2021学年第十九章 平面直角坐标系综合与测试同步达标检测题
展开
这是一份2021学年第十九章 平面直角坐标系综合与测试同步达标检测题,共27页。试卷主要包含了已知点A等内容,欢迎下载使用。
八年级数学下册第十九章平面直角坐标系章节测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如果点P(﹣5,b)在第二象限,那么b的取值范围是( )A.b≥0 B.b≤0 C.b<0 D.b>02、在平面直角坐标系中,点P(-2,3)在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限3、在平面直角坐标系中,已知点P(5,−5),则点P在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限4、已知点P(a,3)和点Q(4,b)关于x轴对称,则a+b的值为( ).A.1 B. C.7 D.5、已知点与点关于y轴对称,则的值为( )A.5 B. C. D.6、已知点A(m,2)与点B(1,n)关于y轴对称,那么m+n的值等于( )A.﹣1 B.1 C.﹣2 D.27、如图所示,在平面直角坐标系xOy中,△ABC关于直线y=1对称,已知点A的坐标是(3,4),则点B的坐标是( )A.(3,﹣4) B.(﹣3,2) C.(3,﹣2) D.(﹣2,4)8、已知点A的坐标为,则点A关于x轴对称的点的坐标为( )A. B. C. D.9、在平面直角坐标系中,将点(3,-4)平移到点(-1,4),经过的平移变换为( )A.先向左平移4个单位长度,再向上平移4个单位长度B.先向左平移4个单位长度,再向上平移8个单位长度C.先向右平移4个单位长度,再向下平移4个单位长度D.先向右平移4个单位长度,再向下平移8个单位长度10、如果点在第四象限内,则m的取值范围( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在平面直角在坐标系中,四边形OACB的两边OA,OB分别在x轴、y轴的正半轴上,其中,且CO平分,若,,则点C的坐标为______.2、边长相等、各内角均为120°的六边形ABCDEF在直角坐标系内的位置如图所示,,点B在原点,把六边形ABCDEF沿x轴正半轴绕顶点按顺时针方向,从点B开始逐次连续旋转,每次旋转60°,经过2021次旋转之后,点B的坐标是_____________.3、如图,在平面直角坐标系中,四边形ABOC是正方形,点A的坐标为(1,1),是以点B为圆心,BA为半径的圆弧;是以点O为圆心,OA1为半径的圆弧,是以点C为圆心,CA2为半径的圆弧,是以点A为圆心,AA3为半径的圆弧,继续以点B、O、C、A为圆心按上述作法得到的曲线AA1A2A3A4A5…称为正方形的“渐开线”,那么点A2021的坐标是______.4、已知点P(3m﹣6,m+1),A(﹣1,2),直线PA与x轴平行,则点P的坐标为_____.5、已知点A的坐标是A(﹣2,4),线段轴,且AB=5,则B点的坐标是____.三、解答题(5小题,每小题10分,共计50分)1、如图,的顶点A,B分别在x轴,y轴上,;(1)若,且点B(0,2),C(-2,-1),①点C关于y轴对称点的坐标为______;②求点A的坐标;(2)若点B与原点重合,时,存在第三象限的点E和y轴上的点F,使,且A(3,0),C(0,m),F(0,n),线段EF的长度为,求AE的长.2、如图所示的正方形网格中,每个小正方形的边长都为1,的顶点都在网格线的交点上,点B坐标为,点C的坐标为.(1)根据上述条件,在网格中画出平面直角坐标系;(2)画出关于x轴对称图形;(3)点A绕点B顺时针旋转90°,点A对应点的坐标为______.3、如图,这是某市部分建筑分布简图,若火车站的坐标为,市场的坐标为,请在图中画出平面直角坐标系,并分别写出超市、体育场和医院的坐标.超市的坐标为 ;体育场的坐标为 ;医院的坐标为 .4、如图,已知在平面直角坐标系中xOy中,点A(﹣4,0),点B(2n﹣10,m+2),当点A向右平移m(m>0)个单位,再向上平移n(n>0)个单位时,可与点B重合.(1)求点B的坐标;(2)将点B向右平移3个单位后得到的点记为点C,点C恰好在直线x=b上,点D在直线x=b上,当△BCD是等腰三角形时,求点D的坐标.5、如图,在平面直角坐标系中,的三个顶点都在格点上,点的坐标为,请回答下列问题.