![2022年精品解析冀教版七年级数学下册第九章 三角形同步训练试题(含详细解析)第1页](http://m.enxinlong.com/img-preview/2/3/12767109/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年精品解析冀教版七年级数学下册第九章 三角形同步训练试题(含详细解析)第2页](http://m.enxinlong.com/img-preview/2/3/12767109/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年精品解析冀教版七年级数学下册第九章 三角形同步训练试题(含详细解析)第3页](http://m.enxinlong.com/img-preview/2/3/12767109/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学冀教版七年级下册第九章 三角形综合与测试精练
展开这是一份初中数学冀教版七年级下册第九章 三角形综合与测试精练,共20页。
冀教版七年级数学下册第九章 三角形同步训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、王师傅用4根木条钉成一个四边形木架,如图,要使这个木架不变形,他至少还要再钉上几根木条?( )
A.0根 B.1根 C.2根 D.3根
2、下列图形中,不具有稳定性的是( )
A.等腰三角形 B.平行四边形 C.锐角三角形 D.等边三角形
3、两个直角三角板如图摆放,其中∠BAC=∠EDF=90°,∠F=45°,∠B=60°,AC与DE交于点M.若BC∥EF,则∠DMC的大小为( )
A.100° B.105° C.115° D.120°
4、在△ABC中,∠A=50°,∠B、∠C的平分线交于O点,则∠BOC等于( )
A.65° B.80° C.115° D.50°
5、如图,将一副三角板平放在一平面上(点D在上),则的度数为( )
A. B. C. D.
6、如图,在中,,,将绕点C逆时针旋转90°得到,则的度数为( )
A.105° B.120° C.135° D.150°
7、如图,四边形ABCD是梯形,,与的角平分线交于点E,与的角平分线交于点F,则与的大小关系为( )
A. B. C. D.无法确定
8、已知,一块含30°角的直角三角板如图所示放置,,则等于( )
A.140° B.150° C.160° D.170°
9、将一副三角板按不同位置摆放,下图中与互余的是( )
A. B.
C. D.
10、下列所给的各组线段,能组成三角形的是:( )
A.2,11,13 B.5,12,7 C.5,5,11 D.5,12,13
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知a,b,c是△ABC的三边,化简:|a+b-c|+|b-a-c|=________.
2、在中,若,则_______.
3、边长为1的小正方形组成如图所示的6×6网格,点A,B,C,D,E,F,G,H都在格点上.其中到四边形ABCD四个顶点距离之和最小的点是_________.
4、如图,点A、B在直线l上,点C是直线l外一点,可知CA+CB>AB,其依据是 _____.
5、在△ABC中,a,b,c分别是∠A,∠B,∠C的对边,且a=3,b=4,若三边长为连续整数,则c=______.
三、解答题(5小题,每小题10分,共计50分)
1、平行线是平面几何中最基本、也是非常重要的图形.在解决某些几何问题时,若能根据问题的需要,添加适当的平行线,往往能使证明顺畅、简洁.请根据上述思想解决问题:
(1)如图(1),ABCD,试判断∠B,∠D与∠E的关系;
(2)如图(2),已知ABCD,在∠ACD的角平分线上取两个点M、N,使得∠AMN=∠ANM,求证:∠CAM=∠BAN.
2、如图,AD是∠BAC的平分线,CE是△ADC边AD上的高,若∠BAC=80°,∠ECD=25°,求∠ACB的度数.
3、如图,在△ABC中,∠C=30°,∠B=58°,AD平分∠CAB.求∠CAD和∠1的度数.
4、已知,如图,在中,点E,F分别为边上的动点,和相交于点D,.
(1)如果分别为上的高线时,求的度数;
(2)如果分别平分时,求的度数.
5、如图,在ABC中,AC=6,BC=8,AD⊥BC于D,AD=5,BE⊥AC于E,求BE的长.
-参考答案-
一、单选题
1、B
【解析】
【分析】
根据三角形的稳定性即可得.
