初中数学冀教版八年级下册第二十章 函数综合与测试课堂检测
展开
这是一份初中数学冀教版八年级下册第二十章 函数综合与测试课堂检测,共24页。
冀教版八年级数学下册第二十章函数难点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列曲线中,表示y是x的函数的是( )A. B.C. D.2、甲、乙两人沿同一条路从A地出发,去往100千米外的B地,甲、乙两人离A地的距离(千米)与时间t(小时)之间的关系如图所示,以下说法正确的是( )A.甲的速度是40km/hB.乙的速度是30km/hC.甲出发小时后两人第一次相遇D.甲乙同时到达B地3、下列所描述的四个变化过程中,变量之间的关系不能看成函数关系的是( )A.小车在下滑过程中下滑时间t和支撑物的高度h之间的关系B.三角形一边上的高一定时,三角形的面积s与这边的长度x之间的关系C.骆驼某日的体温T随着这天时间t的变化曲线所确定的温度T与时间t的关系D.一个正数x的平方根是y,y随着这个数x的变化而变化,y与x之间的关系4、某商场降价销售一批名牌球鞋,已知所获利润y(元)与降价金额x(元)之间满定函数关系式y=﹣x2+50x+600,若降价10元,则获利为( )A.800元 B.600元 C.1200元 D.1000元5、今年暑假期间,小东外出爬山.他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为(分钟),所走的路程为s(米),s与t 之间的函数关系如图所示.下列说法错误的是( )A.小明中途休息用了20分钟B.小明休息前爬山的平均速度为每分钟 70米C.小明在上述过程中所走的路程为3800米D.小明休息前爬山的平均速度小于休息后爬山的平均速度6、如图1所示,直角三角形中,,且.设直线截此三角形所得的阴影部分面积为,与之间的函数关系的图象为图2所示,则的周长为( )A. B. C. D.7、甲、乙两车分别从相距280km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途径C地,甲车到达C地停留1小时,因有事按原路原速返回A地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图,下列说法:①乙车的速度是40千米/时;②甲车从C返回A的速度为70千米/时;③t=3;④当两车相距35千米时,乙车行驶的时间是2小时或6小时,其中正确的有( )A.1个 B.2个 C.3个 D.4个8、函数y=中,自变量x的取值范围是( )A.x>﹣3且x≠0 B.x>﹣3 C.x≥﹣3 D.x≠﹣39、下列关于变量x,y的关系,其中y不是x的函数的是( )A. B.C. D.10、下图中表示y是x函数的图象是( )A. B.C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在函数中,自变量的取值范围是___________.2、小亮从学校步行回家,图中的折线反映了小亮离家的距离S(米)与时间t(分钟)的函数关系,根据图象提供的信息,给出以下结论:①他在前12分钟的平均速度是70米/分钟;②他在第19分钟到家;③他在第15分钟离家的距离和第24分钟离家的距离相等;④他在第33分钟离家的距离是720米.其中正确的序号为 ___.3、设路程为s,时间为t,速度为v,当v=60时,路程和时间的关系式为__________,这个关系式中, __________是常量,__________是变量,__________是__________的函数.4、小明使用图形计算器探究函数的图象,他输入了一组,的值,得到了如图的函数图象,由学习函数的经验,可以推断出小明输入的__0,__0.(填“”,“”或“” 5、函数中,自变量x的取值范围是________.三、解答题(5小题,每小题10分,共计50分)1、(1)画出函数的图象.(2)设是x轴上的一个动点,它与x轴上表示的点的距离为y.求y关于x的函数解析式,并画出这个函数的图象.2、如图,中,,,.点P是射线CB上的一点(不与点B重合),EF是线段PB的垂直平分线,交PB与点F,交射线AB与点E,联结PE、AP.(1)求的度数;(2)当点P在线段CB上时,设,的面积为y,求y关于x的函数解析式,并写出函数的定义域;(3)如果,请直接写出的面积.3、小明在劳动技术课中要制作一个周长为80的等腰三角形.请你写出底边长()与腰长()的函数关系式,并求自变量的取值范围.4、一个容积为240升的水箱,安装有A、B两个注水管,注水过程中A水管始终打开,B水管可随时打开或关闭,两水管的注水速度均为定值,当水箱注满时,两水管自动停止注水.