冀教版八年级下册第二十章 函数综合与测试课后测评
展开
这是一份冀教版八年级下册第二十章 函数综合与测试课后测评,共23页。试卷主要包含了如图,某汽车离开某城市的距离y,当时,函数的值是等内容,欢迎下载使用。
冀教版八年级数学下册第二十章函数章节训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图1,在矩形ABCD中,AB<BC,AC,BD交于点O.点E为线段AC上的一个动点,连接DE,BE,过E作EF⊥BD于F.设AE=x,图1中某条线段的长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是图1中的( ).A.线段EF B.线段DE C.线段CE D.线段BE2、为落实“五育并举”,某校利用课后延时服务时间进行趣味运动,甲同学从跑道处匀速跑往处,乙同学从处匀速跑往处,两人同时出发,到达各自终点后立即停止运动.设甲同学跑步的时间为(秒),甲、乙两人之间的距离为(米),与之间的函数关系如图所示,则图中的值是( )A. B.18 C. D.203、洗衣机在洗涤衣服时,每浆洗一遍都经历了注水、清洗、排水三个连续过程(工作前洗衣机内无水),在这三个过程中,洗衣机内的水量(升)与浆洗一遍的时间(分)之间的关系的图象大致为( )A. B.C. D.4、如图,某汽车离开某城市的距离y(km)与行驶时间t(h)之间的关系如图所示,根据图形可知,该汽车行驶的速度为( )A.30km/h B.60km/h C.70km/h D.90km/h5、小亮从家步行到公交车站台,等公交车去学校.图中的折线表示小亮的行程s(km)与所花时间t(min)之间的关系.则小亮步行的速度和乘公交车的速度分别是( )A.100 m/min,266m/min B.62.5m/min,500m/minC.62.5m/min,437.5m/min D.100m/min,500m/min6、油箱中存油60升,油从油箱中均匀流出,流速为0.3升/分钟,则油箱中剩余油量 Q(升)与流出时间t(分钟)的函数关系是( )A.Q=0.3t B.t=60-0.3Q C.t=0.3Q D.Q=60-0.3t7、当时,函数的值是( )A. B. C.2 D.18、变量x与y之间的关系是,当时,自变量x的值是( )A.13 B.5 C.2 D.39、如图,已知在ABC中,AB=AC,点D沿BC自B向C运动,作BE⊥AD于E,CF⊥AD于F,则BE+CF的值y与BD的长x之间的函数图象大致是( )A. B.C. D.10、函数y=中,自变量x的取值范围是( )A.x>﹣3且x≠0 B.x>﹣3 C.x≥﹣3 D.x≠﹣3第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、甲、乙两车从A地出发,匀速驶向B地.甲车以的速度行驶1小时后,乙车才沿相同路线行驶乙车先到达B地并停留1小时后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离与乙车行驶时间之间的函数关系如图所示下列说法:①乙车的速度是;②;③点H的坐标是;④.其中错误的是_______.(只填序号)2、若球体体积为,半径为,则.其中变量是_______、_______,常量是________.3、下表为研究弹簧长度与所挂物体质量关系的实验表格:所挂物体重量x(kg)12345弹簧长度y(cm)1012141618则弹簧长度y与所挂物体重量x的之间的关系式为________________,当所挂物体质量为3.5kg时,弹簧长度为__________.4、在函数中,自变量的取值范围是______.5、在函数中,自变量的取值范围是___________.三、解答题(5小题,每小题10分,共计50分)1、已知动点P以2cm/s的速度沿图1所示的边框从B-C-D-E-F-A的路径运动,记△ABP的面积为S(cm2),S与运动时间t(s)的关系如图2所示,若AB=6cm,请回答下列问题:(1)图1中BC=________ cm,CD=________ cm,DE=________ cm;(2)求图2中m、n的值.2、有这样一个问题:探究函数的图象与性质小明根据学习函数的经验,对函数的图象与性质进行了探究:下面是小明的探究过程,请补充完整(1)函数的自变量的取值范围是 (2)下表是与的几组对应值…………求的值(3)如图,在坐标系中,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象(4)进一步探究发现该函数的性质:当 时,随的增大而增大3、在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质的过程.