(1)画出关于x轴对称的,并写出点的坐标(___,___)(2)点P是x轴上一点,当的长最小时,点P坐标为______;(3)点M是直线BC上一点,则AM的最小值为______. -参考答案-一、单选题1、D【解析】【分析】点在第二象限的条件是:横坐标是负数,纵坐标是正数,据此可得到b的取值范围.【详解】解:∵点P(﹣5,b)在第二象限,∴b>0,故选D.【点睛】本题考查了平面直角坐标系中点的坐标特征,正确掌握各象限内点的坐标特点是解题关键.第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x轴上的点纵坐标为0,y轴上的点横坐标为0.2、B【解析】【分析】根据点横纵坐标的正负分析得到答案.【详解】解:点P(-2,3)在第二象限,故选:B.【点睛】此题考查了平面直角坐标系中各象限内点的坐标特点,熟记各象限内横纵坐标的正负是解题的关键.3、D【解析】【分析】根据各象限内点的坐标特征解答即可.【详解】解:点P(5,-5)的横坐标大于0,纵坐标小于0,所以点P所在的象限是第四象限.故选:D.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4、A【解析】【分析】直接利用关于x轴对称点的性质(横坐标不变,纵坐标互为相反数)得出a,b的值,进而得出答案.【详解】解:∵点P(a,3)和点Q(4,b)关于x轴对称,∴a=4,b=-3,则a+b =4-3=1.故选:A.【点睛】本题主要考查了关于x轴对称点的性质,正确得出a,b的值是解题关键.5、A【解析】【分析】点坐标关于轴对称,横坐标互为相反数,纵坐标相等,可求得的值,进而可求的值.【详解】解:由题意知:解得∴故选A.【点睛】本题考查了关于轴对称的点坐标的关系,代数式求值等知识.解题的关键在于理解关于轴对称的点坐标,横坐标互为相反数,纵坐标相等.6、B【解析】【分析】关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数;关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,据此先求出m,n的值,然后代入代数式求解即可得.【详解】解:∵与点关于y轴对称,∴,,∴,故选:B.【点睛】题目主要考查点关于坐标轴对称的特点,求代数式的值,理解题意,熟练掌握点关于坐标轴对称的特点是解题关键.7、C【解析】【分析】根据轴对称的性质解决问题即可.【详解】解:∵△ABC关于直线y=1对称,∴点A和点B是关于直线y=1对称的对应点,它们到y=1的距离相等是3个单位长度,∵点A的坐标是(3,4),∴B(3,﹣2),故选:C.【点睛】本题主要考查了坐标的对称特点.解此类问题的关键是要掌握轴对称的性质:对称轴垂直平分对应点的连线.利用此性质可在坐标系中得到对应点的坐标.8、B【解析】【分析】利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点A(x,y)关于x轴的对称点A′的坐标是(x,−y),进而求出即可.【详解】解:点A(2,-1)关于x轴的对称点的坐标为:(2,1).故选:B.【点睛】此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标关系是解题关键.9、B【解析】【分析】利用平移中点的变化规律求解即可.【详解】解:∵在平面直角坐标系中,点(3,-4)的坐标变为(-1,4),∴点的横坐标减少4,纵坐标增加8,∴先向左平移4个单位长度,再向上平移8个单位长度.故选:B.【点睛】本题考查了坐标与图形变化-平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.10、A【解析】【分析】根据第四象限点的横坐标为正,纵坐标为负,列不等式即可求解.【详解】解:∵点在第四象限内,∴,解得,;故选:A.【点睛】本题考查了不同象限内点的坐标的特征,解题关键是明确第四象限点的横坐标为正,纵坐标为负.二、填空题1、【解析】【分析】取AB的中点E,连接OE,CE并延长交x轴于点F,根据直角三角形斜边 上的中线等于斜边的一半证明CE=OE=AE,再进一步证明;由勾股定理求出AB=,AO=BO=5;过点O作OG⊥OC交CA的延长线于点G,证明△COG访问团等腰直角三角形,可可求出OC=7;过点C作CH⊥x轴,垂足为H,设C(m,n),则OH=m,CH=n,AH=5-m,根据勾股定理可得方程组 ,求出方程组的解,取正值即可.