初中第二十章 函数综合与测试课后测评
展开
这是一份初中第二十章 函数综合与测试课后测评,共23页。试卷主要包含了在函数中,自变量的取值范围是,在下列图象中,是的函数的是,变量,有如下关系等内容,欢迎下载使用。
冀教版八年级数学下册第二十章函数专项攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,已知在ABC中,AB=AC,点D沿BC自B向C运动,作BE⊥AD于E,CF⊥AD于F,则BE+CF的值y与BD的长x之间的函数图象大致是( )A. B.C. D.2、如图,在边长为4的等边△ABC中,点P从A点出发,沿A→B→C→A的方向运动,到达A点时停止.在此过程中,线段AP的长度y随点P经过的路程x的函数图象大致是( )A. B.C. D.3、在某火车站托运物品时,不超过3kg的物品需付1.5元,以后每增加1kg(不足1kg按1kg计)需增加托运费0.5元,则下列图象能表示出托运费y与物品重量x之间的函数关系式的是( )A. B.C. D.4、在函数中,自变量的取值范围是( )A. B. C. D.5、小亮从家步行到公交车站台,等公交车去学校.图中的折线表示小亮的行程s(km)与所花时间t(min)之间的关系.则小亮步行的速度和乘公交车的速度分别是( )A.100 m/min,266m/min B.62.5m/min,500m/minC.62.5m/min,437.5m/min D.100m/min,500m/min6、在下列图象中,是的函数的是( )A. B.C. D.7、中考体育篮球运球考试中,测试场地长20米,宽7米,起点线后5米处开始设置10根标志杆,每排设置两根,各排标志杆底座中心点之间相距1米,距两侧边线3米,假设某学生按照图1路线进行单向运球,运球行进过程中,学生与测试老师的距离y与运球时间x之间的图象如图2所示,那么测试老师可能站在图1中的位置为( )A.点A B.点B C.点C D.点D8、变量,有如下关系:①;②;③;④.其中是的函数的是( )A.①②③④ B.①②③ C.①② D.①9、从地面竖直向上抛射一个物体,经测量,在落地之前,物体向上的速度v(m/s)与运动时间t(s)之间有如下的对应关系,则速度v与时间t之间的函数关系式可能是( )v(m/s)25155﹣5t(s)0123A.v=25t B.v=﹣10t+25 C.v=t2+25 D.v=5t+1010、甲、乙两人分别从A、B两地同时出发,相向而行,匀速前往B地、A地,两人相遇时停留了4min,又各自按原速前往目的地,到达目的地后停止. 甲、乙两人之间的距离y(m)与甲所用时间x(min)之间的函数关系如图所示,给出下列结论:①A,B之间的距离为1200m;②乙行走的速度是甲的1.5倍;③b=800;④a=34,其中正确的结论个数为( )A.4个 B.3个 C.2个 D.1个第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在函数y=中,自变量x的取值范围是 _____.2、如图1,正方形的边上有一定点,连接.动点从正方形的顶点出发,沿着的方向以2cm/s的速度匀速运动到终点.图2是点运动时,的面积随时间变化的全过程图象,则的长度为______cm.3、长方形的周长为20,则面积y与一条边长x之间的函数关系式是___.4、已知函数f(x)=,f(2)=___.5、描点法画函数图象的一般步骤:第一步:______.在自变量取值范围内选定一些值.通过函数关系式求出对应函数值列成表格.第二步:______.在直角坐标系中,以自变量的值为横坐标,相应函数值为纵坐标,描出表中对应各点.第三步:______.按照坐标由小到大的顺序把所有点用平滑曲线连结起来.三、解答题(5小题,每小题10分,共计50分)1、已知动点P以2cm/s的速度沿图1所示的边框从B-C-D-E-F-A的路径运动,记△ABP的面积为S(cm2),S与运动时间t(s)的关系如图2所示,若AB=6cm,请回答下列问题:(1)图1中BC=________ cm,CD=________ cm,DE=________ cm;(2)求图2中m、n的值.2、在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质的过程,以下是我们研究函数的性质及其应用的部分过程,请按要求完成下列各小题.x…﹣4﹣3﹣2﹣1012345…y…6a0﹣1.5﹣2﹣1.5020b…(1)表中a= ;b= ;(2)根据表中的数据画出该函数的大致图象,并根据函数图象写出该函数的一条性质.(3)已知直线的图象如图所示,结合你所画的函数图象,当y1>y2时直接写出x的取值范围.