【详解】
解:要使这个木架不变形,王师傅至少还要再钉上1根木条,将这个四边形木架分成两个三角形,如图所示:
或
故选:B.
【点睛】
本题考查了三角形的稳定性,熟练掌握三角形的稳定性是解题关键.
2、B
【解析】
【分析】
根据三角形具有稳定性,四边形不具有稳定性即可作出选择.
【详解】
解:平行四边形属于四边形,不具有稳定性,而三角形具有稳定性,故A符合题意;
故选:B.
【点睛】
本题考查了多边形和三角形的性质,解题的关键是记住三角形具有稳定性,四边形不具有稳定性.
3、B
【解析】
【分析】
首先根据直角三角形两锐角互余可算出∠C和∠E的度数,再由“两直线平行,内错角相等”,可求出∠MDC的度数,在△CMD中,利用三角形内角和可求出∠CMD的度数.
【详解】
解:在△ABC和△DEF中,
∠BAC=∠EDF=90°,∠F=45°,∠B=60°,
∴∠C=90°-∠B=30°,
∠E=90°-∠F=45°,
∵BC∥EF,
∴∠MDC=∠E=45°,
在△CMD中,∠CMD=180°-∠C-∠MDC=105°.
故选:B.
【点睛】
本题主要考查三角形内角和,平行线的性质等内容,根据图形,结合定理求出每个角的度数是解题关键.
4、C
【解析】
【分析】
根据题意画出图形,求出∠ABC+∠ACB =130°,根据角平分线的定义得到∠CBD=∠ABC,∠ECB=∠ACB,再根据三角形内角和定理和角的代换即可求解.
【详解】
解:如图,∵∠A=50°,
∴∠ABC+∠ACB=180°-∠A=130°,
∵BD、CE分别是∠ABC、∠ACB的平分线,
∴∠CBD=∠ABC,∠ECB=∠ACB,
∴∠BOC=180°-∠CBD-∠ECB=180°-(∠CBD+∠ECB)=180°- (∠ABC+∠ACB)=180°- ×130°=115°.
故选:C
【点睛】
本题考查了三角形内角和定理,角平分线的定义,熟知三角形内角和定理,并能根据角平分线的定义进行角的代换是解题关键.
5、B
【解析】
【分析】
根据三角尺可得,根据三角形的外角性质即可求得
【详解】
解:
故选B
【点睛】
本题考查了三角形的外角性质,掌握三角形的外角性质是解题的关键.
6、B
【解析】
【分析】
由题意易得,然后根据三角形外角的性质可求解.
【详解】
解:由旋转的性质可得:,
∴;
故选B.
【点睛】
本题主要考查旋转的性质及三角形外角的性质,熟练掌握旋转的性质及三角形外角的性质是解题的关键.
7、B
【解析】
【分析】
由AD∥BC可得∠BAD+∠ABC=180°,∠ADC+∠BCD=180°,由角平分线的性质可得∠AEB=90°,∠DFC=90°,由三角形内角和定理可得到∠1=∠2=90°.
【详解】
解:∵AD∥BC,
∴∠BAD+∠ABC=180°,∠ADC+∠BCD=180°,
∵∠DAB与∠ABC的角平分线交于点E,∠CDA与∠BCD的角平分线交于点F,
∴∠BAE=∠BAD,∠ABE=∠ABC,∠CDF=∠ADC,∠DCF=∠BCD,
∴∠BAE+∠ABE=(∠BAD+∠ABC)=90°,
∠CDF+∠DCF=(∠ADC+∠BCD) =90°,
∴∠1=180°-(∠BAE+∠ABE)= 90°,∠2=∠CDF+∠DCF= 90°,
∴∠1=∠2=90°,
故选:B.
【点睛】
本题考查了平行线的性质,角平分线的定义,三角形内角和定理,灵活运用这些性质进行推理是本题的关键.
8、D
【解析】
【分析】
利用三角形外角与内角的关系,先求出∠3,利用平行线的性质得到∠4的度数,再利用三角形外角与内角的关系求出∠1.
【详解】
解:∵∠C=90°,∠2=∠CDE=50°,
∠3=∠C+∠CDE
=90°+50°
=140°.
