初中数学冀教版八年级下册第二十章 函数综合与测试同步测试题
展开这是一份初中数学冀教版八年级下册第二十章 函数综合与测试同步测试题,共28页。
冀教版八年级数学下册第二十章函数综合训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、一辆汽车行驶的路程与行驶时间的关系如图所示,下列说法正确的是( )
A.前3h中汽车的速度越来越快 B.3h后汽车静止不动
C.3h后汽车以相同的速度行驶 D.前3h汽车以相同速度行驶
2、为了让更多的学生学会游泳,少年宫新建一个游泳池,其容积为480m3,打开进水口注水时,游泳池的蓄水量y(m3)与注水时间t(h)之间满足一次函数关系,其图象如图所示,下列说法错误的是:( )
A.该游泳池内开始注水时已经蓄水100m3
B.每小时可注水190m3
C.注水2小时,游泳池的蓄水量为380m3
D.注水2小时,还需注水100m3,可将游泳池注满
3、汽车的“燃油效率”是指汽车每消耗1升汽油最多可行驶的公里数.如图描述了、两辆汽车在不同速度下的燃油效率情况.根据图中信息,下面4个推断中,合理的是( )
A.消耗1升汽油,车最多可行驶5千米
B.车以40千米小时的速度行驶1小时,最少消耗4升汽油
C.对于车而言,行驶速度越快越省油
D.某城市机动车最高限速80千米小时,相同条件下,在该市驾驶车比驾驶车更省油
4、下列各图中,不能表示y是x的函数的是( )
A. B.
C. D.
5、函数y=中,自变量x的取值范围是( )
A.x>﹣3且x≠0 B.x>﹣3 C.x≥﹣3 D.x≠﹣3
6、习近平总书记在全国教育大会上强调,要坚持中国特色社会主义教育发展道路.培养德智体美劳全面发展的社会主义建设者和接班人.枣庄某学校利用周未开展课外劳动实践活动.如图反映的过程是:小强从家去菜地浇水,又去玉米地除草,然后回家.如果菜地和玉米地的距离为a千米,小强在玉米地除草比在菜地浇水多用的时间为b分钟,则a,b的值分别为( )
A.1.1,8 B.0.9,3 C.1.1,12 D.0.9,8
7、如图,一个矩形的长比宽多3cm,矩形的面积是Scm2.设矩形的宽为xcm,当x在一定范围内变化时,S随x的变化而变化,则S与x满足的函数关系是( )
A.S=4x+6 B.S=4x-6 C.S=x2+3x D.S=x2-3x
8、初三学生小博匀速骑车从家前往体有馆打羽毛球.已知小博家离体育馆路程为5000米,小博出发5分钟后,爸爸发现小博的电话手表落在家里,无法联系,于是爸爸匀速骑车去追赶小博,当爸爸追赶上小博把手表交给小博后,爸爸立即返回家,小博以原速继续向体有馆前行(假定爸爸给手表和掉头的时间忽略不计),在整个骑行过程中,小博和爸爸均保持各自的速度匀速骑行,小博、爸爸两人之向的距离y(米)与小博出发的时间x(分钟)之间的关系如图所示,对于以下说法错误的是( ).
A.小博的迹度为180米/分
B.爸爸的速度为270米/分
C.点C的坐标是
D.当爸爸出发的时间为分钟或分钟时,爸爸与小博相距800米
9、下面分别给出了变量x与y之间的对应关系,其中y是x函数的是( )
A. B.C. D.
10、甲、乙二人约好同时出发,沿同一路线去某博物馆参加科普活动,如图,x表示的是行走时间(单位:分),y表示的是甲到出发地的距离(单位:米),最后两人都到达了目的地.根据图中提供的信息,下面有四个结论:①甲、乙二人第一次相遇后,停留了10分钟;②甲先到达目的地;③甲停留10分钟之后提高了行走速度;④甲行走的平均速度要比乙行走的平均速度快.其中正确的是( )
A.①②④ B.①②③ C.①③④ D.②③④
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、一个用电器的电阻是可调节的,其调节范围为:110~220Ω.已知电压为220ᴠ,这个用电器的功率P的范围是:___________ w.(P表示功率,R表示电阻,U表示电压,三者关系式为:P·R=U²)
2、函数中,自变量x的取值范围是______.