(保留1位小数,误差不超过0.2)3、分别对各函教解析式进行讨论:; ; (1)自变量x在什么范围内取值时函数解析式有意义?(2)当时对应的函数值是多少?4、为了提高天然气使用效率,保障居民的用气需求,某市推进阶梯式气价改革,若一户居民的年用气量不超过300m3,价格为2.5元/m3,若年用气量超过300m3,超出部分的价格为3 元/m3,(1)根据题意,填写表:一户居民的年用气量150250350…付款金额/元 625 …(2)设一户居民的年用气量为xm3,付款金额为y元,求y关于x的解析式,并写出自变量的取值范围;(3)若某户居民一年使用天然气所付的金额为870元,求该户居民的年用气量.5、陈杰骑自行车去上学,当他以往常的速度骑了一段路时,忽然想起要买某本书,于是又折回到刚经过的一家书店,买到书后继续赶去学校.以下是他本次上学的路程与所用时间的关系示意图.根据图中提供的信息回答下列问题:(1)陈杰家到学校的距离是______米,书店到学校的距离是______米;(2)陈杰在书店停留了______分钟,本次上学途中,陈杰一共行驶了______米;(3)在整个上学的途中哪个时间段陈杰骑车速度最快?最快的速度是多少米/分?(4)如果陈杰不买书,以往常的速度去学校,需要多少分钟?本次上学比往常多用多少分钟? -参考答案-一、单选题1、D【解析】【分析】根据题意过点A作AD′⊥BC于点D′,由题可知,当点D从点B运动到点C,即x从小变大时,AD也是由大变小再变大,而△ABC的面积不变,又S=AD,即y是由小变大再变小,结合选项可得结论.【详解】解:过点A作AD′⊥BC于点D′,如图,由题可知,当点D从点B运动到点C,即x从小变大中,AD也是由大变小再变大,而△ABC的面积不变,又S=AD,即y是由小变大再变小,结合选项可知,D选项是正确的;故选:D.【点睛】本题主要考查动点问题的函数图象,题中没有给任何的数据,需要通过变化趋势进行判断.2、A【解析】【分析】根据题意,当点从点运动到点时,的长度随的增大而增大;当点从运动到的中点时,随的增大而减小;当点从的中点运动到点时,随的增大而增大;当点从运动到时,随的增大而减小,最后减小至0,且和时,的值相等,据此判断即可.【详解】解:由题意可知,当点从点运动到点时,的长度随的增大而增大;当点从运动到的中点时,随的增大而减小;且当时,的值最小,故可排除选项与选项;当点从的中点运动到点时,随的增大而增大;当点从运动到时,随的增大而减小,最后减小至0,且和时,的值相等,故选项符合题意,选项不合题意.故选:A.【点睛】本题考查了动点问题的函数图象,三角形的面积等知识,解题的关键是熟练掌握数形结合思想方法.3、D【解析】【分析】根据题意分析出 托运费y与物品重量x之间的函数关系,画出图像即可.【详解】解:由题意可得,当时,,∵物品重量每增加1kg(不足1kg按1kg计)需增加托运费0.5元,∴托运费y与物品重量x之间的函数图像为:故选:D.【点睛】此题考查了函数的图像,解题的关键是根据题意正确分析出托运费y与物品重量x之间的函数关系.4、C【解析】【分析】由二次根式有意义的条件,可得 解不等式即可得到答案.【详解】解:∵函数中,则∴;故选:C.【点睛】本题考查了函数自变量的取值范围,二次根式有意义的条件,解题的关键是掌握被开方数大于或等于0.5、D【解析】【分析】根据图象可以确定他离家8km用了多长时间,等公交车时间是多少,他步行的时间和对应的路程,公交车运行的时间和对应的路程,然后确定各自的速度.【详解】解:由图象可知:他步行10min走了1000m,故他步行的速度为他步行的速度是100m/min;公交车(30−16)min走了(8−1)km,故公交车的速度为7000÷14=500m/min.故选:D.【点睛】本题考查利用函数的图象解决实际问题,解决本题的关键是正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一.6、D【解析】【分析】设在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的函数,x是自变量.根据函数的意义即可求出答案.【详解】解:A、对于x的每一个确定的值,y可能会有两个值与其对应,不符合函数的定义,故选项A不符合题意;B、对于x的每一个确定的值,y可能会有多个值与其对应,不符合函数的定义,故选项B不符合题意;C、对于x的每一个确定的值,y可能会有两个值与其对应,不符合函数的定义,故选项C不符合题意;D、对于x的每一个确定的值,y有唯一的值与之对应,符合函数的定义,故选项D符合题意.故选:D.【点睛】本题主要考查了函数的定义.