【详解】解:取AB的中点E,连接OE,CE并延长交x轴于点F,如图,∵,OC平分∠ACB,∴ ∵均为直角三角形,∴ ∴∴ ∴ ∵ ∴∴ ∴ ∴是等腰直角三角形,∴ ∵ 由勾股定理得, ∴ ∴ 过点O作OE⊥OC交CA的延长线于点G,∵∠OCA=45°,∴∠G=45°,∴△COG为等腰直角三角形,∴OC=OG,∵∠BOC+∠COA=∠COA+∠AOG=90°,∴∠BOC=∠AOG,∵∠OCB=∠OEA=45°,∴△COB≌△GOA(ASA),∴BC=AG=,∵CG=AC+AG=∵△OCE为等腰直角三角形,∴OC=7过点C作CH⊥x轴于点H,设C(m,n),∴OH=m,CH=n,AH=5-m在Rt△CHO和Rt△CHA中,由勾股定理得,解得,,(负值舍去)∴C()故答案为:()【点睛】本题主要考查了坐标玮图形的性质,全等三角形的判定和性质,等腰直角三角形的性质,勾股定理,添加恰当辅助线构造全等三角形是本题的关键.2、【解析】【分析】根据旋转找出规律后再确定坐标.【详解】∵正六边形ABCDEF沿x轴正半轴作无滑动的连续翻转,每次翻转60°,∴每6次翻转为一个循环组循环,∵,∴经过2021次翻转为第337循环组的第5次翻转,点B在开始时点C的位置,∵,∴,∴翻转前进的距离为:,如图,过点B作BG⊥x于G,则∠BAG=60°,∴,,∴,∴点B的坐标为.故答案为:.【点睛】题考查旋转的性质与正多边形,由题意找出规律是解题的关键.3、(2021,0)【解析】【分析】将四分之一圆弧对应的A点坐标看作顺时针旋转90°,再根据A、A1、A2、A3、A4的坐标找到规律即可.【详解】∵A点坐标为(1,1),且A1为A点绕B点顺时针旋转90°所得∴A1点坐标为(2,0)又∵A2为A1点绕O点顺时针旋转90°所得∴A2点坐标为(0,-2)又∵A3为A2点绕C点顺时针旋转90°所得∴A3点坐标为(-3,1)又∵A4为A3点绕A点顺时针旋转90°所得∴A4点坐标为(1,5)由此可得出规律:An为绕B、O、C、A四点作为圆心依次循环顺时针旋转90°,且半径为1、2、3、、、n,每次增加1.∵2021÷4=505…1故A2021为以点B为圆心,半径为2021的A2020点顺时针旋转90°所得故A2021点坐标为(2021,0).故答案为:(2021,0).【点睛】本题考查了点坐标规律探索,通过点的变化探索出旋转的规律是解题的关键.4、(﹣3,2)【解析】【分析】由题意知m+1=2,得m的值;将m代入求点P的坐标即可.【详解】解:∵点P(3m﹣6,m+1)在过点A(﹣1,2)且与x轴平行的直线上∴m+1=2解得m=1∴3m﹣6=3×1﹣6=﹣3∴点P的坐标为(﹣3,2)故答案为:(﹣3,2).【点睛】本题考查了直角坐标系中与x轴平行的直线上点坐标的关系.解题的关键在于明确与x轴平行的直线上点坐标的纵坐标相等.5、(﹣2,﹣1)或(﹣2,9)##(﹣2,9)或(﹣2,﹣1)【解析】【分析】根据A的坐标和轴确定横坐标,根据AB=5可确定B点的纵坐标.【详解】解:∵线段轴,A的坐标是A(﹣2,4),∴B点的横坐标为﹣2,又∵AB=5,∴B点的纵坐标为﹣1或9,∴B点的坐标为(﹣2,﹣1)或(﹣2,9),故答案为:(﹣2,﹣1)或(﹣2,9).【点睛】本题考查了坐标与图形的性质,熟练掌握与坐标轴平行的点的坐标特点是解题的关键.平行于x轴的直线上的任意两点的纵坐标相同;平行于y轴的直线上任意两点的横坐标相同.三、解答题1、 (1)①(2,-1);②(3,0).(2)6.【解析】【分析】(1)①根据关于y轴对称的点纵坐标不变、横坐标变为原来的相反数即可解答;②设A点坐标为(a,0),再运用两点间距离公式求得BC的长,进而求得AB的长,然后根据两点间距离公式即可求解;(2)作点F关于x轴的对称点H(0,-n),则AF=AH、OF=OH,过点H作HN⊥AC于点N,过点F作FM⊥AE于点M,则C(0,m)、H(0,-n)、m<0、n>0,进一步说明HC=EF;然后再证明△FEM≌△HCN得到FM=HN、EM=CN,证明Rt△AFM≌Rt△AHN得到AM=AN,进一步说明AE=AC,最后求得AC的长即可.(1)解:(1)①由关于y轴对称的点纵坐标不变、横坐标变为原来的相反数,则点C(-2,-1)关于y轴对称点的坐标为(2,-1);故答案是(2,-1);②设A点坐标为(a,0)∵B(0,2),C(-2,-1),∴BC=∴AB=BC=∴,解得a=3.∴点A的坐标为(3,0).(2)解:(2)作点F关于x轴的对称点H(0,-n),则AF=AH、OF=OH,过点H作HN⊥AC于点N,过点F作FM⊥AE于点M, ∵C(0,m),H(0,-n),m<0,n>0,∴HC=OC-OH=-m-n,∵EF=-m-n,∴HC=EF,∵∠AEF=∠ACO=30°,∴∠FME=∠HNC,∴△FEM≌△HCN(AAS),∴FM=HN,EM=CN,在Rt△AFM和Rt△AHN中,AF=AH,FM=HN∴Rt△AFM≌Rt△AHN(HL),∴AM=AN,∴EM+AM=CN+AN,∴AE=AC,∵∠ACO=30°,A(3,0),∴OA=3,∴AC=2OA=6,∴AE=6.