3、计划购买50元的乒乓球,所能购买的总数n(个)与单价 a(元)的关系式是_____,其中变量是_____,常量是_____.
4、函数的图象不经过横坐标是_____的点.
5、下表为研究弹簧长度与所挂物体质量关系的实验表格:
所挂物体重量x(kg) | 1 | 2 | 3 | 4 | 5 |
弹簧长度y(cm) | 10 | 12 | 14 | 16 | 18 |
则弹簧长度y与所挂物体重量x的之间的关系式为________________,当所挂物体质量为3.5kg时,弹簧长度为__________.
三、解答题(5小题,每小题10分,共计50分)
1、数学家欧拉最先把关于的多项式用记号来表示,例如,并把常数时多项式的值用来表示,例如时多项式的值记为.
(1)若规定,
①的值是_________;
②若,的值是_________;
(2)若规定,.
①有没有能使成立的的值,若有,求出此时的值,若没有,请说明理由,
②直接写出的最小值和此时满足的条件.
2、如图,已知ABC中,,,AB=6,点P是射线CB上一点(不与点B重合),EF为PB的垂直平分线,交PB于点F,交射线AB于点E,联结PE、AP.
(1)求∠B的度数;
(2)当点P在线段CB上时,设BE=x,AP=y,求y关于x的函数解析式,并写出函数的定义域;
(3)当APB为等腰三角形时,请直接写出AE的值.
3、将长为、宽为的长方形白纸,按如图所示的方法黏合起来,黏合部分宽为.
(1)根据图,将表格补充完整:
白纸张数 | ||||||
纸条长度 |
|
|
(2)设张白纸黏合后的总长度为,则与之间的关系式是什么?
(3)你认为白纸黏合起来总长度可能为吗?为什么?
4、如图,小红和小华分别从A,B两地到远离学校的博物馆(A地、B地、学校、博物馆在一条直线上),小红步行,小华骑车.
(1)小红、小华谁的速度快?
(2)出发后几小时两人相遇?
(3)A,B两地离学校分别有多远?
5、公交公司员工小明住在站点的员工宿舍,每天早上去站点上班,站到站唯一一条公交线路示意图如图1,、、、是四个公交站点,其中、两站相距的路程是1200米,为了健身,小明往往沿公交线路步行到站或站后再乘公交车上班.
(1)星期一,小明步行到站上车,记他距站的路程为米,离开站的时间为分,关于的函数图象如图2,求的解析式及公交车的速度;
(2)星期二,小明以与星期一相同出发时间和步行速度步行到站上车,已知公交车无论上行(→)还是下行(→)都每隔10分钟一班,每天始发时间和行车速度保持不变,乘客上下车时间忽略不计;
①通过计算判断小明步行到达站时是否恰好有上行公交车到达站;
②小明到达站所用时间是星期一的1.5倍,求、两站相距的路程;
③若小明步行至站时刚好遇见一辆下行班车,这一趟上班途中,直接写出他遇到下行班车的最短间隔时间.
-参考答案-
一、单选题
1、B
【解析】
【分析】
根据图象可直接进行排除选项.
【详解】
解:由图象可知前3小时汽车行驶的路程是曲线,并且路程是缓慢增加,故汽车的速度是越来越小,
在3小时到5小时之间,汽车的路程没有发生改变,故可知汽车在此期间是静止不动的,
由上述可知,只有B选项正确;
故选B.
【点睛】
本题主要考查函数图象,解题的关键是根据函数图象得到相关信息.
2、B
【解析】
【分析】
根据图象中的数据逐项判断即可解答.
【详解】
解:A、由图象可知,当t=0时,y=100,即该游泳池内开始注水时已经蓄水100m3,正确,故选项A不符合题意;
B、由(380-100)÷2=140(m3),即每小时可注水140m3,故选项B错误,符合题意;
C、由图可知,注水2小时,游泳池的蓄水量为380m3,正确,故选项C不符合题意;
D、由图象可知,480-380=100(m3),即注水2小时,还需注水100m3,可将游泳池注满,正确,不符合题意,
故选:B.