解题的关键是掌握函数的定义,在定义中特别要注意,对于x的每一个值,y都有唯一的值与其对应.7、B【解析】【分析】由题意根据图2可得学生与测试老师的距离的变化情况,进而即可作出判断.【详解】解:根据图2得:学生与测试老师的距离先快速减小,然后短时间缓慢减小,然后再快速减小,又短时间缓慢增大,然后再快速减到最小,又开始快速增大,再减小,而且开始的时候与测试老师的距离大于快结束的时候,由此可得测试老师可能站在图1中的位置为点B.故选:B.【点睛】本题考查动点问题的函数图象,利用观察学生与测试老师之间距离的变化关系得出函数的增减性是解题的关键.8、B【解析】【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数即可.【详解】解:①满足对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数;②满足对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数;③满足对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数;④,当时,,则y不是x的函数;综上,是函数的有①②③.故选:B.【点睛】本题主要考查了函数的定义.在一个变化过程中,有两个变量x、y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数.9、B【解析】【分析】根据表格中的数据,把对应的数据代入函数关系式中进行求解即可得到答案.【详解】解:A、当时,,不满足,故此选项不符合题意;B、当时,,满足,当时,,满足,当时,,满足,当时,,满足,故此选项符合题意;C、当时,,不满足,故此选项符合题意;D、当时,,不满足,故此选项符合题意;故选B.【点睛】本题主要考查了用表格表示变量间的关系,解题的关键在于能够熟练掌握用表格表示变量间的关系.10、A【解析】【分析】由图象所给信息对结论判断即可.【详解】由图象可知当x=0时,甲、乙两人在A、B两地还未出发故A,B之间的距离为1200m故①正确前12min为甲、乙的速度和行走了1200m故由图象可知乙用了24-4=20min走完了1200m则则故②正确又∵两人相遇时停留了4min∴两人相遇后从16min开始继续行走,由图象x=24时的拐点可知,到24min乙到达目的地则两人相遇后行走了24-16=8min,两人之间的距离为8×100=800米则b=800故③正确从24min开始为甲独自行走1200-800=400m则t=min故a=24+10=34故④正确综上所述①②③④均正确,共有四个结论正确.故选:A.【点睛】本题考查了从函数图象获取信息,运用数形结合的思想是解题的关键.二、填空题1、x≠【解析】【分析】根据分式分母不为0列出不等式,解不等式得到答案.【详解】解:由题意得:3x−4≠0,解得:x≠,故答案为:x≠.【点睛】本题考查的是函数自变量的取值范围的确定,掌握分式分母不为0是解题的关键.2、2【解析】【分析】点P在点D时,设正方形的边长为a,a×a=18,解得a=6;当点P在点C时,×EP×6=12,解得EP=4,即EC=4,进而即可求解.【详解】解:当点P在点D时,由图象可知三角形APE的面积为18,设正方形的边长为a,y=AB×AD=a×a=18,解得a=6;当点P在点C时,由图象可知三角形APE的面积为12,y=EP×AB=×EP×6=12,解得EP=4,即EC=4,∴BE=6-4=2,故答案是:2.【点睛】本题考查的是动点函数图象问题,此类问题关键是弄清楚不同时间段,图象和图形的对应关系.3、【解析】【详解】解:∵长方形的周长为20,一条边为x,∴长方形的另一条边为,∴ .故答案为:.【点睛】本题主要考查了列函数关系式,解题的关键在于能够熟练掌握长方形周长公式和面积公式.4、##【解析】【分析】将代入f(x)=,求解即可.【详解】解:将代入f(x)=,得:f(2).故答案为:.【点睛】此题考查了函数的代入求值,解题的关键是将代入f(x)=求解.5、 列表 描点 连线【解析】略三、解答题1、(1)8,4,6;(2)m=24,n=17.【解析】【分析】(1)因为点P速度为2cm/s,所以根据右侧的时间可以求出线段BC,CD和DE的长度;(2)m代表的是点P在C时对应图形面积,n代表的是点P运动到A时对应的时间,由图象都可以求出.【详解】解:(1)∵点P速度为2cm/s,由右侧图象可知,点P在BC线段运动了4秒,∴BC=42=8(cm),点P在CD线段运动了6-4=2秒,∴CD=22=4(cm),点P在DE线段运动9-6=3秒,∴DE=32=6(cm),故答案为:8,4,6;(3)当点P到C时,△ABP的面积为ABBC=68=24(cm2),∴m=24,∵BC+CD+DE+EF+AF=8+4+6+(6-4)+(8+6)=34(cm),∴n=34×=17.