【点睛】本题主要考查了轴对称、两点间的距离公式、勾股定理、全等三角形的判定与性质等知识点,综合应用相关知识成为解答本题的关键.2、 (1)见解析(2)见解析(3)(2,2)【解析】【分析】(1)根据点B坐标为,点C的坐标为确定原点,再画出坐标系即可;(2)画出三角形顶点的对称点,再顺次连接即可;(3)画出旋转后点的位置,写出坐标即可.(1)解:坐标系如图所示,(2)解:如图所示,就是所求作三角形;(3)解:如图所示,点A绕点B顺时针旋转90°的对应点为,坐标为(2,2);故答案为:(2,2)【点睛】本题考查了平面直角坐标系作图,解题关键是明确轴对称和旋转的性质,准确作出图形,写出坐标.3、见解析,,,【解析】【分析】根据火车站的坐标为,市场的坐标为确定原点的位置进而建立平面直角坐标系,根据坐标系写出超市、体育场和医院的坐标.【详解】解:所建平面直角坐标系,如图所示:超市的坐标为;体育场的坐标为;医院的坐标为.故答案为:,,.【点睛】本题考查了实际问题中用坐标表示位置,确定原点建立平面直角坐标系是解题的关键.4、 (1)B的坐标(-2,4)(2)D的坐标(1,7)或(1,1)【解析】【分析】(1)向右平移m(m>0)个单位,横坐标加m,向上平移n(n>0)个单位,纵坐标加n,根据点B(2n-10,m+2),列出二元一次方程组,得到m、n的值,即可得到点B的坐标;(2)先求出点C的坐标和直线x=b中b的值,设点D(1,x),根据,列出方程,求解即可得到D的坐标.(1)解:∵点A(-4,0),当点A向右平移m(m>0)个单位,再向上平移n(n>0)个单位时,可与点B重合,∴点B(-4+m,0+n),又∵点B(2n-10,m+2),∴,解得,∴点B(-2,4).(2)解:∵点B(-2,4),点B向右平移3个单位后得到的点记为点C,∴点C(1,4),∵点C恰好在直线x=b上,∴b=1,直线x=1,∵点D在直线x=1上,∴,设点D(1,x),∵△BCD是等腰三角形,∴,∴,解得或,∴D的坐标(1,7)或(1,1).【点睛】本题考查点的平移引起的点的坐标变化规律.点左右平移只影响横坐标的变化,点上下平移只影响纵坐标的变化.具体如下:设一个点的坐标为(m,n),①若把这个点向左平移k(k>0)个单位后,坐标变为(m-k,n);若把这个点向右平移k个单位后,坐标则变为(m+k,n).②若把这个点向上平移k(k>0)个单位后,坐标变为(m,n+k);若把这个点向下平移k个单位后,坐标则变为(m,n- k).5、(1)5,-3;(2)(,0);(3)【解析】【分析】(1)利用关于x轴对称的点的坐标特征写出A1、B1、C1的坐标,然后描点即可;(2)连接BC1交x轴于点P,利用两点之间线段最短可判断P点满足条件,利用待定系数法求得直线BC1的解析式,即可求解;(3)利用割补法求得△ABC的面积,利用两点之间的距离公式求得BC的长,再利用面积法即可求解.【详解】解:(1)如图,△A1B1C1为所作,点C1的坐标为(5,-3);故答案为:5,-3;(2)如图,点P为所作.设直线BC1的解析式为y=kx+b,∵点C1的坐标为(5,-3),点B的坐标为(1,2),∴,解得:,∴直线BC1的解析式为y=x+,当y=0时,x=,∴点P的坐标为(,0);故答案为:(,0);(3)根据垂线段最短,当AM垂直BC时,垂线段AM取得最小值,△ABC的面积为2×4-×2×1-×4×1-×3×1=;BC=,∵××AM=,∴AM=.故答案为:.【点睛】本题考查了作图-轴对称变换:几何图形都可看作是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的.也考查了最短路径问题.注意:关于x轴对称的点,横坐标相同,纵坐标互为相反数.
相关试卷
这是一份初中数学第十九章 平面直角坐标系综合与测试课时训练,共23页。试卷主要包含了若平面直角坐标系中的两点A等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试随堂练习题,共28页。试卷主要包含了如图是象棋棋盘的一部分,如果用等内容,欢迎下载使用。
这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试同步练习题,共24页。试卷主要包含了在平面直角坐标系中,点,在平面直角坐标系中,将点A,下列命题中,是真命题的有,点P关于y轴对称点的坐标是.等内容,欢迎下载使用。