2021学年第二十章 函数综合与测试课时练习
展开
这是一份2021学年第二十章 函数综合与测试课时练习,共19页。试卷主要包含了函数y=的自变量x的取值范围是等内容,欢迎下载使用。
冀教版八年级数学下册第二十章函数专项练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、甲、乙两车分别从相距280km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途径C地,甲车到达C地停留1小时,因有事按原路原速返回A地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图,下列说法:①乙车的速度是40千米/时;②甲车从C返回A的速度为70千米/时;③t=3;④当两车相距35千米时,乙车行驶的时间是2小时或6小时,其中正确的有( )A.1个 B.2个 C.3个 D.4个2、火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图象描述如图所示,有下列结论:①火车的速度为30米/秒;②火车的长度为120米;③火车整体都在隧道内的时间为35秒;④隧道长度为1200米.其中正确的结论是( )A.①②③ B.①②④ C.③④ D.①③④3、如图1所示,直角三角形中,,且.设直线截此三角形所得的阴影部分面积为,与之间的函数关系的图象为图2所示,则的周长为( )A. B. C. D.4、佳佳花3000元买台空调,耗电0.7度/小时,电费1.5元/度.持续开x小时后,产生电费y(元)与时间(小时)之间的函数关系式是( )A. B. C. D.5、函数y=的自变量x的取值范围是( )A.x≠0 B.x≠1 C.x≠±1 D.全体实数6、下列函数中,自变量的取值范围选取错误的是( )A.y=2x2中,x取全体实数 B.y=中,x取x≠-1的实数C.y=中,x取x≥2的实数 D.y=中,x取x≥-3的实数7、下面关于函数的三种表示方法叙述错误的是( )A.用图象法表示函数关系,可以直观地看出因变量如何随着自变量而变化B.用列表法表示函数关系,可以很清楚地看出自变量取的值与因变量的对应值C.用解析式法表示函数关系,可以方便地计算函数值D.任何函数关系都可以用上述三种方法来表示8、下列关于变量x,y的关系,其中y不是x的函数的是( )A. B.C. D.9、某商场降价销售一批名牌球鞋,已知所获利润y(元)与降价金额x(元)之间满定函数关系式y=﹣x2+50x+600,若降价10元,则获利为( )A.800元 B.600元 C.1200元 D.1000元10、如图,一个矩形的长比宽多3cm,矩形的面积是Scm2.设矩形的宽为xcm,当x在一定范围内变化时,S随x的变化而变化,则S与x满足的函数关系是( )A.S=4x+6 B.S=4x-6 C.S=x2+3x D.S=x2-3x第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、向平静的水面投入一枚石子会激起一圈圈圆形涟漪,当圆形涟漪的半径r从3cm变成6cm时,圆形的面积S从________cm2变成________cm2.这一变化过程中________是自变量,________是关于自变量的函数.2、在中,自变量的取值范围是______.3、定义:用_______来表示函数关系的方法叫做图象法.图象法能形象直观地表示函数的变化情况,但只能近似的表达两个变量之间的函数关系.4、汽车以60km/h的速度匀速行驶,行驶路程为 s km,行驶时间为 t h,如表:t/h12345s/km60120180240300可知:路程 =____________(1)在上面这个过程中,变化的量是_______、_________.不变化的量是_____________.(2)试用含t的式子表示s:s=_______.