(1)如图是某次注水过程中水箱中水量y(升)与时间x(分)之间的函数图象.①在此次注满水箱的过程中,A水管注水 分,B水管注水 分.②分别求A、B两水管的注水速度.(2)若仅用12分钟将此空水箱注满,B水管应打开几分钟?(3)若同时打开A、B两注水管,且每隔2分钟B水管自动关闭1分钟,注满此空水箱需要几分钟?5、某商店一种玩具定价为15元,商店为了促销于是打出广告:凡购买6个以上者则超过6个的部分一律打八折.(1)如果购买款用y(元)表示,购买数量用x(个)表示,求出y与x之间的函数关系式;(2)当x=4、x=8时,购买款分别是多少元? -参考答案-一、单选题1、C【解析】【分析】根据函数的定义可知,满足对于的每一个取值,都有唯一确定的值与之对应关系,据此即可确定答案.【详解】解:A、对于的每一个取值,可能有两个值与之对应,不符合题意;B、对于的每一个取值,可能有两个值与之对应,不符合题意;C、对于的每一个取值,都有唯一确定的值与之对应,符合题意;D、对于的每一个取值,可能有两个值与之对应,不符合题意;故选:【点睛】本题主要考查了函数概念,关键是掌握在一个变化过程中有两个变量与,对于的每一个确定的值,都有唯一的值与其对应,那么就说是的函数,是自变量.2、C【解析】【分析】根据题意和函数图象中的数据,可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】解:由图可得, 甲车出发第小时时距离A地千米,甲车出发第小时时距离A地千米,甲车的速度是千米/小时,故选项A符合题意;乙车出发小时时距离A地千米,乙车速度是千米/小时,故选项B不合题意; 甲车第小时到达地,甲车的速度是千米/小时,则甲车到达地用时小时,则甲车在第小时出发,由图像可得甲,乙两车在第小时相遇,则甲车出发小时两车相遇,故选项正确;甲车行驶千米时,乙车行驶了千米,甲车先到B地,故选项D不合题意; 故选:【点睛】本题主要考查了函数图象信息分析,解答本题的关键是明确题意,利用数形结合的思想解答.3、D【解析】【分析】根据函数的定义:在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一的值与之对应,则称x是自变量,y是x的函数,由此进行逐一判断即可【详解】解:A、小车在下滑过程中下滑时间t和支撑物的高度h之间的关系,对于每一个确定的高度h,下滑时间t都有唯一值与之对应,满足函数的关系,故不符合题意;B、三角形一边上的高一定时,三角形的面积s与这边的长度x之间的关系,由面积s=边长×高,可知,对于每一个确定的边长,面积s都有唯一值与之对应,满足函数的关系,故不符合题意;C、骆驼某日的体温T随着这天时间t的变化曲线所确定的温度T与时间t的关系,对于每一个确定的时间,温度T都有唯一值与之对应,满足函数的关系,故不符合题意;D、∵一个正数x的平方根是y,∴,对于每一个确定的x,y都有两个值与之对应,不满足函数的关系,故符合题意;故选D.【点睛】本题主要考查了函数的定义,解题的关键在于能够熟练掌握函数的定义.4、D【解析】【分析】将代入函数关系式即可得.【详解】解:将代入得:,即获利为1000元,故选:D.【点睛】本题考查了求函数的函数值,熟练掌握函数值的求法是解题关键.5、D【解析】【分析】根据函数图象可知,小明40分钟爬山2800米,40~60分钟休息,60~100分钟爬山(3800−2800)米,爬山的总路程为3800米,根据路程、速度、时间之间的关系进行解答即可.【详解】解:A、小明中途休息用了60−40=20分钟,正确,不符合题意;B、小明休息前爬山的速度为2800÷40=70(米/分钟),正确,不符合题意;C、小明在上述过程中所走的路程为3800米,正确,不符合题意;D、小明休息前爬山的速度为2800÷40=70(米/分钟),小明休息后爬山的速度是(3800−2800)÷(100−60)=25(米/分钟),小明休息前爬山的平均速度大于休息后爬山的平均速度,错误,符合题意;故选:D.【点睛】本题考查了函数图象,读懂函数图象,从图象中获取必要的信息是解决本题的关键.6、D【解析】【分析】由函数图象可得:阴影部分的最大面积为:3, 再利用面积公式求解 再利用勾股定理求解 从而可得答案.【详解】解:由函数图象可得:阴影部分的最大面积为:3, ,且, 解得: (负根舍去) 所以的周长为: 故选D【点睛】本题考查的是从函数图象中获取信息,等腰直角三角形的性质,勾股定理的应用,二次根式的化简与加减运算,灵活应用以上知识解题是关键.7、B【解析】【分析】由乙车比甲车先出发1小时,与出发地的距离为千米,可判断①,由 千米/时,可判断②,由小时,可得可判断③,利用检验的方法计算当乙车行驶的时间是2小时或6小时时,两车相距的路程可判断④,从而可得答案.