我们对函数图像与性质进行探究,下表是该函数y与自变量x的几组对应值,请解答下列问题:x…0…y…m0n…(1)求该函数的解析式,并写出自变量x的取值范围.(2)表中m的值为 ,n的值为 .(3)在如图所示的平面直角坐标系中,画出该函数的图像;(4)结合上述研究:①写出方程的解 .②直接写出关于x的不等式的解集是 .4、为了提高天然气使用效率,保障居民的用气需求,某市推进阶梯式气价改革,若一户居民的年用气量不超过300m3,价格为2.5元/m3,若年用气量超过300m3,超出部分的价格为3 元/m3,(1)根据题意,填写表:一户居民的年用气量150250350…付款金额/元 625 …(2)设一户居民的年用气量为xm3,付款金额为y元,求y关于x的解析式,并写出自变量的取值范围;(3)若某户居民一年使用天然气所付的金额为870元,求该户居民的年用气量.5、如图,这是反映爷爷一天晚饭后从家中出发去红旗河体育公园锻炼的时间与离家距离之间关系的一幅图.(1)爷爷这一天从公园返回到家用多长时间?(2)爷爷散步时最远离家多少米?(3)爷爷在公园锻炼多长时间?(4)直接写出爷爷在出发后多长时间离家450m. -参考答案-一、单选题1、B【解析】【分析】根据各个选项中假设的线段,可以分别由图象得到相应的y随x的变化的趋势,从而可以判断哪个选项是正确的.【详解】解:A、由图1可知,若线段EF是y,则y随x的增大先减小后增大,而由大变小的距离等于由小变大的距离,故此选项不符合题意;B、由图1可知,若线段DE是y,则y随x的增大先减小再增大,而由大变小的距离大于由小变大的距离,在点A的距离是DA,在点C时的距离是DC,DA>DC,故此选项符合题意;C、由图1可知,若线段CE是y,则y随x的增大越来越小,故此选项不符合题意;D、由图1可知,若线段BE是y,则y随x的增大先减小再增大,而由由大变小的距离小于由小变大的距离,在点A的距离是BA,在点C时的距离是BC,BA<BC,故此选项不符合题意;故选B.【点睛】本题考查动点问题的函数图象,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.2、A【解析】【分析】根据题意和函数图象中的数据,可以得到甲25秒跑完100米,从而可以求得甲的速度,再根据图象中的数据,可知甲、乙跑10秒钟跑的路程之和为100米,从而可以求得乙的速度,然后用100除以乙的速度,即可得到t的值.【详解】解:由图象可得,甲的速度为100÷25=4(米/秒),乙的速度为:100÷10-4=10-4=6(米/秒),则t=,故选:A.【点睛】本题考查一次函数的应用,解答本题的关键是求出甲、乙的速度.3、B【解析】【分析】根据洗衣机内水量开始为0,注水后水量变多,清洗时水量不变,排水时水量变小,直到水量变为0;由此即可得到答案.【详解】解:解:因为洗衣机工作前洗衣机内无水,所以A,C两选项不正确,被淘汰;又因为洗衣机最后排完水,所以D选项不正确,被淘汰,所以选项B正确.故选:B.【点睛】本题考查了对函数图象的理解能力.解题关键是看函数图象要理解两个变量的变化情况.4、B【解析】【分析】直接观察图象可得出结果.【详解】解:根据函数图象可知:t=1时,y=90;∵汽车是从距离某城市30km开始行驶的,∴该汽车行驶的速度为90-30=60km/h,故选:B.【点睛】本题主要考查了一次函数的图象,正确的识别图象是解题的关键.5、D【解析】【分析】根据图象可以确定他离家8km用了多长时间,等公交车时间是多少,他步行的时间和对应的路程,公交车运行的时间和对应的路程,然后确定各自的速度.【详解】解:由图象可知:他步行10min走了1000m,故他步行的速度为他步行的速度是100m/min;公交车(30−16)min走了(8−1)km,故公交车的速度为7000÷14=500m/min.