这个问题反映了匀速行驶的汽车所行驶的路程____随行驶时间___的变化过程.5、如图,在 Rt△ABC中,∠ACB=90°,BC=4cm,AC=9cm,点 D在线段 CA上从点C出发向点A方向运动(点 D不与点 A,点C重合),且点D运动的速度为2cm/s,现设运动时间为 x(0<x<)秒时,对应的 △ABD 的面积为ycm²,则当x=2 时,y=_________ ;y与x之间满足的关系式为_________.三、解答题(5小题,每小题10分,共计50分)1、下列各题中分别有几个变量?你能将其中某个变量看成另一个变量的函数吗?若能,请指出自变量的取值范围.(1)(2)在平整的路面上,某型号汽车紧急刹车后仍将滑行,一般地有经验公式,其中表示刹车前汽车的速度(单位:).(3)在国内投寄到外埠质量为以内的普通信函应付邮资如下表:信件质量邮资/元1.202.403.604.806.00 2、图,把一些相同规格的碗整齐地叠放在水平桌面上,这摞碗的高度随着碗的数量变化而变化的情况如表格所示:碗的数量(只)12345…高度(cm)45.26.47.68.8…(1)用h(cm)表示这碗的高度,用x(只)表示这摞碗的数量,请结合表格直接写出h(cm)与x(只)之间的函数关系式.(2)若这摞碗的高度为11.2cm,求这摞碗的数量.3、周六王华骑电动车从家出发去张明家,当他骑了一段路时,想起要帮张明买一本书,于是原路返回到刚经过的新华书店,买到书后继续前往张明家,如图是他离家的路程与时间的关系示意图,请根据图中提供的信息回答下列问题:(1)王华家到张明家的路程是多少米?(2)王华在新华书店停留了多长时间?(3)买到书后,王华从新华书店到张明家骑车的平均速度是多少?(4)本次去张明家途中,王华一共行驶了多少米?4、长方形的一边长是,其邻边长为,周长是,面积为.(1)写出和之间的关系式(2)写出和之间的关系式(3)当时,等于多少等于多少(4)当增加时,增加多少增加多少5、在一定限度内(所挂物体重量不过)弹簧挂上物体后会伸长,测得一弹簧长度与所挂物体质量有如下关系:所挂物体质量弹簧长度(1)由表格知,弹簧原长为________,所挂物体每增加弹簧伸长________.(2)请写出弹簧长度与所挂物体质量之间的关系式,并指出自变量取值范围.(3)预测当所挂物体质量为时,弹簧长度是多少?(4)当弹簧长度为时,求所挂物体的质量. -参考答案-一、单选题1、B【解析】【分析】由乙车比甲车先出发1小时,与出发地的距离为千米,可判断①,由 千米/时,可判断②,由小时,可得可判断③,利用检验的方法计算当乙车行驶的时间是2小时或6小时时,两车相距的路程可判断④,从而可得答案.【详解】解:由函数图象可得:乙车比甲车先出发1小时,与出发地的距离为千米,所以乙车速度为:35千米/时,故①不符合题意;乙车行驶280千米需要的时间为:小时,所以甲车返回的速度为:千米/时,故②符合题意;由小时,所以 故③符合题意,当乙车行驶2小时时,行驶的路程为:千米,此时甲车行驶1小时,千米,所以两车相距:千米,当乙车行驶6小时时,行驶的路程为千米,距离A地70千米,此时甲车行驶了4个小时,行驶的路程为千米,此时在返回A地的路上,距离A地千米,所以两车相距千米,故④不符合题意;综上:故选B【点睛】本题考查的是从函数图象中获取信息,理解点的坐标含义,特别是利用检验的方法判断④,可以化繁为简,都是解本题的关键.2、D【解析】【分析】根据函数的图象即可确定在BC段,所用的时间是5秒,路程是150米,则速度是30米/秒,进而即可确定其它答案.【详解】解:在BC段,所用的时间是5秒,路程是150米,则速度是30米/秒.故①正确;火车的长度是150米,故②错误;整个火车都在隧道内的时间是:45-5-5=35秒,故③正确;隧道长是:45×30-150=1200(米),故④正确.故选:D.【点睛】本题主要考查了用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.3、D【解析】【分析】由函数图象可得:阴影部分的最大面积为:3, 再利用面积公式求解 再利用勾股定理求解 从而可得答案.