∵a∥b,
∴∠4=∠3=140°.
∵∠A=30°
∴∠1=∠4+∠A
=140°+30°
=170°.
故选:D.
【点睛】
本题考查了平行线的性质,三角形的外角的性质,熟练掌握平行线的性质是解题的关键.
9、A
【解析】
【分析】
根据平角的定义可判断A,D,根据同角的余角相等可判断B,根据三角形的外角的性质可判断C,从而可得答案.
【详解】
解:选项A:根据平角的定义得:∠α+90°+∠β=180°,
∴∠α+∠β=90°, 即∠α与∠β互余;故A符合题意;
选项B:如图,
故B不符合题意;
选项C:如图,
故C不符合题意;
选项D:
故D不符合题意;
故选A
【点睛】
本题考查的是平角的定义,互余的含义,同角的余角相等,三角形的外角的性质,掌握“与直角三角形有关的角度的计算”是解本题的关键.
10、D
【解析】
【分析】
根据三角形三边关系定理,判断选择即可.
【详解】
∵2+11=13,
∴A不符合题意;
∵5+7=12,
∴B不符合题意;
∵5+5=10<11,
∴C不符合题意;
∵5+12=17>13,
∴D符合题意;
故选D.
【点睛】
本题考查了构成三角形的条件,熟练掌握三角形三边关系是解题的关键.
二、填空题
1、
【解析】
【分析】
首先利用三角形的三边关系得出,然后根据求绝对值的法则进行化简即可.
【详解】
解:∵是的三条边,
∴,
∴=.
故答案为:.
【点睛】
熟悉三角形的三边关系和求绝对值的法则,是解题的关键,注意,去绝对值后,要先添加括号,再去括号,这样不容易出错.
|a+b-c|+|b-a-c|
2、65°##65度
【解析】
【分析】
由三角形的内角和定理,得到,即可得到答案;
【详解】
解:在中,,
∵,
∴,
∴;
故答案为:65°.
【点睛】
本题考查了三角形的内角和定理,解题的关键是掌握三角形的内角和等于360°.
3、E
【解析】
【分析】
到四边形ABCD四个顶点距离之和最小的点是对角线的交点,连接对角线,直接判断即可.
【详解】
如图所示,连接BD、AC、GA、GB、GC、GD,
∵,,
∴到四边形ABCD四个顶点距离之和最小是,该点为对角线的交点,
根据图形可知,对角线交点为E,
故答案为:E.
【点睛】
本题考查了三角形三边关系,解题关键是通过连接辅助线,运用三角形三边关系判断点的位置.
4、在三角形中,两边之和大于第三边
【解析】
【分析】
根据三角形两边之和大于第三边进行求解即可.
【详解】
解:∵点A、B在直线l上,点C是直线l外一点,
∴A、B、C可以构成三角形,
∴由三角形三边的关系:在三角形中,两边之和大于第三边可以得到:CA+CB>AB,
故答案为:在三角形中,两边之和大于第三边.
【点睛】
本题主要考查了三角形三边的关系,熟知三角形中两边之和大于第三边是解题的关键.
5、2或5##5或2
【解析】
【分析】
根据三角形的三边关系求得第三边的取值范围,进一步确定第三边的长,由此得出答案即可.
【详解】
解:∵a=3,b=4,
∴根据三角形的三边关系,得4﹣3<c<4+3.
即1<c<7,
∵若三边长为连续整数,
∴c=2或5
故答案为:2或5.
【点睛】
本题主要考查三角形三边关系,注意掌握三角形的三边关系:任意两边之和大于第三边,两边之差小于第三边,解题的关键掌握三角形三边关系.
三、解答题
1、(1)∠BED=∠B+∠D;(2)证明见详解.
