冀教版七年级下册第九章 三角形综合与测试课后测评
展开
这是一份冀教版七年级下册第九章 三角形综合与测试课后测评,共24页。试卷主要包含了下列图形中,不具有稳定性的是,如图,在中,若点使得,则是的等内容,欢迎下载使用。
冀教版七年级数学下册第九章 三角形综合测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知三角形的两边长分别为2cm和3cm,则第三边长可能是( )A.6cm B.5cm C.3cm D.1cm2、如图,BD是的角平分线,,交AB于点E.若,,则的度数是( )A.10° B.20° C.30° D.50°3、BP是∠ABC的平分线,CP是∠ACB的邻补角的平分线,∠ABP=20°,∠ACP=50°,则∠P=( )A.30° B.40° C.50° D.60°4、下列图形中,不具有稳定性的是( )A. B.C. D.5、如图,四边形ABCD是梯形,,与的角平分线交于点E,与的角平分线交于点F,则与的大小关系为( )A. B. C. D.无法确定6、如图,在△ABC中,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,∠D=15°,则∠A的度数为( )A.30° B.45° C.20° D.22.5°7、如图,在中,若点使得,则是的( )A.高 B.中线 C.角平分线 D.中垂线8、已知三角形的两边长分别为和,则下列长度的四条线段中能作为第三边的是( )A. B. C. D.9、将一副三角板按不同位置摆放,下图中与互余的是( )A. B.C. D.10、若一个三角形的两边长分别为3和8,则第三边长可能是 ( )A.4 B.5 C.8 D.11第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在△ABC中,AD是BC边上的中线,BE是△ABD中AD边上的中线,若△ABC的面积是80,则△ABE的面积是________.2、等腰三角形的一条边长为4cm,另一条边长为6cm,则它的周长是________.3、如图,将一张长方形纸片ABCD沿对角线BD折叠后,点C落在点E处,连接BE交AD于F,再将三角形DEF沿DF折叠后,点E落在点G处,若DG刚好平分∠ADB,那么∠ADB的度数是__________. 4、已知ABC中,AB=5,AC=7,BC=a,则a的取值范围是 ___.5、如图,△ABC的面积等于35,AE=ED,BD=3DC,则图中阴影部分的面积等于 _______ 三、解答题(5小题,每小题10分,共计50分)1、如图所示,AD,CE是△ABC的两条高,AB=6cm,BC=12cm,CE=9cm.(1)求△ABC的面积;(2)求AD的长.2、如图所示,在一副三角板ABC和三角板DEC中,,,∠B=30°,∠DEC=∠DCE=45°.(1)当AB∥DC时,如图①,的度数为 °;(2)当与重合时,如图②,判断与的位置关系并说明理由;(3)如图③,当= °时,AB∥EC;(4)当AB∥ED时,如图④、图⑤,分别求出的度数.3、如图:是一个大型模板,设计要求与相交成角,与相交成角,现小燕测得,她就断定这块模板是合格的,这是为什么?4、已知,如图,在中,点E,F分别为边上的动点,和相交于点D,.(1)如果分别为上的高线时,求的度数;(2)如果分别平分时,求的度数.5、已知:AD//BC,点P为直线AB上一动点,点M在线段BC上,连接MP,∠BAD=α,∠APM=β,∠PMC=γ.(1)如图1,当点P在线段AB上时,若MP⊥AB,α=120°,则γ= ;(2)如图2,当点P在AB的延长线上时,写出α、β与γ之间的数量关系,并说明理由;(3)如图3,当点P在BA的延长线上时,请画出图形,证明出α、β与γ之间的数量关系. -参考答案-一、单选题1、C【解析】【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【详解】解:设第三边长为xcm,根据三角形的三边关系可得:3-2<x<3+2,解得:1<x<5,只有C选项在范围内.