【详解】解:由函数图象可得:阴影部分的最大面积为:3, ,且, 解得: (负根舍去) 所以的周长为: 故选D【点睛】本题考查的是从函数图象中获取信息,等腰直角三角形的性质,勾股定理的应用,二次根式的化简与加减运算,灵活应用以上知识解题是关键.4、A【解析】【分析】根据耗电0.7度/小时,电费1.5元/度,列出函数关系式即可.【详解】解:由题意得:,故选A.【点睛】本题主要考查了列函数关系式,解题的关键在于能够准确理解题意.5、D【解析】【分析】由题意直接依据分母不等于0进行分析计算即可.【详解】解:由题意可得,所以自变量x的取值范围是全体实数.故选:D.【点睛】本题考查求函数自变量x的取值范围以及分式有意义的条件,注意掌握分式有意义的条件即分母不等于0是解题的关键.6、D【解析】【分析】根据分式的分母不能为0、二次根式的被开方数的非负性即可得.【详解】解:A、中,取全体实数,此项正确;B、,即,中,取的实数,此项正确;C、,,中,取的实数,此项正确;D、,且,,中,取的实数,此项错误;故选:D.【点睛】本题考查了函数自变量、分式和二次根式,熟练掌握分式和二次根式有意义的条件是解题关键.7、D【解析】【分析】根据函数三种表示方法的特点即可作出判断.【详解】前三个选项的叙述均正确,只有选项D的叙述是错误的,例如一天中的气温随时间的变化是一个函数关系,但此函数关系是无法用函数解析式表示的. 故选:D【点睛】本题考查了函数的三种表示方法,知道三种表示方法的特点是本题的关键.8、D【解析】【详解】解:A、对于的每一个确定的值,都有唯一确定的值与其对应,所以是的函数,此项不符题意;B、对于的每一个确定的值,都有唯一确定的值与其对应,所以是的函数,此项不符题意;C、对于的每一个确定的值,都有唯一确定的值与其对应,所以是的函数,此项不符题意;D、当时,有两个的值与其对应,所以不是的函数,此项符合题意;故选:D.【点睛】本题考查了函数,熟记函数的定义(一般地,在一个变化过程中,如果有两个变量与,并且对于的每一个确定的值,都有唯一确定的值与其对应,那么我们就说是自变量,是的函数)是解题关键.9、D【解析】【分析】将代入函数关系式即可得.【详解】解:将代入得:,即获利为1000元,故选:D.【点睛】本题考查了求函数的函数值,熟练掌握函数值的求法是解题关键.10、C【解析】【分析】先用x表示出矩形的长,然后根据矩形的面积公式即可解答.【详解】解:设矩形的宽为xcm,则长为(x+3)cm由题意得:S=x(x+3)=x2+3x.故选C.【点睛】本题主要考查了列函数解析式,用x表示出矩形的长以及掌握矩形的面积公式成为解答本题的关键.二、填空题1、 9π 36π 半径 面积【解析】【分析】先列出在这一变化过程中两圆的面积公式即可求解.【详解】解:当r=3时,圆的面积为9π;当r=6时,圆的面积为36π;这一变化过程中半径是自变量,面积是半径的函数.故答案是:9π,36π,半径,面积.【点睛】考查了函数的定义:设x和y是两个变量,D是实数集的某个子集,若对于D中的每个值x,变量y按照一定的法则有一个确定的值y与之对应,称变量y为变量x的函数,记作y=f(x);变量:在一程序变化过程中随时可以变化的量.常量:在一程序变化过程中此量的数值始终是不变的.2、x≥3【解析】【分析】根据二次根式的性质,被开方数大于或等于0,可以求出的范围.【详解】解:中,所以,故答案是:.【点睛】本题考查了求函数自变量的范围,解题的关键是掌握一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.3、图象【解析】略4、 速度×时间 时间t 路程s 速度60km/h 60 t s t【解析】略5、 【解析】【分析】根据,代入数轴求解即可.【详解】解:根据题意得:===,∴当x=2 时,,故答案为:,.【点睛】本题考查了动点问题的函数关系,根据题意得出解析式是关系.