冀教版八年级下册第十九章 平面直角坐标系综合与测试课时训练
展开
这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试课时训练,共26页。
八年级数学下册第十九章平面直角坐标系同步练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在平面直角坐标系中,点(2,﹣5)关于x轴对称的点的坐标是( )A.(2,5) B.(﹣2,5) C.(﹣2,﹣5) D.(2,﹣5)2、点A的坐标为,则点A在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限3、在平面直角坐标系中,所在的象限是( )A.第一象限 B.第二象限 C.第三象限 D.第四象限4、在平面直角坐标系中,点A的坐标为.作点A关于x轴的对称点,得到点,再将点向左平移2个单位长度,得到点,则点所在的象限是( )A.第一象限 B.第二象限 C.第三象限 D.第四象限5、在平面直角坐标系中,点A的坐标为(﹣4,3),若AB∥x轴,且AB=5,当点B在第二象限时,点B的坐标是( )A.(﹣9,3) B.(﹣1,3) C.(1,﹣3) D.(1,3)6、在平面直角坐标系中,已知点P(5,−5),则点P在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限7、若点M在第二象限,且点M到x轴的距离为2,到y轴的距离为1,则点M的坐标为( )A. B. C. D.8、在一次“寻宝”游戏中,寻宝人已经找到两个标志点和,并且知道藏宝地点的坐标是,则藏宝处应为图中的( )A.点 B.点 C.点 D.点9、从车站向东走400米,再向北走500米到小红家,从小强家向南走500米,再向东走200米到车站,则小强家在小红家的( )A.正东方向 B.正西方向 C.正南方向 D.正北方向10、如图,在平面直角坐标系中,△ABC的顶点都在方格线的格点上,将三角形ABC绕点P旋转90°,得到△A′B′C′,则点P的坐标为( )A.(0,4) B.(1,1) C.(1,2) D.(2,1)第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、用坐标表示地理位置的步骤:(1)建立坐标系,选择一个______参照点为原点,确定______和______.参照点不同,地理位置的坐标也不同.(2)根据具体问题确定适当的______,并在坐标轴上标出______.(3)在坐标平面内画出这些点,并写出各点的______和各个地点的名称.2、若|2x﹣4|+(y+3)2=0,点A(x,y)关于x轴对称的点为B,点B关于y轴对称的点为C,则点C的坐标是______.3、一般地,在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移_________个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数b,相应的新图形就是把原图形向上(或向下)平移_________个单位长度.4、经过点M(3,1)且平行于x轴的直线可以表示为直线 ______.5、已知点A的坐标是A(﹣2,4),线段轴,且AB=5,则B点的坐标是____.三、解答题(5小题,每小题10分,共计50分)1、如图,在平面直角坐标系中,描出点、、.(1)在平面直角坐标系中画出,则的面积是 ;(2)若点D与点C关于y轴对称,则点D的坐标为 ;(3)求线段OC的长;(4)已知P为x轴上一点,若的面积为4,求点的坐标.2、△ABC在平面直角坐标系中的位置如图所示.A、B、C三点在格点上.(1)作出△ABC关于y轴对称的△A1B1C1,并写出点C1的坐标;(2)作出△A1B1C1关于x轴对称的△A2B2C2.