在于正确表示各角度之间的数量关系.5、(1)100゜;(2)130゜【解析】【分析】(1)利用直角三角形两锐角互余、三角形外角的性质,可求得结果;(2)由角平分线的性质及三角形内角和定理可求得∠EBC+∠FCB的度数,从而可求得结果的度数.【详解】(1)∵BE⊥AC,CF⊥AB∴∠AEB=∠CFB=90゜∴∠ABE=90゜ -∠A=10゜∴∠BDC=∠CFB+∠ABE=90゜+10゜=100゜(2)∵BE、CF分别平分∠ABC、∠ACB∴,∵∠ABC+∠ACB=180゜ -∠A=100゜∴∴【点睛】本题考查了三角形内角和定理、三角形外角的性质、角平分线的性质,熟练运用它们是解答的关键.
相关试卷
这是一份数学七年级下册第九章 三角形综合与测试达标测试,共23页。试卷主要包含了下列各图中,有△ABC的高的是,如图,在ABC中,点D等内容,欢迎下载使用。
这是一份冀教版七年级下册第九章 三角形综合与测试课后测评,共24页。试卷主要包含了下列图形中,不具有稳定性的是,如图,在中,若点使得,则是的等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第九章 三角形综合与测试精练,共20页。
![文档详情页底部广告位](http://m.enxinlong.com/img/images/257d7bc79dd514896def3dc0b2e3f598.jpg)