初中数学冀教版八年级下册第二十一章 一次函数综合与测试综合训练题
展开
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试综合训练题,共25页。试卷主要包含了若实数,巴中某快递公司每天上午7,下列不能表示是的函数的是,下列函数中,属于正比例函数的是等内容,欢迎下载使用。
八年级数学下册第二十一章一次函数必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知点,都在直线上,则、大小关系是( )A. B. C. D.不能计较2、无论m为何实数,直线y=-x+4与y=x+2m的交点不可能在( )A.第一象限 B.第二象限C.第三象限 D.第四象限3、我边防局接到情报,近海处有一可疑船只A正向公海方向行驶,边防局迅速派出快艇B追赶(图1).图2中,分别表示两船相对于海岸的距离s(海里)与追赶时间t(分)之间的关系,下列说法错误的是( ).A.快艇的速度比可疑船只的速度快0.3海里/分B.5分钟时快艇和可疑船只的距离为3.5海里C.若可疑船只一直匀速行驶,则它从海岸出发0.5小时后,快艇才出发追赶D.当快艇出发分钟后追上可疑船只,此时离海岸海里4、甲、乙两地之间是一条直路,在全民健身活动中,王明跑步从甲地往乙地,陈启浩骑自行车从乙地往甲地,两人同时出发,陈启浩先到达目的地,两人之间的距离s(km)与运动时间t(h)的函数关系大致如图所示,下列说法中错误的是( )A.两人出发1小时后相遇B.王明跑步的速度为8km/hC.陈启浩到达目的地时两人相距10kmD.陈启浩比王明提前1.5h到目的地5、若实数、满足且,则关于的一次函数的图像可能是( )A. B. C. D.6、巴中某快递公司每天上午7:00﹣8:00为集中揽件和派件时段,甲仓库用来揽收快件,乙仓库用来派发快件,该时段内甲、乙两仓库的快件数量y(件)与时间x(分)之间的函数图象如图所示,下列说法正确的个数为( )①15分钟后,甲仓库内快件数量为180件;②乙仓库每分钟派送快件数量为8件;③8:00时,甲仓库内快件数为400件;④7:20时,两仓库快递件数相同.A.1个 B.2个 C.3个 D.4个7、下列不能表示是的函数的是( )A.05101533.544.5B.C.D.8、下列函数中,属于正比例函数的是( )A. B. C. D.9、如图,点P是▱ABCD边上一动点,沿A→D→C→B的路径移动,设P点经过的路径长为x,△BAP的面积是y,则下列能大致反映y与x的函数关系的图象是( )A. B.C. D.10、下列各点中,不在一次函数的图象上的是( )A. B.C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、观察图象可以发现:①直线y=x,y=3x向右逐渐______,即y的值随x的增大而增大;②直线y=-x,y=-4x向右逐渐______,即y的值随x的增大而减小. 2、已知一次函数的图象过点(3,5)与(-4,-9),求一次函数的解析式.分析:求一次函数y=kx+b的解析式,关键是求出k,b的值.从已知条件可以列出关于k,b的二元一次方程组,并求出k,b.解:设这个一次函数的解析为:y=kx+b因为y=kx+b的图象过点(3,5)与(-4,-9),所以,解方程组得:,这个一次函数的解析式为:___3、已知一次函数的图象(如图),则不等式 <0的解集是___________4、一次函y=kx+b(k≠0)的图象可以由直线y=kx平移______个单位长度得到(当b>0时,向______平移;当b<0时,向______平移).5、函数y=(m﹣2)x|m﹣1|+2是一次函数,那么m的值为___.三、解答题(5小题,每小题10分,共计50分)1、肥西县祥源花世界管理委员会要添置办公桌椅A,B两种型号,已知2套A型桌椅和1套B型桌椅共需2000元,1套A型桌椅和3套B型桌椅共需3000元.(1)直接写出A型桌椅每套 元,B型桌椅每套 元;(2)若管理委员会需购买两种型号桌椅共20套,若需要A型桌椅不少于12套,B型桌椅不少于6套,平均每套桌椅需要运费10元.设购买A型桌椅x套,总费用为y元.①求y与x之间的函数关系,并直接写出x的取值范围;②求出总费用最少的购置方案.2、一次函数y=kx+b,当-3≤x≤1时,对应的y的取值为1≤y≤9,求该函数的解析式.3、甲、乙两车从M地出发,沿同一路线驶向N地,甲车先出发匀速驶向N地,30分钟后,乙车出发,匀速行驶一段时间后,在途中的货站装货耗时半小时,由于满载货物,为了行驶安全,速度减少了40km/h,结果两车同时到达N地,甲乙两车距N地的路程y(km)与乙车行驶时间x(h)(1)a= ,甲的速度是 km/h.