(3)求△AA1A2的面积3、如图,在10×10的网格中建立如图的平面直角坐标系,线段AB两个端点的坐标分别是A(1,4),B(3,1)(1)画出线段AB关于y轴对称的线段CD,则点A的对应点C的坐标是 ;(2)将线段AB先向左平移4个单位,再向下平移5个单位,画出平移后的对应线段EF,观察线段EF与DC是否关于某直线对称?若是,则对称轴是 ;E点坐标是 ;(3)△ABP是以AB为直角边的格点等腰直角三角形(A,B,P三点都是小正方形的顶点),则点P的坐标是 4、如图1,在平面直角坐标系中,点在x轴负半轴上,点B在y轴正半轴上,设,且.(1)直接写出的度数.(2)如图2,点D为AB的中点,点P为y轴负半轴上一点,以AP为边作等边三角形APQ,连接DQ并延长交x轴于点M,若,求点M的坐标.(3)如图3,点C与点A关于y轴对称,点E为OC的中点,连接BE,过点B作,且,连接AF交BC于点P,求的值.5、如图,线段AB的两个端点的坐标分别为,,线段AB与线段,关于直线m(直线m上各点的横坐标都为5)对称,线段,与线段关于直线n(直线n上各点的横坐标都为9)对称.(1)在图中分别画出线段、;(2)若点关于直线m的对称点为,点关于直线n的对称点为,则点的坐标是 . -参考答案-一、单选题1、A【解析】【分析】根据平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y),据此即可求得点A(2,﹣5)关于x轴对称的点的坐标.【详解】解:∵点(2,﹣5)关于x轴对称,∴对称的点的坐标是(2,5).故选:A.【点睛】本题主要考查了关于x轴对称点的性质,点P(x,y)关于x轴的对称点P′的坐标是(x,-y).2、A【解析】【分析】应先判断出点的横纵坐标的符号,进而判断点所在的象限.【详解】解:由题意,∵点A的坐标为,∴点A在第一象限;故选:A【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).3、D【解析】【分析】先判断出点的横纵坐标的符号,进而判断点所在的象限.【详解】解:∵点的横坐标3>0,纵坐标-4<0,∴点P(3,-4)在第四象限.故选:D.【点睛】本题考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4、C【解析】【分析】根据题意结合轴对称的性质可求出点的坐标.再根据平移的性质可求出点的坐标,即可知其所在象限.【详解】∵点A的坐标为(1,3),点是点A关于x轴的对称点,∴点的坐标为(1,-3).∵点是将点向左平移2个单位长度得到的点,∴点的坐标为(-1,-3),∴点所在的象限是第三象限.故选C.【点睛】本题考查轴对称的性质,平移中点的坐标的变化以及判断点所在的象限.根据题意求出点的坐标是解答本题的关键.5、A【解析】【分析】根据平行及线段长度、点B在第二象限,可判断点B一定在点A的左侧,且两个点纵坐标相同,再由线段长即可确定点B的坐标.【详解】解:∵轴,且,点B在第二象限,∴点B一定在点A的左侧,且两个点纵坐标相同,∴,即,故选:A.【点睛】题目主要考查坐标系中点的坐标,理解题意,掌握坐标系中点的特征是解题关键.6、D【解析】【分析】根据各象限内点的坐标特征解答即可.【详解】解:点P(5,-5)的横坐标大于0,纵坐标小于0,所以点P所在的象限是第四象限.故选:D.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).7、C【解析】【分析】根据平面直角坐标系中第二象限内点的横坐标是负数,纵坐标是正数,点到轴的距离等于纵坐标的绝对值,到轴的距离等于横坐标的绝对值,即可求解.【详解】解:点M在第二象限,且M到轴的距离为2,到y轴的距离为1,点M的横坐标为,点的纵坐标为,点M的坐标为:.