【点睛】
本题考查一次函数的应用,能从图象中获取有效信息是解答的关键.
3、B
【解析】
【分析】
根据题意和函数图象可以判断各个选项中的结论是否正确,从而可以解答本题.
【详解】
解:A、由图象可知,当车速度超过时,燃油效率大于,所以当速度超过时,消耗1升汽油,车行驶距离大于5千米,故此项不合理,不符合题意;
B、车以40千米小时的速度行驶1小时,路程为,,最少消耗4升汽油,此项合理,符合题意;
C、对于车而言,行驶速度在时,越快越省油,故此项不合理,不符合题意;
D、某城市机动车最高限速80千米小时,相同条件下,在该市驾驶车比驾驶车燃油效率更高,所以更省油,故此项不合理,不符合题意.
故选:B.
【点睛】
本题考查函数的图象,解题的关键是明确题意,利用数形结合的思想解答.
4、D
【解析】
【分析】
根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,即可求解.
【详解】
解:A、对每一个x的值,都有唯一确定的y值与之对应,能表示y是x的函数,故本选项符合题意;
B、对每一个x的值,都有唯一确定的y值与之对应,能表示y是x的函数,故本选项符合题意;
C、对每一个x的值,都有唯一确定的y值与之对应,能表示y是x的函数,故本选项符合题意;
D、对于x的每一个取值,y有时有两个确定的值与之对应,所以y不是x的函数,故本选项不符合题意;
故选:D
【点睛】
本题主要考查了函数的定义,熟练掌握在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量是解题的关键.
5、B
【解析】
【分析】
根据二次根式和分式有意义的条件:被开方数大于等于0,分母不为0列式计算即可.
【详解】
解:∵函数y=,
∴,解得:x>﹣3.
故选:B.
【点睛】
本题考查函数基本知识,解题的关键是掌握二次根式和分式有意义的条件.
6、D
【解析】
【分析】
直接根据函数图像进行解答即可.
【详解】
解:此函数大致可分以下几个阶段:
①0﹣15分种,小强从家走到菜地;
②15﹣25分钟,小强在菜地浇水;
③25﹣37分钟,小强从菜地走到玉米地;
④37﹣55分钟,小强在玉米地除草;
⑤55﹣80分钟,小强从玉米地回到家;
综合上面的分析得:由③的过程知,a=2﹣1.1=0.9千米;
由②、④的过程知b=(55﹣37)﹣(25﹣15)=8分钟;
故选:D.
【点睛】
本题考查了从函数图像中提取信息,读懂题意,理解函数图像的含义是解本题的关键.
7、C
【解析】
【分析】
先用x表示出矩形的长,然后根据矩形的面积公式即可解答.
【详解】
解:设矩形的宽为xcm,则长为(x+3)cm
由题意得:S=x(x+3)=x2+3x.
故选C.
【点睛】
本题主要考查了列函数解析式,用x表示出矩形的长以及掌握矩形的面积公式成为解答本题的关键.
8、C
【解析】
【分析】
根据小博出发5分钟后行驶900米,得出小博的迹度为=180米/分,可判断A;爸爸匀速骑车去追赶小博,15分钟时追上小博,设爸爸匀速骑车速度为x米/分,根据两者行驶路程相等列方程15×180=10x,得出x=270米/分,可判断B;点C表示爸爸返回家中两者间的距离,爸爸追上小博用10分钟,(假定爸爸给手表和掉头的时间忽略不计),返回时仍然用10分钟到家,此时小博行驶15+10=25分钟,行驶距离为25×180=4500米,可判断C;设爸爸出发时间为t分钟时,两者之间距离为800米,根据追及与相背而行问题列方程(5+t)180-270t=800或(180+270)×(t-10)=800,解方程可判断D.