(2)求线段AD对应的函数表达式.(3)直接写出甲出发多长时间,甲乙两车相距10km.4、平面直角坐标系内有一平行四边形点,,,,有一次函数的图象过点(1)若此一次函数图象经过平行四边形边的中点,求的值(2)若此一次函数图象与平行四边形始终有两个交点,求出的取值范围5、已知一次函数 y=-x+2.(1)求这个函数的图像与两条坐标轴的交点坐标;(2)在平面直角坐标系中画出这个函数的图像;(3)结合函数图像回答问题:①当 x>0 时,y 的取值范围是 ;②当 y<0 时,x 的取值范围是 . -参考答案-一、单选题1、C【解析】【分析】根据一次函数的增减性解答.【详解】解:∵直线,k=-2<0,∴y随着x的增大而减小,∵点,都在直线上,-4<2,∴,故选:C.【点睛】此题考查了一次函数的增减性:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小,熟记性质是解题的关键.2、C【解析】【分析】通过一次函数中k和b的符号决定了直线经过的象限来解决问题.【详解】解:因为y=-x+4中,k=-1<0,b=4>0,∴直线y=-x+4经过第一、二、四象限,所以无论m为何实数,直线y=-x+4与y=x+2m的交点不可能在第三象限.故选:C.【点睛】本题考查了一次函数中k和b的符号,k>0,直线经过第一、三象限;k<0,直线经过第二、四象限.3、C【解析】【分析】根据图象分别计算两船的速度判断A正确;利用图象计算出发5分钟时的距离差判断B正确;可疑船只出发5海里后快艇追赶,计算时间判断C错误正确;设快艇出发t分钟后追上可疑船只,列方程,求解即可判断D正确.【详解】解:快艇的速度为,可疑船只的速度为(海里/分),∴快艇的速度比可疑船只的速度快0.5-0.2=0.3海里/分,故A选项不符合题意;5分钟时快艇和可疑船只的距离为海里,故B选项不符合题意;由图象可知:可疑船只出发5海里后快艇追赶,分钟=小时,故选项C符合题意;设快艇出发t分钟后追上可疑船只,,解得t=,这时离海岸海里,故D选项不符合题意;故选:C.【点睛】此题考查了一次函数的图象,正确理解函数图象并得到相关信息进行计算是解题的关键.4、C【解析】【分析】根据函数图象中的数据,可以分别计算出两人的速度,从而可以判断各个选项中的说法是否正确,从而可以解答本题.【详解】解:由图象可知,两人出发1小时后相遇,故选项A正确;王明跑步的速度为24÷3=8(km/h),故选项B正确;陈启浩的速度为:24÷1-8=16(km/h),陈启浩从开始到到达目的地用的时间为:24÷16=1.5(h),故陈启浩到达目的地时两人相距8×1.5=12(km),故选项C错误;陈启浩比王提前3-1.5=1.5h到目的地,故选项D正确;故选:C.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.5、B【解析】【分析】根据实数、满足可知,、互为相反数,再根据,可确定、的符号,进而确定图象的大致位置.【详解】解:∴实数、满足,∴、互为相反数,∵,∴,,∴∴一次函数的图像经过二、三、四象限,故选:B.【点睛】本题考查了一次函数图象的性质,解题关键是根据已知条件,确定、的符号.6、B【解析】【分析】根据图象可知15分钟后,甲仓库内快件数量为130件,据此可得甲仓库揽收快件的速度,进而得出时,甲仓库内快件数;由图象可知45分钟,乙仓库派送快件数量为180件,可得乙仓库每分钟派送快件的数量,进而得出乙仓库快件的总数量,然后根据题意列方程即可求出两仓库快递件数相同是时间.【详解】解:由题意结合图象可知:15分钟后,甲仓库内快件数量为130件,故①说法错误;甲仓库揽收快件的速度为:(件分),所以时,甲仓库内快件数为:(件,故③说法正确;(分,即45分钟乙仓库派送快件数量为180件,所以乙仓库每分钟派送快件的数量为:(件,故②说法错误;所以乙仓库快件的总数量为:(件,设分钟后,两仓库快递件数相同,根据题意得:,解得,即时,两仓库快递件数相同,故④说法正确.所以说法正确的有③④共2个.故选:B.【点睛】本题考查了一次函数的应用,解题的关键是结合图象,理解图象中点的坐标代表的意义.7、B【解析】【分析】根据函数的定义(如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,我们就把x称为自变量,把y称为因变量,y是x的函数)及利用待定系数法确定一次函数解析式依次进行判断即可得.【详解】解:A、根据图表进行分析为一次函数,设函数解析式为:,将,,,分别代入解析式为:,解得:,,所以函数解析式为:,∴y是x的函数;B、从图象上看,一个x值,对应两个y值,不符合函数定义,y不是x的函数;C、D选项从图象及解析式看可得y是x的函数.