初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试同步测试题
展开
这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试同步测试题,共28页。试卷主要包含了在平面直角坐标系中,点P,在平面直角坐标系中,点A等内容,欢迎下载使用。
八年级数学下册第十九章平面直角坐标系专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在平面直角坐标系中,已知点P(2a﹣4,a+3)在x轴上,则点(﹣a+2,3a﹣1)所在的象限为( )A.第一象限 B.第二象限 C.第三象限 D.第四象限2、已知点A(x,5)在第二象限,则点B(﹣x,﹣5)在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限3、在平面直角坐标系中,将点先向左平移个单位得点,再将向上平移个单位得点,若点落在第三象限,则的取值范围是( )A. B. C. D.或4、在平面直角坐标系中,点P(-2,3)在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限5、第24届冬季奥林匹克运动会将于2022年2月4日~20日在北京市和张家口市联合举行.以下能够准确表示张家口市地理位置的是( )A.离北京市100千米 B.在河北省C.在怀来县北方 D.东经114.8°,北纬40.8°6、若y轴负半轴上的点P到x轴的距离为2,则点P的坐标为( )A.(0,2) B.(2,0) C.(﹣2,0) D.(0,﹣2)7、已知点与点关于y轴对称,则的值为( )A.5 B. C. D.8、平面直角坐标系中,点到y轴的距离是( )A.1 B.2 C.3 D.49、在平面直角坐标系中,点A(2,3)关于x轴的对称点为点B,则点B的坐标是( )A.(2,3) B.(﹣2,3) C.(2,﹣3) D.(﹣2,﹣3)10、已知点A的坐标为,则点A关于x轴对称的点的坐标为( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在平面直角坐标系中,点A的坐标为,将点A向上平移两个单位后刚好落在x轴上,则m的值为______.2、在平面直角坐标系中,一个长方形ABCD三个顶点的坐标分别为A(1,2),B(1,﹣4),D(﹣3,2),则点C坐标为 _____.3、在平面直角坐标系中,如果一个点的横、纵坐标均为整数,那么我们称这个点是格点.若格点M(a﹣2,a+1)在第二象限,则a的值为 _____.4、已知直角坐标平面内的两点分别为A(2,﹣3)、B(5,6),那么A、B两点的距离等于______.5、如图,围棋盘的方格内,白棋②的位置是,白棋④的位置是,那么黑棋①的位置应该表示为______.三、解答题(5小题,每小题10分,共计50分)1、如图所示的正方形网格中,每个小正方形的边长都为1,的顶点都在网格线的交点上,点B坐标为,点C的坐标为.(1)根据上述条件,在网格中画出平面直角坐标系;(2)画出关于x轴对称图形;(3)点A绕点B顺时针旋转90°,点A对应点的坐标为______.2、如图,已知A点坐标为(﹣4,﹣3),B点坐标在x轴正半轴上,OB=OA.求:(1)△ABO的面积.(2)原点O到AB的距离.(3)在x轴上是否存在一点P使得△POA面积15,直接写出点P坐标.3、如图,在直角坐标平面内,已知点A的坐标(﹣2,0).(1)图中点B的坐标是______;(2)点B关于原点对称的点C的坐标是_____;点A关于y轴对称的点D的坐标是______;(3)四边形ABDC的面积是______;(4)在y轴上找一点F,使,那么点F的所有可能位置是______.4、如图,在平面直角坐标系中,点O为坐标原点,点中的横坐标x与纵坐标y满足,过点A作x轴的垂线,垂足为点D,点E在x轴的负半轴上,且满足,线段AE与y轴相交于点F,将线段AD向右平移8个单位长度,得到线段BC.