【详解】
解:∵小博出发5分钟后行驶900米,
∴小博的迹度为=180米/分,
故选项A正确;
爸爸匀速骑车去追赶小博,15分钟时追上小博,
设爸爸匀速骑车速度为x米/分,
15×180=10x,
解得:x=270米/分,
∴故选项B正确;
点C表示爸爸返回家中两者间的距离,
爸爸追上小博用10分钟,(假定爸爸给手表和掉头的时间忽略不计),返回时仍然用10分钟到家,此时小博行驶15+10=25分钟,
行驶距离为25×180=4500米,
∴点C(25,4500),
故选项C不正确,
设爸爸出发时间为t分钟时,两者之间距离为800米,
(5+t)180-270t=800或(180+270)×(t-10)=800,
解得:分钟或分钟,
当爸爸出发的时间为分钟或分钟时,爸爸与小博相距800米,
故选项D正确.
故选C.
【点睛】
本题考查从函数图像获取信息和处理,掌握从函数图像获取信息和处理,关键掌握图像中的横纵轴于折叠表示的意义.
9、D
【解析】
【分析】
函数的意义反映在图象上简单的判断方法是:做垂直轴的直线在左右平移的过程中与函数图象只会有一个交点.
【详解】
解:根据函数的意义可知:对于自变量的任何值,都有唯一的值与之相对应,所以D正确.
故选:D.
【点睛】
本题主要考查了函数图象的读图能力,解题的关键是要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.
10、A
【解析】
【分析】
由图象可得:10分钟到20分钟之间,路程没有变化,可判断①,由甲35分钟时到达目的地,乙40分钟到达,可判断②,分别求解前后两段时间内甲的速度可判断③,由前后两段时间内甲的速度都比乙快,可判断④,从而可得答案.
【详解】
解:①由图象可得:甲、乙二人第一次相遇后,停留了20﹣10=10(分钟),故①符合题意;
②甲在35分时到达,乙在40分时到达,所以甲先到达的目的地,故②符合题意;
③甲前面10分钟的速度为:每分钟米,甲在停留10分钟之后的速度为:每分钟米,所以减慢了行走速度,故③不符合题意;
④由图象可得:两段路程甲的速度都比乙快,所以甲行走的平均速度要比乙行走的平均速度快,故④符合题意;
所以正确的是①②④.
故选:A.
【点睛】
本题考查的是从函数图象中获取信息,理解题意,弄懂图象上点的坐标含义是解本题的关键.
二、填空题
1、220≤P≤440
【解析】
【分析】
由题意根据题目所给的公式分析可知,电阻越大则功率越小,当电阻为110Ω时,功率最大,当电阻为220Ω时,功率最小,从而求出功率P的取值范围.
【详解】
解:三者关系式为:P·R=U²,可得,
把电阻的最小值R=110代入得,得到输出功率的最大值,
把电阻的最大值R=220代入得,得到输处功率的最小值,
即用电器输出功率P的取值范围是220≤P≤440.
故答案为:220≤P≤440.
【点睛】
本题考查一元一次不等式组与函数的应用,解答本题的关键是读懂题意,弄清楚公式的含义,代入数据,求出功率P的范围.
2、
【解析】
【分析】
函数表达式是分式时,考虑分式的分母不能为0,可得答案;
【详解】
由题意得:
解得
故答案为.
【点睛】
本题考查了函数值变量的取值范围,函数自变量的范围一般从三个方面考虑:当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.
3、 a,n 50
【解析】
略
4、-3
【解析】
【分析】
根据分式有意义的条件:分母不为0解答即可.
【详解】
解:函数要有意义,需要,所以不经过横坐标是的点.
故答案为:-3.
【点睛】
本题主要考查了函数的自变量取值范围,掌握代数式有意义时字母的取值范围是解题关键.
5、 y=2x+8 15cm
【解析】
【分析】
设y=kx+b,取表格两组数据代入解出k、b,即可求得y与x的关系式,再将x=3.5代入求解即可.
【详解】
解:由题意,设弹簧长度y与所挂物体重量x的之间的关系式为y=kx+b,
将x=1,y=10和x=2,y=12代入y=kx+b中,
得:,解得:,
∴弹簧长度y与所挂物体重量x的之间的关系式为y=2x+8,
当x=3.5时,y=2×3.5+8=15,
故答案为:y=2x+8,15cm.