故选:C.【点睛】本题考查了三角形的三边关系,关键是掌握第三边的范围是:大于已知的两边的差,而小于两边的和.2、B【解析】【分析】由外角的性质可得∠ABD=20°,由角平分线的性质可得∠DBC=20°,由平行线的性质即可求解.【详解】解:(1)∵∠A=30°,∠BDC=50°,∠BDC=∠A+∠ABD,∴∠ABD=∠BDC−∠A=50°−30°=20°,∵BD是△ABC的角平分线,∴∠DBC=∠ABD=20°,∵DE∥BC,∴∠EDB=∠DBC=20°,故选:B.【点睛】本题考查了平行线的性质,三角形外角的性质,角平分线的定义,灵活应用这些性质解决问题是解决本题的关键.3、A【解析】【分析】根据角平分线的定义以及一个三角形的外角等于与它不相邻的两个内角和,可求出∠P的度数.【详解】∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∴∠ABP=∠CBP=20°,∠ACP=∠MCP=50°,∵∠PCM是△BCP的外角,∴∠P=∠PCM−∠CBP=50°−20°=30°,故选:A.【点睛】本题考查三角形外角性质以及角平分线的定义,解题时注意:一个三角形的外角等于与它不相邻的两个内角的和.4、B【解析】【分析】由三角形的稳定性的性质判定即可.【详解】A选项为三角形,故具有稳定性,不符合题意,故错误;B选项为四边形,非三角形结构,故不具有稳定性,符合题意,故正确;C选项为三个三角形组成的图形,属于三角形结构,故具有稳定性,不符合题意,故错误;D选项为两个三角形组成的图形,属于三角形结构,故具有稳定性,不符合题意,故错误.故选B.【点睛】本题考查了三角形的稳定性,如果三角形的三条边固定,那么三角形的形状和大小就完全确定了,三角形的这个特征,叫做三角形的稳定性注意①要看图形是否具有稳定性,关键在于它的结构是不是三角形结构②除了三角形外,其他图形都不具备稳定性,因此在生产建设中,三角形的应用非常广泛.5、B【解析】【分析】由AD∥BC可得∠BAD+∠ABC=180°,∠ADC+∠BCD=180°,由角平分线的性质可得∠AEB=90°,∠DFC=90°,由三角形内角和定理可得到∠1=∠2=90°.【详解】解:∵AD∥BC,∴∠BAD+∠ABC=180°,∠ADC+∠BCD=180°,∵∠DAB与∠ABC的角平分线交于点E,∠CDA与∠BCD的角平分线交于点F,∴∠BAE=∠BAD,∠ABE=∠ABC,∠CDF=∠ADC,∠DCF=∠BCD,∴∠BAE+∠ABE=(∠BAD+∠ABC)=90°,∠CDF+∠DCF=(∠ADC+∠BCD) =90°,∴∠1=180°-(∠BAE+∠ABE)= 90°,∠2=∠CDF+∠DCF= 90°,∴∠1=∠2=90°,故选:B.【点睛】本题考查了平行线的性质,角平分线的定义,三角形内角和定理,灵活运用这些性质进行推理是本题的关键.6、A【解析】【分析】由三角形的外角的性质可得再结合角平分线的性质进行等量代换可得从而可得答案.【详解】解: ∠ABC与∠ACE的平分线相交于点D, 故选A【点睛】本题考查的是三角形的角平分线的性质,三角形的外角的性质,熟练的利用三角形的外角的性质结合等量代换得到是解本题的关键.7、B【解析】【分析】根据三角形的中线定义即可作答.【详解】解:∵BD=DC,∴AD是△ABC的中线,故选:B.【点睛】本题考查了三角形的中线概念,三角形一边的中点与此边所对顶点的连线叫做三角形的中线.8、C【解析】【分析】根据三角形的三边关系可得,再解不等式可得答案.【详解】解:设三角形的第三边为,由题意可得:,即,故选:C.【点睛】本题主要考查了三角形的三边关系,解题的关键是掌握三角形两边之和大于第三边;三角形的两边差小于第三边.9、A【解析】【分析】根据平角的定义可判断A,D,根据同角的余角相等可判断B,根据三角形的外角的性质可判断C,从而可得答案.