【点睛】本题考查了动点问题的函数图象,数形结合的数学思维,通过图象找出对应图形的线段长度,很好的考查了学生分析问题和看图的能力.2、 (1)2.5;﹣2(2)见解析(3)x<﹣2或1.5<x<5【解析】【分析】(1)根据解析式计算即可;(2)利用描点法画出函数图象,观察图象可得函数的一条性质;(3)根据图象即可求解.(1)解:当x=﹣3时,y1=×(﹣3)2﹣2=2.5,∴a=2.5,当x=5时,y1=2﹣2×|5﹣3|=﹣2,∴b=﹣2,故答案为:2.5,﹣2;(2)解:画出函数图象如图所示:由图象得:x<0时,y随x的增大而减小;(3)画出直线的图象如图所示,由图象可知,当y1>y2时,x的取值范围为:x<﹣2或1.5<x<5.【点睛】本题考查函数图象和性质,能够从表格中获取信息,利用描点法画出函数图象,并结合函数图象解题是关键.3、(1),x可为任意实数;;.(2);;.【解析】【分析】(1)根据整式有意义的条件:全体实数,分式有意义的条件:分母不为0,二次根式有意义的条件:被开方数大于等于0即可求解;(2)将分别代入各式计算即可.【详解】解:(1)∵整式有意义的条件是全体实数,∴有意义时自变量x取值范围是全体实数,∵分式有意义的条件是分母不为0,∴有意义时自变量x取值范围,即,∵二次根式有意义的条件:被开方数大于等于0,∴有意义时自变量x取值范围,即;(2)将代入,得:,将代入,得:,将代入,得:.【点睛】本题考查函数自变量取值范围及函数值的定义,解题的关键是熟练掌握各式有意义的条件.4、(1)375,900;(2)y=;(3)340m3.【解析】【分析】(1)根据两种收费标准进行求解即可;(2)分两种情况:①当x≤300时,②当x>300时,根据题目所给收费标准求解即可;(3)先根据,得到,然后把y=870代入y=3x-150中进行求解即可.【详解】解:(1)由题意得:当一户居民的年用气量为的时候,付款金额为元,当一户居民的年用气量为的时候,付款金额为元,故答案为:375,900;(2)分两种情况:①当x≤300时,y=2.5x;②当x>300时,y=2.5×300+3×(x-300)=3x-150.综上所述,y关于x的解析式为y=;(3)∵,∴∴将y=870代入y=3x-150,得870=3x-150,解得x=340.∴该户居民的年用气量为340m3.【点睛】本题主要考查了根据表格求函数关系式,解题的关键在于能够准确读懂题意.5、(1)1500,900;(2)4,2700;(3)在分钟时间段,陈杰骑车速度最快;米/分;(4)陈杰以往常的速度去学校,需要分钟,本次上学比往常多用分钟.【解析】【分析】(1)根据图象中学校所在位置对应的纵坐标可得陈杰家到学校的距离,根据时间等于8分钟时可得陈杰家到书店的距离,再利用1500米减去这个距离即可得书店到学校的距离;(2)图象中水平段对应的时间即为陈杰在书店停留的时间,在前6分钟行驶了1200米,折返书店行驶了600米,再从书店到学校行驶了900米,将这些路程相加即可得;(3)结合函数图象,分别求出各段的速度即可得出答案;(4)先求出往常的速度,再求出以往常的速度去学校所需时间,由此即可得出答案.【详解】解:(1)陈杰家到学校的距离是1500米,书店到学校的距离是(米),故答案为:1500,900;(2)陈杰在书店停留了(分钟),本次上学途中,陈杰一共行驶了(米),故答案为:4,2700;(3)在分钟时间段,陈杰骑车速度为(米/分),在分钟时间段,陈杰骑车速度为(米/分),在分钟时间段,陈杰停留在书店买书,速度为0米/分,在分钟时间段,陈杰骑车速度为(米/分),答:在分钟时间段,陈杰骑车速度最快,最快的速度是450米/分;(4)由(3)可知,陈杰往常的速度为200米/分,则以往常的速度去学校所需时间为(分钟),本次上学比往常多用(分钟),答:陈杰以往常的速度去学校,需要分钟,本次上学比往常多用分钟.【点睛】本题考查了函数图象,读懂函数图象,从中正确获取信息是解题关键.
相关试卷
这是一份冀教版八年级下册第二十章 函数综合与测试练习题,共22页。试卷主要包含了函数中,自变量x的取值范围是,下列图像中表示是的函数的有几个等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十章 函数综合与测试课后测评,共21页。
这是一份初中数学第二十章 函数综合与测试综合训练题,共21页。试卷主要包含了小斌家,小明家等内容,欢迎下载使用。