【详解】解:由函数图象可得:乙车比甲车先出发1小时,与出发地的距离为千米,所以乙车速度为:35千米/时,故①不符合题意;乙车行驶280千米需要的时间为:小时,所以甲车返回的速度为:千米/时,故②符合题意;由小时,所以 故③符合题意,当乙车行驶2小时时,行驶的路程为:千米,此时甲车行驶1小时,千米,所以两车相距:千米,当乙车行驶6小时时,行驶的路程为千米,距离A地70千米,此时甲车行驶了4个小时,行驶的路程为千米,此时在返回A地的路上,距离A地千米,所以两车相距千米,故④不符合题意;综上:故选B【点睛】本题考查的是从函数图象中获取信息,理解点的坐标含义,特别是利用检验的方法判断④,可以化繁为简,都是解本题的关键.8、B【解析】【分析】根据二次根式和分式有意义的条件:被开方数大于等于0,分母不为0列式计算即可.【详解】解:∵函数y=,∴,解得:x>﹣3.故选:B.【点睛】本题考查函数基本知识,解题的关键是掌握二次根式和分式有意义的条件.9、D【解析】【详解】解:A、对于的每一个确定的值,都有唯一确定的值与其对应,所以是的函数,此项不符题意;B、对于的每一个确定的值,都有唯一确定的值与其对应,所以是的函数,此项不符题意;C、对于的每一个确定的值,都有唯一确定的值与其对应,所以是的函数,此项不符题意;D、当时,有两个的值与其对应,所以不是的函数,此项符合题意;故选:D.【点睛】本题考查了函数,熟记函数的定义(一般地,在一个变化过程中,如果有两个变量与,并且对于的每一个确定的值,都有唯一确定的值与其对应,那么我们就说是自变量,是的函数)是解题关键.10、C【解析】【分析】函数就是在一个变化过程中有两个变量x,y,当给x一个值时,y有唯一的值与其对应,就说y是x的函数,x是自变量.注意“y有唯一的值与其对应”对图象的影响.【详解】解:根据函数的定义,表示y是x函数的图象是C.故选:C.【点睛】理解函数的定义,是解决本题的关键.二、填空题1、【解析】【分析】根据算术平方根的非负性即可完成.【详解】由题意, ∴故答案为:.【点睛】本题考查了求函数自变量的取值范围,关键是掌握算术平方根的非负性.2、①④【解析】【分析】由图象可以直接得出前12分钟小亮的平均速度,从而得出①正确;由图象可知从12分到19分小亮又返回学校,可以判断②错误;分别求出小亮第15分和第24分离家距离可以判断③错误;求出小亮33分离家距离,可以判断④正确.【详解】解:由图象知,前12分中的平均速度为:(1800−960)÷12=70(米/分),故①正确;由图象知,小亮第19分中又返回学校,故②错误;小亮在返回学校时的速度为:(1800−960)÷(19−12)=840÷7=120(米/分),∴第15分离家距离:960+(15−12)×120=1320,从21分到41分小亮的速度为:1800÷(41−21)=1800÷20=90(米/分),∴第24分离家距离:1800−(24−21)×90=1800−270=1530(米),∵1320≠1530,故③错误;小亮在33分离家距离:1800−(33−21)×90=1800−1080=720(米),故④正确,故答案为:①④.【点睛】本题考查函数图像,关键是利用已知信息和图象所给的数据分析题意,依次解答.3、 s=60t 60 t和s s t【解析】略4、 【解析】【分析】由图象可知,当时,,可知;根据函数解析式自变量的取值范围可以知道,结合图象可以知道函数的取不到的值大概是在1的位置,所以大概预测可以得约为1,也即.【详解】解:由图象可知,当时,,;,结合图象可以知道函数的取不到的值大概是在1的位置,.故答案为:,.【点睛】本题考查函数的图象,解题的关键是能够通过已学的反比例函数图象确定的取值.5、x≥0【解析】【分析】根据二次根式有意义的条件:被开方数为非负数列不等式即可得答案.【详解】∵有意义,∴x≥0.故答案为:x≥0【点睛】本题考查了函数自变量的取值范围,主要涉及二次根式有意义的条件,解题关键是熟记二次根式有意义的条件为:被开方数必须大于或等于0.三、解答题1、(1)见解析;(2),见解析【解析】【分析】(1)先列表,然后画出函数图像即可;(2)先根据题意求出函数解析式,然后列表,最后画出函数图像即可【详解】解:(1)由题意得:y=|x-1|,即y;x12y=x-101 x01y=-x+110 函数图象如图:(2)由题意得:y=|x-(-3)|=|x+3|,即y;x-3-2y=x+301 x-4-3y=-x-310 函数图象如图:【点睛】本题主要考查函数及其图像,掌握函数图象的画法是解题的关键.2、(1);(2),定义域为:;(3)当点P在线段CB上时,,当点P在线段CB延长线上时,.