【详解】解:选项A:根据平角的定义得:∠α+90°+∠β=180°, ∴∠α+∠β=90°, 即∠α与∠β互余;故A符合题意;选项B:如图, 故B不符合题意;选项C:如图, 故C不符合题意;选项D: 故D不符合题意;故选A【点睛】本题考查的是平角的定义,互余的含义,同角的余角相等,三角形的外角的性质,掌握“与直角三角形有关的角度的计算”是解本题的关键.10、C【解析】【分析】直接利用三角形三边关系得出第三边的取值范围,进而得出答案.【详解】解:∵一个三角形的两边长分别为3和8,∴5<第三边长<11,则第三边长可能是:8.故选:C.【点睛】此题主要考查了三角形的三边关系,正确得出第三边的取值范围是解题关键.二、填空题1、20【解析】【分析】根据三角形的中线把三角形分成面积相等的两部分,求出面积比,即可解答.【详解】解:∵AD是BC上的中线,∴S△ABD=S△ACD=S△ABC,∵BE是△ABD中AD边上的中线,∴S△ABE=S△BED=S△ABD,∴S△ABE=S△ABC,∵△ABC的面积是80,∴S△ABE=×80=20.故答案为:20.【点睛】本题主要考查了三角形面积的求法,掌握三角形的中线将三角形分成面积相等的两部分,是解答本题的关键.2、16cm或14cm##14cm或16cm【解析】【分析】根据题意分腰为6cm和底为6cm两种情况,分别求出即可.【详解】解:①当腰为6cm时,它的周长为6+6+4=16(cm);②当底为6cm时,它的周长为6+4+4=14(cm); 故答案为:16cm或14cm.【点睛】本题考查了等腰三角形的性质的应用,注意:等腰三角形的两腰相等,注意分类讨论.3、36°##36度【解析】【分析】根据折叠的性质可得∠BDC=∠BDE,∠EDF=∠GDF,由角平分线的定义可得∠BDA=∠GDF+∠BDG=2∠GDF,然后根据矩形的性质及角的运算可得答案.【详解】解:由折叠可知,∠BDC=∠BDE,∠EDF=∠GDF,∵DG平分∠ADB,∴∠BDG=∠GDF,∴∠EDF=∠BDG,∴∠BDE=∠EDF+∠GDF+∠BDG=3∠GDF,∴∠BDC=∠BDE=3∠GDF,∠BDA=∠GDF+∠BDG=2∠GDF,∵∠BDC+∠BDA=90°=3∠GDF+2∠GDF=5∠GDF,∴∠GDF=18°,∴∠ADB=2∠GDF=2×18°=36°.故答案为:36°.【点睛】本题考查的是角的运算及角平分线的定义,正确掌握折叠的性质是解决此题的关键.4、2<a<12【解析】【分析】直接利用三角形三边关系得出a的取值范围.【详解】解:∵△ABC中,AB=5,AC=7,BC=a,∴7﹣5<a<7+5,即2<a<12.故答案为:2<a<12.【点睛】本题考查了三角形的三边关系,做题的关键是掌握三角形中任意两边之和大于第三边,两边之差小于第三边.5、15【解析】【分析】连接DF,根据AE=ED,BD=3DC,可得 ,, ,,然后设△AEF的面积为x,△BDE的面积为y,则,,,,再由△ABC的面积等于35,即可求解.【详解】解:如图,连接DF, ∵AE=ED,∴ ,,∵BD=3DC,∴ ,设△AEF的面积为x,△BDE的面积为y,则,,,,∵△ABC的面积等于35,∴ ,解得: .故答案为:15【点睛】本题主要考查了与三角形中线有关的面积问题,根据题意得到 ,, ,是解题的关键.三、解答题1、(1)27;(2)4.5【解析】【分析】(1)根据三角形面积公式进行求解即可;(2)利用面积法进行求解即可.【详解】解:(1)由题意得:.(2)∵,∴.解得.【点睛】本题主要考查了与三角形高有关的面积求解,解题的关键在于能够熟练掌握三角形面积公式.2、(1)30;(2)DE∥AC,理由见解析;(3)15;(4)图④∠DCB=60°;图⑤∠DCB=120°;【解析】【分析】(1)根据两直线平行,内错角相等求解即可;(2)根据内错角相等,两直线平行证明即可;(3)根据AB∥EC,得到∠ECB=∠B=30°,即可得到∠DCB=∠DCE-∠ECB=15°;(4)如图④所示,,设CD与AB交于F,由平行线的性质可得∠BFC=∠EDC=90°,再由三角形内角和定理∠DCB=180°-∠BFC-∠B=60°;如图⑤所示,延长AC交ED延长线于G,由平行线的性质可得∠G=∠A=60°,再由∠ACB=∠CDE=90°,得到∠BCG=∠CDG=90°,即可求出∠DCG=180°-∠G-∠CDG=30°,则∠BCD=∠BCG+∠DCG=120°.