故选:C.【点睛】本题考查了平面直角坐标系中点的坐标,熟练掌握坐标系中点的特征是解题的关键.8、B【解析】【分析】结合题意,根据点的坐标的性质,推导得出原点的位置,再根据坐标的性质分析,即可得到答案.【详解】∵点和,∴坐标原点的位置如下图:∵藏宝地点的坐标是∴藏宝处应为图中的:点故选:B.【点睛】本题考查了坐标与图形,解题的关键是熟练掌握坐标的性质,从而完成求解.9、B【解析】【分析】根据二人向同一方向走的距离可知二人的方向关系,解答即可.【详解】解:二人都在车站北500米,小红在学校东,小强在学校西,所以小强家在小红家的正西.【点睛】本题考查方向角,解题的关键是画出相应的图形,利用数形结合的思想进行解答.10、C【解析】【分析】选两组对应点,连接后作其中垂线,两中垂线的交点即为点P.【详解】解:选两组对应点,连接后作其中垂线,两中垂线的交点即为点P,由图知,旋转中心P的坐标为(1,2)故选:C.【点睛】本题主要考查坐标与图形的变化﹣旋转,解题的关键是掌握旋转变换的性质.二、填空题1、 适当的 x轴,y轴 正方向 比例尺 单位长度 坐标【解析】略2、(-2,3)【解析】【分析】依据非负数的性质,即可得到x,y值,依据关于x轴、y轴对称的点的坐标特征,即可得出点C的坐标.【详解】解:∵|2x﹣4|+(y+3)2=0,∴2x-4=0,y+3=0,∴x=2,y=-3,∴A(2,-3),∵点A(x,y)关于x轴对称的点为B,∴B(2,3),∵点B关于y轴对称的点为C,∴C(-2,3),故答案为:(-2,3).【点睛】本题主要考查了非负数的性质以及关于x轴、y轴对称的点的坐标特征,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数.3、 a b【解析】略4、y=1【解析】【分析】根据平行于x轴的直线上所有点纵坐标相等,又直线经过点M(3,1),则该直线上所有点的共同特点是纵坐标都是1.【详解】解:∵所求直线经过点M(3,1)且平行于x轴,∴该直线上所有点纵坐标都是1,故可以表示为直线y=1.故答案为:y=1.【点睛】此题考查与坐标轴平行的直线的特点:平行于x轴的直线上点的纵坐标相等,平行于y轴的直线上点的横坐标相等.5、(﹣2,﹣1)或(﹣2,9)##(﹣2,9)或(﹣2,﹣1)【解析】【分析】根据A的坐标和轴确定横坐标,根据AB=5可确定B点的纵坐标.【详解】解:∵线段轴,A的坐标是A(﹣2,4),∴B点的横坐标为﹣2,又∵AB=5,∴B点的纵坐标为﹣1或9,∴B点的坐标为(﹣2,﹣1)或(﹣2,9),故答案为:(﹣2,﹣1)或(﹣2,9).【点睛】本题考查了坐标与图形的性质,熟练掌握与坐标轴平行的点的坐标特点是解题的关键.平行于x轴的直线上的任意两点的纵坐标相同;平行于y轴的直线上任意两点的横坐标相同.三、解答题1、 (1)画图见解析,4;(2)(-4,3);(3)5;(4)(10,0)或(-6,0)【解析】【分析】(1)根据A、B、C三点的坐标,在坐标系中描出A、B、C,然后顺次连接A、B、C即可得到答案;然后根据△ABC的面积等于其所在的长方形面积减去周围三个三角形面积求解即可;(2)根据关于y轴对称的两个点的坐标特征:纵坐标相同,横坐标互为相反数求解即可;(3)过C点作轴于点D,则,,由勾股定理求解即可.(4)设P点坐标为(m,0),则,由的面积为4,得到,由此求解即可.(1)解:如图所示,△ABC即为所求;,故答案为:4;(2)解:∵点D与点C关于y轴对称,点C的坐标为(4,3),∴点D的坐标为(-4,3),故答案为:(-4,3);(3)解:连接OC,过C点作轴于点D,则.,,,在中,,,,,(4)解:∵为x轴上一点,∴可设P点坐标为(m,0),∴,∵的面积为4,∴∴或,∴或,∴P点坐标为(10,0)或(-6,0).