(1)直接写出点A和点E的坐标;(2)在线段BC上有一点G,连接DF,FG,DG,若点G的纵坐标为m,三角形DFG的面积为S,请用含m的式子表示S(不要求写m的取值范围);(3)在(2)的条件下,当时,动点P从D出发,以每秒1个单位的速度沿着线段DA向终点A运动,动点Q从A出发,以每秒2个单位的速度沿着折线向终点C运动,P,Q两点同时出发,当三角形FGP的面积是三角形AGQ面积的2倍时,求出P点坐标.5、在平面直角坐标系中,点,点,点.以点O为中心,逆时针旋转,得到,点的对应点分别为.记旋转角为.(1)如图①,当点C落在上时,求点D的坐标;(2)如图②,当时,求点C的坐标;(3)在(2)的条件下,求点D的坐标(直接写出结果即可). -参考答案-一、单选题1、D【解析】【分析】由x轴上点的坐标特点求出a值,代入计算出点的横纵坐标,即可判断.【详解】解:∵点P(2a﹣4,a+3)在x轴上,∴a+3=0,解得a=-3,∴﹣a+2=5,3a﹣1=-10,∴点(﹣a+2,3a﹣1)所在的象限为第三象限,故选:D.【点睛】此题考查了直角坐标系中点的坐标特点,根据点的坐标判断点所在的象限,由点在x轴上求出a的值是解题的关键.2、D【解析】【分析】由题意直接根据各象限内点坐标特征进行分析即可得出答案.【详解】∵点A(x,5)在第二象限,∴x<0,∴﹣x>0,∴点B(﹣x,﹣5)在四象限.故选:D.【点睛】本题考查各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).3、A【解析】【分析】根据点的平移规律可得,再根据第三象限内点的坐标符号可得.【详解】解:点先向左平移个单位得点,再将向上平移个单位得点,点位于第三象限,,解得:,故选:.【点睛】此题主要考查了坐标与图形变化平移,关键是横坐标,右移加,左移减;纵坐标,上移加,下移减.4、B【解析】【分析】根据点横纵坐标的正负分析得到答案.【详解】解:点P(-2,3)在第二象限,故选:B.【点睛】此题考查了平面直角坐标系中各象限内点的坐标特点,熟记各象限内横纵坐标的正负是解题的关键.5、D【解析】【分析】若将地球看作一个大的坐标系,每个位置同样有对应的横纵坐标,即为经纬度.【详解】离北京市100千米、在河北省、在怀来县北方均表示的是位置的大概范围,东经114.8°,北纬40.8°为准确的位置信息.故选:D.【点睛】本题考查了实际问题中的坐标表示,理解经纬度和横纵坐标的本质是一样的是解题的关键.6、D【解析】【分析】点P在y轴上则该点横坐标为0,据此解答即可.【详解】∵y轴负半轴上的点P到x轴的距离为2,∴点P的坐标为(0,﹣2).故选:D.【点睛】本题考查了点的坐标,解决本题的关键是掌握好坐标轴上的点的坐标的特征,y轴上的点的横坐标为0.7、A【解析】【分析】点坐标关于轴对称,横坐标互为相反数,纵坐标相等,可求得的值,进而可求的值.【详解】解:由题意知:解得∴故选A.【点睛】本题考查了关于轴对称的点坐标的关系,代数式求值等知识.解题的关键在于理解关于轴对称的点坐标,横坐标互为相反数,纵坐标相等.8、A【解析】【分析】根据点到轴的距离是横坐标的绝对值,可得答案.【详解】解:∵,∴点到轴的距离是故选:A【点睛】本题考查的是点到坐标轴的距离,掌握点到轴的距离是横坐标的绝对值是解题的关键.9、C【解析】【分析】平面直角坐标系中,点关于x轴对称的点的特点是横坐标不变,纵坐标变为原数相反数,据此解题.【详解】解:点A(2,3)关于x轴的对称的点B(2,﹣3),故选:C.【点睛】本题考查平面直角坐标系中,点关于x轴对称的点,是基础考点,难度较易,掌握相关知识是解题关键.10、B【解析】【分析】利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点A(x,y)关于x轴的对称点A′的坐标是(x,−y),进而求出即可.【详解】解:点A(2,-1)关于x轴的对称点的坐标为:(2,1).故选:B.【点睛】此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标关系是解题关键.二、填空题1、1【解析】【分析】先求出点A向上平移两个单位后的坐标为,x轴上点坐标的特征即可求出m的值.【详解】∵,∴将点A向上平移两个单位后的坐标为,∵在x轴上,∴,解得:.故答案为:1.