故选:D.【点睛】本题考查利用函数的图象解决实际问题,解决本题的关键是正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一.6、D【解析】【分析】根据油箱中剩余油量=总存油量-流出的油量,列出函数关系式即可.【详解】解:根据题意:油箱中剩余油量 Q(升)与流出时间t(分钟)的函数关系是:,故选:D.【点睛】本题考查了列函数解析式,关键是正确理解题意,找出题目中的等量关系.7、D【解析】【分析】把代入计算即可.【详解】解:把代入,得,故选D.【点睛】本题考查的是函数值的求法,函数值是指自变量在取值范围内取某个值时,函数与之对应唯一确定的值.8、C【解析】【分析】直接把y=5代入y=2x+1,解方程即可.【详解】解:当y=5时,5=2x+1,解得:x=2,故选:C.【点睛】本题考查了函数值,解题的关键是掌握已知函数解析式,给出函数值时,求相应的自变量的值就是解方程.9、D【解析】【分析】根据题意过点A作AD′⊥BC于点D′,由题可知,当点D从点B运动到点C,即x从小变大时,AD也是由大变小再变大,而△ABC的面积不变,又S=AD,即y是由小变大再变小,结合选项可得结论.【详解】解:过点A作AD′⊥BC于点D′,如图,由题可知,当点D从点B运动到点C,即x从小变大中,AD也是由大变小再变大,而△ABC的面积不变,又S=AD,即y是由小变大再变小,结合选项可知,D选项是正确的;故选:D.【点睛】本题主要考查动点问题的函数图象,题中没有给任何的数据,需要通过变化趋势进行判断.10、B【解析】【分析】根据二次根式和分式有意义的条件:被开方数大于等于0,分母不为0列式计算即可.【详解】解:∵函数y=,∴,解得:x>﹣3.故选:B.【点睛】本题考查函数基本知识,解题的关键是掌握二次根式和分式有意义的条件.二、填空题1、④【解析】【分析】根据题意,两车距离为函数,由图象可知两车起始距离为80,从而得到乙车速度,根据图象变化规律和两车运动状态,得到相关未知量.【详解】解:由图象可知,乙出发时,甲乙相距80km,2小时后,乙车追上甲.则说明乙每小时比甲快40km,则乙的速度为120km/h.①正确;由图象第2-6小时,乙由相遇点到达B,用时4小时,每小时比甲快40km,则此时甲乙距离4×40=160km,则m=160,②正确;当乙在B休息1h时,甲前进80km,则H点坐标为(7,80),③正确;乙返回时,甲乙相距80km,到两车相遇用时80÷(120+80)=0.4小时,则n=6+1+0.4=7.4,④错误.故答案为:④.【点睛】本题考查函数的应用,主要是以函数图象为背景,考查双动点条件下,两点距离与运动时间的函数关系,解答时既要注意图象变化趋势,又要关注动点的运动状态.2、 【解析】【分析】根据函数常量与变量的知识点作答.【详解】∵函数关系式为,∴是自变量,是因变量,是常量.故答案为:,,.【点睛】本题考查了常量与变量的知识,解题关键是熟记变量是指在程序的运行过程中随时可以发生变化的量.3、 y=2x+8 15cm【解析】【分析】设y=kx+b,取表格两组数据代入解出k、b,即可求得y与x的关系式,再将x=3.5代入求解即可.【详解】解:由题意,设弹簧长度y与所挂物体重量x的之间的关系式为y=kx+b,将x=1,y=10和x=2,y=12代入y=kx+b中,得:,解得:,∴弹簧长度y与所挂物体重量x的之间的关系式为y=2x+8,当x=3.5时,y=2×3.5+8=15,故答案为:y=2x+8,15cm.【点睛】本题考查待定系数法求函数关系式、解二元一次方程组,熟练掌握待定系数法求函数表达式的方法步骤是解答的关键.4、全体实数【解析】【分析】根据整式函数的自变量不受限制即可求解【详解】解:∵函数是整式函数,自变量不受限制,∴自变量x的取值范围是全体实数.故答案为全体实数.【点睛】本题考查函数自变量的取值范围,掌握整式函数不受限制,分式函数要求分母不为0,根式函数要求被开方式有意义,零指数函数要求底数不为0是解题关键.5、【解析】【分析】根据算术平方根的非负性即可完成.【详解】由题意, ∴故答案为:.【点睛】本题考查了求函数自变量的取值范围,关键是掌握算术平方根的非负性.三、解答题1、(1)8,4,6;(2)m=24,n=17.