【详解】解:(1)∵AB∥CD,∴∠BCD=∠B=30°,故答案为:30;(2)DE∥AC,理由如下:∵∠CBE=∠ACB=90°,∴DE∥AC;(3)∵AB∥EC,∴∠ECB=∠B=30°,又∵∠DCE=45°,∴∠DCB=∠DCE-∠ECB=15°,∴当∠DCB=15°时,AB∥EC,故答案为:15;(4)如图④所示,设CD与AB交于F,∵AB∥ED,∴∠BFC=∠EDC=90°,∴∠DCB=180°-∠BFC-∠B=60°;如图⑤所示,延长AC交ED延长线于G,∵AB∥DE,∴∠G=∠A=60°,∵∠ACB=∠CDE=90°,∴∠BCG=∠CDG=90°,∴∠DCG=180°-∠G-∠CDG=30°,∴∠DCB=∠BCG+∠DCG=120°.【点睛】本题主要考查了平行线的性质与判定,三角形内角和定理,邻补角互补等等,解题的关键在于能够熟练掌握平行线的性质与判定条件.3、合格,理由见解析【解析】【分析】延长,相交于点F,延长,相交于点E,然后根据三角形内角和定理求解即可.【详解】解:如图,延长,相交于点F,延长,相交于点E,∵, ∴, ∵, ∴, ∴这块模板是合格的.【点睛】本题主要考查了三角形内角和定理,解题的关键在于能够熟练掌握三角形内角和定理.4、(1)100゜;(2)130゜【解析】【分析】(1)利用直角三角形两锐角互余、三角形外角的性质,可求得结果;(2)由角平分线的性质及三角形内角和定理可求得∠EBC+∠FCB的度数,从而可求得结果的度数.【详解】(1)∵BE⊥AC,CF⊥AB∴∠AEB=∠CFB=90゜∴∠ABE=90゜ -∠A=10゜∴∠BDC=∠CFB+∠ABE=90゜+10゜=100゜(2)∵BE、CF分别平分∠ABC、∠ACB∴,∵∠ABC+∠ACB=180゜ -∠A=100゜∴∴【点睛】本题考查了三角形内角和定理、三角形外角的性质、角平分线的性质,熟练运用它们是解答的关键.5、 (1)150°(2)γ=α+β,理由见解析(3)图形见解析,α、β与γ之间的数量关系为:α+γ-β=180°【解析】【分析】(1)由AD//BC,α=120°可求出∠B=60°,由MP⊥AB得到∠MPB=90°,最后由γ=∠MPB+∠B=150°即可求解;(2)由AD//BC得到∠CBP=α,再由γ=∠CBP+∠P=α+β即可求解;(3)画出图形,由AD//BC,得到∠CMN=∠DNP=γ,∠PNA=180°-∠DNP=180°-γ,再在△PNA中,由三角形外角定理即可求解.(1)解:如下图所示:∵AD//BC,α=120°,∴∠B=60°,∵MP⊥AB,∴∠MPB=90°,∴γ=∠MPB+∠B=90°+60°=150°.故答案是:150°;(2)解:如下图所示:∵AD//BC,∴∠CBP=∠DAB=α,△MBP中,由三角形外角定理可知:∠CMP=∠CBP+∠P,∴γ=α+β.(3)解:当点P在BA的延长线上时,图形如下所示,α、β与γ之间的数量关系为:∵AD//BC,∴∠CMN=∠DNP=γ,∴∠PNA=180°-∠DNP=180°-γ,△PNA中,由三角形外角定理可知:∠DAB=∠PNA+∠P,∴α=180°-γ+β,故α、β与γ之间的数量关系为:α+γ-β=180°.【点睛】本题考查了平行线的性质,三角形的外角的性质,平角的定义,是基础题,熟记性质并准确识图理清图中各角度之间的关系是解题的关键.
相关试卷
这是一份数学七年级下册第九章 三角形综合与测试同步达标检测题,共24页。试卷主要包含了如图,在中,AD,若一个三角形的三个外角之比为3等内容,欢迎下载使用。
这是一份数学七年级下册第九章 三角形综合与测试达标测试,共23页。试卷主要包含了下列各图中,有△ABC的高的是,如图,在ABC中,点D等内容,欢迎下载使用。
这是一份冀教版七年级下册第九章 三角形综合与测试当堂检测题,共26页。试卷主要包含了下列图形中,不具有稳定性的是,如图,在中,若点使得,则是的,如图,为估计池塘岸边A等内容,欢迎下载使用。