【点睛】本题主要考查了在坐标系中描点、连线,关于y轴对称的点的坐标特征,两点距离公式,三角形面积,绝对值方程,熟知相关知识是解题的关键.2、 (1)图见解析,点C1的坐标为(2)图见解析(3)16【解析】【分析】(1)利用轴对称变换的性质分别作出,,的对应点,,即可;(2)利用轴对称变换的性质分别作出,,的对应点,,即可;(3)利用三角形面积公式求解即可.(1)解:如图,△即为所求,点的坐标;(2)解:如图,△即为所求;(3)解:.【点睛】本题考查作图轴对称变换,三角形面积等知识,解题的关键是掌握轴对称变换的性质,属于中考常考题型.3、(1)画图见解析,;(2)轴,;(3)【解析】【分析】(1)先确定关于轴对称的对应点 再连接即可;(2)先确定平移后的对应点 再连接 由图形位置可得关于轴对称,再写出的坐标即可;(3)先求解 作再证明 是等腰直角三角形,同理:作证明,所以是等腰直角三角形,从而可得答案.【详解】解:(1)如图,线段即为所求作的线段, (2)如图,线段为平移后的线段,线段与线段关于轴对称,所以对称轴是轴,则 (3)如图,即为所求作的三角形,由勾股定理可得: 是等腰直角三角形,同理: 所以是等腰直角三角形.此时:【点睛】本题考查的是轴对称的性质,平移的性质,轴对称的作图,平移的作图,勾股定理与勾股定理的逆定理的应用,等腰直角三角形的判定,数形结合的运用是解本题的关键.4、(1);(2);(3).【解析】【分析】(1)根据坐标系写出的坐标,进而根据,因式分解可得,进而可得,在x轴的正半轴上取点C,使,连接BC,证明是等边三角形,进而即可求得;(2)连接BM,,进而证明为等边三角形,根据含30度角的直角三角形的性质即可求得(3)过点F作轴交CB的延长线于点N,证明,,设,则等边三角形ABC的边长是4a,,进而计算可得,,即可求得的值.【详解】(1)∵点在x轴负半轴上,∴,,∵,,∴,∵,∴,∴,如答图1,在x轴的正半轴上取点C,使,连接BC,∵,∴,又∵,∴,∴,∴是等边三角形,∴;(2)如答图2,连接BM,∴是等边三角形,∵,,∵∠,∴,∴,∵D为AB的中点,∴,∵,∴,∴,在和中,∴,∴,即,∴,∴为等边三角形,∴,∴;(3)如答图3,过点F作轴交CB的延长线于点N,则,∵,∴,在和中,∴,∴,,∵,∴,又∵E是OC的中点,设,∴等边三角形ABC的边长是4a,,∵,∴,在和中,∴,∴,又∵,∴,,∴.【点睛】本题考查了坐标与图形,三角形全等的性质与判定,等边三角形的性质与判定,因式分解的应用,掌握三角形全等的性质与判定并正确的添加辅助线是解题的关键.5、(1)见解析;(2)【解析】【分析】(1)分别作出A、B二点关于直线m的对称点A1、B1,再分别作A1、B1,二点关于直线n的对称点A2、B2即可;(2)根据轴对称的性质得出坐标即可.【详解】解:(1)如图,线段,即为所求;(2)由轴对称性质可得、横坐标平均数等于5,纵坐标相等,则 , 由轴对称性质可得、横坐标平均数等于9,纵坐标相等,则.【点睛】本题主要考查作图−轴对称变换,解题的关键是熟练掌握轴对称的性质.
相关试卷
这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试练习,共19页。试卷主要包含了在平面直角坐标系xOy中,点M,下列说法错误的是,下列命题中,是真命题的有,在平面直角坐标系中,点P,点A关于轴的对称点的坐标是等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试当堂检测题,共20页。试卷主要包含了在下列说法中,能确定位置的是,若点在轴上,则点的坐标为等内容,欢迎下载使用。
这是一份2020-2021学年第十九章 平面直角坐标系综合与测试随堂练习题,共20页。试卷主要包含了如图是象棋棋盘的一部分,如果用,点A的坐标为,则点A在,已知点A等内容,欢迎下载使用。