【点睛】本题考查点坐标的平移以及x轴点坐标的特征,掌握点坐标平移的性质以及x轴点坐标的特征是解题的关键.2、(﹣3,﹣4)【解析】【分析】根据长方形的性质求出点C的横坐标与纵坐标,即可得解.【详解】如图,∵A(1,2),B(1,﹣4),D(﹣3,2),∴点C的横坐标与点D的横坐标相同,为﹣3,点C的纵坐标与点B的纵坐标相同,为﹣4,∴点D的坐标为(﹣3,﹣4).故答案为:(﹣3,﹣4).【点睛】本题考查了坐标与图形性质,主要利用了矩形的对边平行且相等的性质,作出图形更形象直观.3、0或1##1或0【解析】【分析】根据点M在第二象限,求出a的取值范围,再由格点定义得到整数a的值.【详解】解:∵点M(a﹣2,a+1)在第二象限,∴a-2<0,a+1>0,∴-1<a<2,∵点M为格点,∴a为整数,即a的值为0或1,故答案为:0或1.【点睛】此题考查了象限内点的坐标特点,解不等式组,解题的关键是熟记直角坐标系中各象限内点的坐标特征.4、【解析】【分析】根据两点,利用勾股定理进行求解.【详解】解:在平面直角坐标系中描出、,分别过作平行于的线交于点,如图:的横坐标与的横坐标相同,的纵坐标与的纵坐标相同,,,,,故答案为:.【点睛】本题考查的是勾股定理,坐标与图形性质,解题的关键是掌握如果直角三角形的两条直角边长分别是,,斜边长为,那么.5、【解析】【分析】先根据白棋②的位置是,白棋④的位置是确定坐标系,然后再确定黑棋①的坐标即可.【详解】根据图形可以知道,黑棋①的位置应该表示为故答案为:【点睛】此题主要考查了坐标确定位置,解决问题的关键是正确建立坐标系.三、解答题1、 (1)见解析(2)见解析(3)(2,2)【解析】【分析】(1)根据点B坐标为,点C的坐标为确定原点,再画出坐标系即可;(2)画出三角形顶点的对称点,再顺次连接即可;(3)画出旋转后点的位置,写出坐标即可.(1)解:坐标系如图所示,(2)解:如图所示,就是所求作三角形;(3)解:如图所示,点A绕点B顺时针旋转90°的对应点为,坐标为(2,2);故答案为:(2,2)【点睛】本题考查了平面直角坐标系作图,解题关键是明确轴对称和旋转的性质,准确作出图形,写出坐标.2、 (1)(2)(3)存在,点P坐标为(﹣10,0)或(10,0)【解析】【分析】(1)过A作AC⊥x轴于C,则OC=4,AC=3,由勾股定理得OA=5,则OB=OA=5,再由三角形面积公式求解即可;(2)过O作OD⊥AB于D,由勾股定理得AB=3,再由三角形面积公式得S△ABO=AB×OD=,则OD=,即可求解;(3)过A作AC⊥x轴于C,由三角形面积求出OP=10,分两种情况即可求解.(1)解:过A作AC⊥x轴于C,如图1所示:∵A点坐标为(﹣4,﹣3),∴OC=4,AC=3,∴OA===5,∴OB=OA=5,∴S△ABO=OB×AC=×5×3=;(2)解:过O作OD⊥AB于D,如图2所示:由(1)得:OA=OB=5,AC=3,OC=4,∴BC=OB+OC=5+4=9,∴AB===3,∵S△ABO=AB×OD=×3×OD=,∴OD=,即原点O到AB的距离为;(3)解:在x轴上存在一点P使得△POA面积15,理由如下:如图3所示:由(1)得:AC=3,∵S△POA=OP×AC=×OP×3=15,∴OP=10,当点P在x轴负半轴时,点P坐标为(﹣10,0);当点P在x轴正半轴时,点P坐标为(10,0);综上所述,在x轴上存在一点P使得△POA面积15,点P坐标为(﹣10,0)或(10,0).【点睛】本题考查坐标与图形、勾股定理、三角形的面积公式,利用数形结合和分类讨论思想求解是解答的关键.3、 (1)(﹣3,4)(2)(3,﹣4),(2,0)(3)16(4)(0,4)或(0,﹣4)【解析】【分析】(1)根据坐标的定义,判定即可;(2)根据原点对称,y轴对称的点的坐标特点计算即可;(3)把四边形的面积分割成三角形的面积计算;(4)根据面积相等,确定OF的长,从而确定坐标.(1)过点B作x轴的垂线,垂足所对应的数为﹣3,因此点B的横坐标为﹣3,过点B作y轴的垂线,垂足所对应的数为4,因此点B的纵坐标为4,所以点B(﹣3,4);故答案为:(﹣3,4);(2)由于关于原点对称的两个点坐标纵横坐标均为互为相反数,所以点B(﹣3,4)关于原点对称点C(3,﹣4),由于关于y轴对称的两个点,其横坐标互为相反数,其纵坐标不变,所以点A(﹣2,0)关于y轴对称点D(2,0),故答案为:(3,﹣4),(2,0);(3)=2××4×4=16,故答案为:16;(4)∵==8=,∴AD•OF=8,∴OF=4,又∵点F在y轴上,∴点F(0,4)或(0,﹣4),故答案为:(0,4)或(0,﹣4).