【解析】【分析】(1)由题意及勾股定理逆定理可得,取BC的中点H,连接AH,则有,然后可得,则有,最后问题可求证;(2)过A作,垂足为点D,根据含30度直角三角形的性质可得,,然后根据勾股定理可得,进而根据三角形面积公式可进行求解;(3)由题意可分①当点P在线段CB上时,②当点P在线段CB延长线上时,然后分类求解即可.【详解】(1)解:∵中,,,,∴,.∴,∴.∵中,,,∴.取BC的中点H,连接AH,如图所示:∴,,∴,∴△AHC是等边三角形,∴,∴.(2)过A作,垂足为点D.中,∵,,∴.同理:.中,,∴,∴.∴,,∴,∴所求函数解析式为,∵点P在线段CB上,且不与点B重合,∴,∴定义域为:.(3)当时,①当点P在线段CB上时,由(2)可知:,②当点P在线段CB延长线上时,过A作,垂足为点M.如图所示:∵,,,∴,∴,∴,∴.【点睛】本题主要考查含30度直角三角形的性质、勾股定理及直角三角形斜边中线定理,熟练掌握含30度直角三角形的性质、勾股定理及直角三角形斜边中线定理是解题的关键.3、【解析】【分析】由等腰三角形的周长=腰长×2+底长,可得出函数关系式.求自变量的取值范围时可根据三角形的三边关系来解(三角形两边的和大于第三边,两边的差小于第三边).【详解】解:由题意得,=80,所以,y=80-2x,由于三角形两边之和大于第三边,且边长大于0,所以,解得,所以.【点睛】本题考查了一次函数的应用,本题中求自变量的取值范围时要注意三角形三边关系的运用.4、(1)①16,8;②6升/分,18升/分;(2);(3)13【解析】【分析】(1)①观察函数图像可知,在0-8分钟内,只有A水管打开,8-16分钟内,A水管和B水管同时打开,由此进行求解即可;②先根据根据函数图像可知在0-8分钟内,只有A水管注水,一共注水48升,求出A水管的注水速度,然后求出16分钟内A水管一共注水=6×16=96升,从而得到B水管在8-16分钟内注水=240-96=144升,由此即可求出B水管的注水速度;(2)设B水管应该打开x分钟,然后根据题意列出方程求解即可;(3)先求出打开A水管3分钟和B水管2分钟的注水量为升,由,则可以得出需要循环上述过程四次需用12分钟,然后求出剩余需要的时间即可得到答案.【详解】解:(1)①观察函数图像可知,在0-8分钟内,只有A水管打开,8-16分钟内,A水管和B水管同时打开,∴A水管注水16分钟,B水管注水8分钟,故答案为:16;8;②根据函数图像可知在0-8分钟内,只有A水管注水,一共注水48升,∴A水管的注水速度=48÷8=6升/分;∴16分钟内A水管一共注水=6×16=96升,∴B水管在8-16分钟内注水=240-96=144升,∴B水管的注水速度=144÷8=18升/分(2)设B水管应该打开x分钟,则由题意得:,解得,∴B水管应该打开分钟,答:B水管应该打开分钟;(3)打开A水管3分钟和B水管2分钟的注水量为升,∵,∴注满水箱可以打开A水管3分钟和B水管2分钟循环四次,∴循环四次花费的时间分,∴循环四次后还要注水的量为24升,∵分,∴还需要注水的时间为1分,∴一共需要注水的时间=12+1=13分,答:注满此空水箱需要13分钟.【点睛】本题主要考查了从函数图像获取信息进行求解,解题的关键在于能够准确读懂函数图像.5、(1)y=;(2)60元,114元【解析】【分析】(1)根据题意分段列出函数表达式即可;(2)根据(1)的结论,将x=4、x=8代入函数解析式即可求得答案.【详解】解:(1)由题意可得,当0<x≤6时,y=15x,当x>6时,y=15×6+(x﹣6)×15×0.8=12x+18,由上可得,y与x的函数关系式为:y=;(2)当x=4时,y=15×4=60,当x=8时,y=12×8+18=114,答:当x=4,x=8时,货款分别为60元,114元.【点睛】本题考查了列函数解析式,已知自变量的值求函数值,根据题意列出函数解析式是解题的关键.
相关试卷
这是一份冀教版八年级下册第二十章 函数综合与测试练习题,共18页。试卷主要包含了当时,函数的值是等内容,欢迎下载使用。
这是一份数学八年级下册第二十章 函数综合与测试课后测评,共20页。试卷主要包含了在函数中,自变量x的取值范围是等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十章 函数综合与测试综合训练题,共20页。试卷主要包含了在函数中,自变量x的取值范围是等内容,欢迎下载使用。