【点睛】
本题考查待定系数法求函数关系式、解二元一次方程组,熟练掌握待定系数法求函数表达式的方法步骤是解答的关键.
三、解答题
1、 (1)①-5;②5,
(2)①有,x=,见解析;②的最小值是5,-3≤x≤2
【解析】
【分析】
(1)①当x=-1时,计算;
②计算,求得x即可;
(2)①或,解方程即可;
②表示动点x到2和-3的距离和,按照x>2,x<-3,-3≤x≤2分别计算比较结果即可.
(1)
(1)①∵,
∴当x=-1时, =-5,
∴的值是-5,
故答案为:-5;
②∵,
∴=7,
∴x=5,
故答案为:5;
(2)
①有,x=,理由如下:
∵,,且,
∴,无解;
或,
解得x=,
故当x=时,;
②设动点P表示的数为x,点A表示的数是-3,点B表示的数2,
则表示数轴上动点P到点A和点B的距离和即PA+PB,
当x>2时,如图所示,
PA+PB>AB=2-(-3)=5;
当x<-3时,如图所示,
PA+PB>AB=2-(-3)=5;
当-3≤x≤2时,如图所示,
,
PA+PB=x+3+2-x=5=AB=2-(-3)=5;
故当-3≤x≤2时,有最小值,且为5.
【点睛】
本题考查了求函数值,自变量的值,解方程,绝对值的化简,数轴上的动点问题,熟练掌握绝对值的化简,数轴上的动点问题是解题的关键.
2、 (1)
(2)当点P在线段BC上时,;当点P在CB延长线上时,
(3)4或或
【解析】
【分析】
(1)根据勾股定理的逆定理证明出△ABC是直角三角形,且∠BAC=,取BC的中点M,连接AM,则=CM,证得△ACM是等边三角形,求得∠B=;
(2)当点P在线段BC上时,过点A作AD⊥BC于D,根据直角三角形的性质得到,,由勾股定理得,求出,得到,由勾股定理求出CD,BF,得到DP,由,推出,根据y>0,得到函数关系式;当点P在CB延长线上时,过点P作PH⊥AB交延长线于H,求出,勾股定理求得PH,根据,求出函数解析式;
(3)当AP=BP时,根据等腰三角形等边对等角的性质及线段垂直平分线的性质证得∠APE=,得到AE=2PE=2BE,由此求出AE=4;当BP=AB=6时,根据线段垂直平分线的性质求出PF=BF=3,利用直角三角形30度角的性质求出BE=2EF,利用勾股定理得,求出BE,即可得到AE的值.当点P在CB延长线上且BP=AB=6时,根据线段垂直平分线的性质求出PF=BF=3,利用直角三角形30度角的性质求出BE=2EF,利用勾股定理得,求出BE,即可得到AE的值.
(1)
解:ABC中,,,AB=6,
∵,
∴△ABC是直角三角形,且∠BAC=,
取BC的中点M,连接AM,则=CM,
∵,,
∴,
∴AC=AM=CM,
∴△ACM是等边三角形,
∴,
∴∠B=;
(2)
解:当点P在线段BC上时,
过点A作AD⊥BC于D,
在△ADB中,∠ADB=,∠B=,
∴,
同理,
∴,
在Rt△BEF中,,
∴,
∴,
又∵BP=2BF,
∴,
∴DP =,
∵,
∴,
∴,
∵y>0,
∴;
当点P在CB延长线上时,过点P作PH⊥AB交延长线于H,
∵PE=BE=x,,
∴,
∴,
∴,
∵,
∴,
∴,
∵y>0,
∴;
综上,当点P在线段BC上时,;当点P在CB延长线上时,;
(3)
解:当AP=BP时,则∠PAB=∠B=,如图,
∴∠APB =,
∵EF为PB的垂直平分线,
∴PE=BE,
∴∠BPE=∠B=,
∴∠APE=,
∴AE=2PE=2BE,
∵AE+BE=6,
∴AE=4;
当BP=AB=6时,如图,
∵EF为PB的垂直平分线,
∴PF=BF=3,
∵∠B=,
∴BE=2EF,
∵,
∴,
∴AE=AB-BE=;
当点P在CB延长线上且BP=AB=6时,如图,
∵EF为PB的垂直平分线,
∴PF=BF=3,
∵∠EBF=,
∴BE=2EF,
∵,
∴,
∴AE=AB+BE=;
综上,AE的值为4或或.