【解析】
【分析】
(1)作EF∥AB,证明AB∥EF∥CD,得到∠B=∠BEF,∠D=∠DEF,即可证明∠BED=∠B+∠D;
(2)根据(1)结论得到∠N=∠BAN+∠DCN,进而得到∠AMN=∠BAN+∠DCN,根据三角形外角定理得到∠AMN=∠ACM+∠CAM,∠BAN+∠DCN=∠ACM+∠CAM,再根据∠DCN=∠CAN,即可证明∠CAM=∠BAN.
【详解】
解:如图1,作EF∥AB,
∵AB∥CD,
∴AB∥EF∥CD,
∴∠B=∠BEF,∠D=∠DEF,
∵∠BED=∠BEF+∠DEF,
∴∠BED=∠B+∠D;
(2)证明:∵AB∥CD,
∴由(1)得∠N=∠BAN+∠DCN,
∵∠AMN=∠ANM,
∴∠AMN=∠BAN+∠DCN,
∵∠AMN是△ACM外角,
∴∠AMN=∠ACM+∠CAM,
∴∠BAN+∠DCN=∠ACM+∠CAM,
∵CN平分∠ACD,
∴∠DCN=∠CAN,
∴∠CAM=∠BAN.
【点睛】
本题考查了平行线的性质,角平分线的定义,三角形的外角定理等知识,熟知相关定理并根据题意添加辅助线进行角的转化是解题关键.
2、75°
【解析】
【分析】
根据角平分线的定义求出∠DAC的度数,所以EDCA可求,进而求出∠ACB的度数.
【详解】
解:∵AD是∠BAC的平分线,∠BAC=80°,
∴∠DAC=40°,
∵CE是△ADC边AD上的高,
∴∠ACE=90°﹣40°=50°,
∵∠ECD=25°
∴∠ACB=50°+25°=75°.
【点睛】
本题主要考查了三角形的内角和定理.解题的关键是掌握三角形的内角和定理以及角平分线的性质.
3、∠CAD =46°,∠1=76°.
【解析】
【分析】
利用三角形内角和求出∠BAC,根据角平分线定义求出∠CAD,然后根据三角形外角性质∠1=∠C+∠CAD即可求解.
【详解】
解:∵∠C=30°,∠B=58°,
∴∠BAC=180°﹣∠B﹣∠C=180°﹣30°﹣58°=92°.
又∵AD平分∠BAC,
∴∠CAD=∠BAC=46°,
∵∠1是△ACD的外角,
∴∠1=∠C+∠CAD=30°+46°=76°.
【点睛】
本题考查了三角形内角和定理、角平分线的定义、三角形的外角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
4、(1)100゜;(2)130゜
【解析】
【分析】
(1)利用直角三角形两锐角互余、三角形外角的性质,可求得结果;
(2)由角平分线的性质及三角形内角和定理可求得∠EBC+∠FCB的度数,从而可求得结果的度数.
【详解】
(1)∵BE⊥AC,CF⊥AB
∴∠AEB=∠CFB=90゜
∴∠ABE=90゜ -∠A=10゜
∴∠BDC=∠CFB+∠ABE=90゜+10゜=100゜
(2)∵BE、CF分别平分∠ABC、∠ACB
∴,
∵∠ABC+∠ACB=180゜ -∠A=100゜
∴
∴
【点睛】
本题考查了三角形内角和定理、三角形外角的性质、角平分线的性质,熟练运用它们是解答的关键.
5、.
【解析】
【分析】
根据三角形面积公式计算即可.
【详解】
解:
.
【点睛】
本题考查三角形面积的计算,利用等积法是解题关键.
相关试卷
这是一份初中数学冀教版七年级下册第九章 三角形综合与测试随堂练习题,共23页。试卷主要包含了如图,直线l1l2,被直线l3,若一个三角形的三个外角之比为3等内容,欢迎下载使用。
这是一份冀教版七年级下册第九章 三角形综合与测试同步训练题,共24页。试卷主要包含了如图,,若一个三角形的三个外角之比为3等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第九章 三角形综合与测试当堂达标检测题,共20页。试卷主要包含了如图,已知△ABC中,BD,如图,直线l1,下列图形中,不具有稳定性的是,已知△ABC的内角分别为∠A等内容,欢迎下载使用。