【点睛】本题考查了坐标系中对称点的坐标确定,图形的面积计算,正确理解坐标的意义,适当分割图形是解题的关键.4、 (1)A(2,8),E(-6,0);(2)S=m+24;(3)点P坐标为(2,)或(2,)或(2,)【解析】【分析】(1)根据求出x,y,得到A的坐标,根据,求出OE得到E的坐标;(2)由DE=6=AD,求出OF=OE=6,根据平移的性质得到CD=8,G(10,m),延长BA交y轴于H,则BH⊥y轴,则OH=AD=8,求出HF=2,根据三角形DFG的面积为S=代入数值求出答案;(3)由求得 G(10,2),设运动时间为t秒,分两种情况:当时,当时,利用面积加减关系求出△FGP与△AGQ的面积,得方程求解即可.(1)解:∵,∴x-2=0,y-8=0,得x=2,y=8,∴A(2,8),∴AD=8,OD=2,∵,∴OE=8-2=6,∴E(-6,0);(2)解:∵OD=2,OE=6,∴DE=6=AD,∵AD⊥x轴,∴∠AED=∠EAD=45°,∵∠EOF=90°,∴∠EFO=45°=∠OEF,∴OF=OE=6,∵将线段AD向右平移8个单位长度,得到线段BC, ∴B(10,8),C(10,0),BC⊥x轴,x轴,CD=8,∴G(10,m),延长BA交y轴于H,则BH⊥y轴,则OH=AD=8, ∴HF=2,三角形DFG的面积为S===m+24; (3)解:当时,m+24=26,得m=2,∴G(10,2),设运动时间为t秒,当时,,,∵三角形FGP的面积是三角形AGQ面积的2倍,∴,得t=,∴P(2,);当时,, ,∴,得t=或t=,∴P(2,)或P(2,),综上,点P坐标为(2,)或(2,)或(2,).【点睛】此题考查了算术平方根的非负性,绝对值的非负性,线段平移的性质,三角形面积的计算公式,图形中动点问题,解题中注意运用分类思想解决问题是关键,避免漏解的现象.5、 (1)(2)(3)【解析】【分析】(1)如图,过点D作DE⊥OA于点E.解直角三角形求出OE,DE,可得结论;(2)如图②,过点C作CT⊥OA于点T,解直角三角形求出OT,CT可得结论;(3)如图②中,过点D作DJ⊥OA于点J,在DJ上取一点K,使得DK=OK,设OJ=m.利用勾股定理构建方程求出m,可得结论.(1)如图,过点作,垂足为.∵ ,,∴ ,,.∵ ,∴ .在中,由,得.解得.∴ ,.∵ 是由旋转得到的,∴ ,.∴ .∴ .∴ .在中,.∴ 点的坐标为.(2)如图,过点作,垂足为.由已知,得.∴ .∴ .∵ 是由旋转得到的,∴ .在中,由,得.∴ 点的坐标为.(3)如图②中,过点D作DJ⊥OA于点J,在DJ上取一点K,使得DK=OK,设OJ=m.∵∠DOC=30°,∠COT=45°,∴∠DOJ=75°,∴∠ODJ=90°-75°=15°,∵KD=KO,∴∠KDO=∠KOD=15°,∴∠OKJ=∠KDO+∠KOD=30°,∴OK=DK=2m,KJ=m,∵OD2=OJ2+DJ2,∴22=m2+(2m+m)2,解得m=(负根已经舍弃),∴OJ=,DJ=,∴D.【点睛】本题考查坐标与图形变化-旋转,解直角三角形等知识,解题的关键是学会构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考常考题型.
相关试卷
这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试课后练习题,共23页。试卷主要包含了在平面直角坐标系中,点在,点关于轴的对称点是等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试当堂达标检测题,共26页。试卷主要包含了在平面直角坐标系中,将点A,在平面直角坐标系中,点,在平面直角坐标系中,A等内容,欢迎下载使用。
这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试课时作业,共30页。试卷主要包含了在平面直角坐标系中,点P等内容,欢迎下载使用。