【点睛】
此题考查了勾股定理及逆定理,直角三角形30度角的性质,线段垂直平分线的性质,等腰三角形的性质,求函数解析式,熟记各知识点并综合应用是解题的关键.
3、(1) , ;(2);(3)不可能,理由见解析
【解析】
【分析】
(1)理解题意分别求得白纸张数为2和5时的长度即可;
(2)根据题意,找到等量关系,列出式子即可;
(3)将代入,求解,判断是否为正整数,即可求解.
【详解】
解:(1)由题意可得,白纸张数为2时,长度为
当白纸张数为5时,长度为
故答案为:,;
(2)当白纸张数为张时,长度
故答案为
不可能.
理由:将代入,得,
解得.
因为为整数,
所以总长度不可能为.
【点睛】
本题主要考查了函数关系式的知识,解答本题的关键在于熟读题意发现题目中纸张长度的变化规律,并求出正确的函数关系式.
4、(1)小华的速度快;(2)出发后h两人相遇;(3)A地距学校500m,B地距学校200m
【解析】
【分析】
(1)观察纵坐标,可得路程,观察横坐标,可得时间,根据路程与时间的关系,可得速度;
(2)观察横坐标,可得答案;
(3)观察纵坐标,可得答案.
【详解】
解:(1)由纵坐标看出,小红步行了700-500= 200(m),小华行驶了700-200=500(m),
由横坐标看出都用了15min,小红的速度是200÷15=(m/min),小华的速度是500÷15= (m/min),
>,小华的速度快.
(2)由横坐标看出,出发后h两人相遇.
(3)由纵坐标看出A地距学校500m,B地距学校200m.
【点睛】
本题考查了函数图象,观察函数图象的横坐标、纵坐标得出相关信息是解题关键.
5、(1) 公交车的速度为:米分;(2)①小明步行到达站时恰好有上行公交车到达站;②、两站相距的路程是6600米;③分钟
【解析】
【分析】
(1)由图象上点可得小明步行的速度,从而可得函数解析式;由点的含义可得公交车的速度;
(2)①先计算小明步行到达站需要分,再计算上行公交车到达站需要分,而,从而可得小明步行到达站时恰好有上行公交车到达站;②设小明星期一所用时间为,星期二到达站所用时间为,可得,,再利用列方程,再解方程即可得到答案;③由每隔10分钟一班,每辆公交车相距米,而步行的速度小于坐车时的速度,可得最短时间间隔发生在坐车时,从而可得答案.
【详解】
解:(1)由图象可知,小明步行的速度为(米分),
的解析式为,
公交车的速度为(米分);
(2)①小明步行到达站需要(分,
上行公交车到达站需要(分,
,
小明步行到达站时恰好有上行公交车到达站;
②设小明星期一所用时间为,星期二到达站所用时间为,
由题可知,,
小明到达站所用时间是星期一的1.5倍,
,
解得,
、两站相距的路程是6600米;
③每隔10分钟一班,
每辆公交车相距(米,
步行的速度小于坐车时的速度,
最短时间间隔发生在坐车时,
间隔时间为(分钟).
【点睛】
本题考查的是从函数图象中获取信息,列函数关系式,一元一次方程的应用,理解题意与理解函数图象上点的坐标含义是解题的关键.
相关试卷
这是一份初中数学冀教版八年级下册第二十章 函数综合与测试课时训练,共22页。
这是一份冀教版第二十章 函数综合与测试当堂检测题,共22页。
这是一份冀教版八年级下册第二十章 函数综合与测试一课一练,共21页。试卷主要包含了在下列图象中,是的函数的是,下列图像中表示是的函数的有几个等内容,欢迎下载使用。