三、解答题1、(1)(2)(3)都含有两个变量;(1)可将温度看成时间(可用字母表示)的函数,时间的取值范围是:;(2)可将看成的函数,的取值范围是:;(3)可将看成的函数,的取值范围是:【解析】【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可得出答案,结合图像分析出自变量的取值范围即可;【详解】(1)(2)(3)都含有两个变量;(1)可将温度看成时间(可用字母表示)的函数,时间的取值范围是:;(2)可将看成的函数,的取值范围是:;(3)可将看成的函数,的取值范围是:【点睛】本题主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.2、(1)h=1.2x+2.8;(2)7【解析】【分析】(1)根据表格中数据变化规律得出答案;(2)根据函数关系式,当h=11.2cm时,求出相应的x的值即可.【详解】解:(1)由表格中两个变量的变化关系可得,h=4+1.2(x−1)=1.2x+2.8,答:h=1.2x+2.8;(2)当h=11.2cm时,即1.2x+2.8=11.2,解得x=7,答:当这摞碗的高度为11.2cm,碗的数量为7只.【点睛】本题考查常量与变量,函数的表示方法,理解变量与常量的意义,根据表格中两个变量的变化规律得出函数关系式是得出答案的关键.3、(1)4800米;(2)8分钟;(3)450米/分;(4)6800米【解析】【分析】(1)根据函数图象,直接可得王华家到张明家的路程;(2)根据函数图像平行于横轴的部分即为停留的时间,据此可得王华在新华书店停留了多长时间;(3)根据函数图象求得路程和时间,概念速度等于路程除以时间即可求得;(4)根据函数图象可得路程为3段,将其相加即可.【详解】解:(1)根据函数图象,可知王华家到张明家的路程是4800米;(2)24﹣16=8(分钟).所以王华在新华书店停留了8分钟;(3)王华从新华书店到张明家的路程为4800﹣3000=1800米,所用时间为28﹣24=4分钟,小王华从新华书店到张明家骑车的平均速度是:1800÷4=450(米/分);(4)根据函数图象,王华一共行驶了4800+2×(4000﹣3000)=6800(米).【点睛】本题考查了函数图象,要理解横纵坐标表示的含义以及王华的运动过程,从函数图象中获取信息是解题的关键.4、(1);(2);(3),;(4)当增加时,增加,增加【解析】【分析】(1)根据长方形周长公式进行求解即可;(2)根据长方形面积公式进行求解即可;(3)根据(2)求得的结果把代入先求出x的值,即可求值y的值;(4)把代入(1)(2)中求得的y以及S关于x的表达式中求出变化后的周长和面积,由此求解即可.【详解】解:(1)由长方形的周长公式,得.(2)由长方形的面积公式,得.(3)∵,时,∴,∴.(4)当增加时,,,∵,∴增加,增加.【点睛】本题主要考查了列代数式,整式的加减计算,代数式求值,解一元一次方程,解题的关键在于能够根据题意列出关于周长和面积的代数式.5、(1)12,0.5;(2),;(3);(4)【解析】【分析】(1)由表格可得弹簧原长以及所挂物体每增加弹簧伸长的长度;(2)由(1)中的结论可求出弹簧长度与所挂物体质量之间的函数关系式;(3)令,求出y的值即可;(4)令,求出x的值即可.【详解】解:(1)由表格可知,所挂物体质量时,弹簧长度为,∴弹簧原长为,∵,∴所挂物体每增加弹簧伸长;(2)由(1)可知:弹簧长度与所挂物体质量之间的函数关系式为,∵所挂物体质量不过,∴自变量x的取值范围是;(3)将代入,得,∴当所挂物体质量为时,弹簧长度是;(4)将代入,得,解得:,∴当弹簧长度为时,物体质量是.【点睛】本题考查了函数的关系式及函数值,解题的关键是根据图表信息解决问题.
相关试卷
这是一份数学八年级下册第二十章 函数综合与测试复习练习题,共22页。试卷主要包含了下图中表示y是x函数的图象是等内容,欢迎下载使用。
这是一份冀教版八年级下册第二十章 函数综合与测试当堂检测题,共20页。试卷主要包含了在函数中,自变量x的取值范围是等内容,欢迎下载使用。
这是一份2021学年第二十章 函数综合与测试课时作业,共25页。