【解析】【分析】(1)因为点P速度为2cm/s,所以根据右侧的时间可以求出线段BC,CD和DE的长度;(2)m代表的是点P在C时对应图形面积,n代表的是点P运动到A时对应的时间,由图象都可以求出.【详解】解:(1)∵点P速度为2cm/s,由右侧图象可知,点P在BC线段运动了4秒,∴BC=42=8(cm),点P在CD线段运动了6-4=2秒,∴CD=22=4(cm),点P在DE线段运动9-6=3秒,∴DE=32=6(cm),故答案为:8,4,6;(3)当点P到C时,△ABP的面积为ABBC=68=24(cm2),∴m=24,∵BC+CD+DE+EF+AF=8+4+6+(6-4)+(8+6)=34(cm),∴n=34×=17.【点睛】本题考查了动点问题的函数图象,数形结合的数学思维,通过图象找出对应图形的线段长度,很好的考查了学生分析问题和看图的能力.2、 (1)全体实数(2)1(3)图像见解析(4)>2【解析】【分析】(1)根据题目中的函数解析式,可以得到x的取值范围;(2)将x=4代入函数解析式,即可得到y的值;(3)根据表格中的数据,可以画出相应的函数图象;(4)根据函数图象,可以写出当x为何值时,y随x的增大而增大.(1)函数的自变量x的取值范围是全体实数,故答案为:全体实数;(2)当x=4时,,即m的值是1;(3)如下图所示,(4)由图象可得,当x>2时,y随x的增大而增大,故答案为:>2.【点睛】本题考用描点法画函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.3、 (1),自变量取任意实数(2),(3)见解析(4)①;②或【解析】【分析】(1)选择两组数据代入函数得到一个二元一次方程,解出a,b即可求出解析式;(2)根据(1)得到的解析式代入m,n对应的x即可;(3)描点法标记好每个点,再用光滑的曲线连接各点即可得到函数图像.【详解】解:(1)由表格得,,在函数上,将,代入,得:,解得:,该函数解析式为:,自变量取任意实数;(2)当时,,即,当时,,即,故答案为:,;(3)图象如图(4)由图象可知,方程的解为不等式的解集为:,故答案是:,.【点睛】本题考查新函数解析式的求法、根据自变量求因变量、函数图像的绘制,掌握这些是本题关键.4、(1)375,900;(2)y=;(3)340m3.【解析】【分析】(1)根据两种收费标准进行求解即可;(2)分两种情况:①当x≤300时,②当x>300时,根据题目所给收费标准求解即可;(3)先根据,得到,然后把y=870代入y=3x-150中进行求解即可.【详解】解:(1)由题意得:当一户居民的年用气量为的时候,付款金额为元,当一户居民的年用气量为的时候,付款金额为元,故答案为:375,900;(2)分两种情况:①当x≤300时,y=2.5x;②当x>300时,y=2.5×300+3×(x-300)=3x-150.综上所述,y关于x的解析式为y=;(3)∵,∴∴将y=870代入y=3x-150,得870=3x-150,解得x=340.∴该户居民的年用气量为340m3.【点睛】本题主要考查了根据表格求函数关系式,解题的关键在于能够准确读懂题意.5、(1)15;(2)900;(3)10;(4)10分钟或分钟【解析】【分析】(1)根据图中表示可得结果;(2)根据图象可知最远就是到公园的距离;(3)根据图象可得平行的部分就是在公园的时间;(4)求出相应直线的函数解析式,即可得解;【详解】(1)由图可知,时间为(分);(2)由图可知,最远离家900米;(3)爷爷在公园锻炼的时间(分);(4)如图,设直线AB所在解析式为,把点代入可得:,∴解析式为,当时,;设直线CD所在解析式为,把点,代入得,,解得,∴解析式为,当时,;∴爷爷在出发后10分钟或分钟离家450m.【点睛】本题主要考查了函数图像的应用,准确分析计算是解题的关键.
相关试卷
这是一份数学第二十章 函数综合与测试练习题,共23页。试卷主要包含了函数的自变量x的取值范围是等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十章 函数综合与测试巩固练习,共22页。试卷主要包含了函数的自变量x的取值范围是,变量,有如下关系等内容,欢迎下载使用。
这是一份冀教版八年级下册第二十章 函数综合与测试课后作业题,共22页。试卷主要包含了如图,点A的坐标为等内容,欢迎下载使用。