故选:B.【点睛】题目主要考查函数的定义及利用待定系数法确定一次函数解析式,深刻理解函数定义是解题关键.8、D【解析】【分析】根据正比例函数的定义逐个判断即可.【详解】解:A.是二次函数,不是正比例函数,故本选项不符合题意;B.是一次函数,但不是正比例函数,故本选项不符合题意;C.是反比例函数,不是正比例函数,故本选项不符合题意;D.是正比例函数,故本选项符合题意;故选:D.【点睛】本题考查了正比例函数的定义,能熟记正比例函数的定义是解此题的关键,注意:形如y=kx+b(k、b为常数,k≠0)的函数,叫一次函数,当b=0时,函数也叫正比例函数.9、A【解析】【分析】分三段来考虑点P沿A→D运动,的面积逐渐变大;点P沿D→C移动,的面积不变;点P沿C→B的路径移动,的面积逐渐减小,同时考虑各段的函数解析式,据此选择即可得.【详解】解:如图,过点B作BH⊥DA交DA的延长线于H,设BH=h,则当点P在线段AD上时,,h是定值,y是x的一次函数,点P沿A→D运动,的面积逐渐变大,且y是x的一次函数,点P沿D→C移动,的面积不变,点P沿C→B的路径移动,的面积逐渐减小,同法可知y是x的一次函数,故选:A.【点睛】本题以动点问题为背景,考查了分类讨论的数学思想以及函数图象的变化规律,理解题意,作出辅助线是解题关键.10、B【解析】【分析】根据一次函数解析变形可得,进而判断即可.【详解】解:∵∴A. ,,则在一次函数的图象上 ,不符合题意;B. ,,则不在一次函数的图象上,符合题意;C. ,,则在一次函数的图象上 ,不符合题意; D. ,,,则在一次函数的图象上 ,不符合题意;故选B【点睛】本题考查了一次函数的性质,满足一次函数解析式的点都在一次函数图象上,掌握一次函数的性质是解题的关键.二、填空题1、 上升 下降【解析】略2、y=2x-1【解析】略3、x<1【解析】【分析】根据一次函数与一元一次不等式的关系即可求出答案.【详解】解:∵y=kx+b,kx+b<0,∴y<0,由图象可知:x<1,故答案为:x<1.【点睛】本题考查一次函数与一元一次不等式,解题的关键是正确理解一次函数与一元一次不等式的关系,本题属于基础题型.4、 上 下【解析】略5、0【解析】【分析】根据一次函数的定义,列出关于m的方程和不等式进行求解即可.【详解】解:由题意得,|m-1|=1且m-2≠0,解得:m=2或m=0且m≠2,∴m=0.故答案为:0.【点睛】本题主要考查了一次函数,一次函数y=kx+b的条件是:k、b为常数,k≠0,自变量次数为1.三、解答题1、 (1)A型桌椅每套600元,B型桌椅每套800元;(2)购买A型桌椅14套、B型桌椅6套,总费用最少,最少总费用为13400元【解析】【分析】(1)设A型桌椅每套a元,B型桌椅每套b元,根据题意列二元一次方程组并解方程即可;(2)①根据总费用=A型桌椅的费用+B型桌椅的费用建立y与x之间的函数关系式子,再由A型桌椅不少于12套,B型桌椅不少于6套列出一元一次不等式组求解即可得出x的取值范围;②根据一次函数的性质求解即可.(1)解:设A型桌椅每套a元,B型桌椅每套b元,根据题意,得:,解得:,所以A型桌椅每套600元,B型桌椅每套800元;(2)解:①据题意,总费用y=600x+800(20-x)+20×10=-200x+16200,∵A型桌椅不少于12套,B型桌椅不少于6套,∴,解得:12≤x≤14,所以y与x之间的函数关系为y=-200x+16200(12≤x≤14,x为整数);②由①知y=-200x+16200,且-200<0,∴y随x的增大而减小,∴当x=14时,总费用y最少,最少费用为-200×14+16200=13400元,即购买A型桌椅14套、B型桌椅6套,总费用最少,最少总费用为13400元.【点睛】本题考查二元一次方程的应用、一次函数的应用、一元一次不等式组的应用,理解题意,正确列出方程或函数关系式是解答的关键.2、函数的解析式为y=2x+7或y=-2x+3【解析】【分析】分类讨论:由于一次函数是递增或递减函数,所以当一次函数y=kx+b为增函数时,则x=-3,y=1;x=1,y=9,当一次函数y=kx+b为减函数时,则x=-3,y=9;x=1,y=1,然后把它们分别代入y=kx+b中得到方程组,再解两个方程组即可.【详解】解:当x=-3,y=1;x=1,y=9,∴,解方程组得;当x=-3,y=9;x=1,y=1,∴,解方程组得,∴函数的解析式为y=2x+7或y=-2x+3.【点睛】本题考查了待定系数法求一次函数解析式:先设一次函数的解析式为y=kx+b,然后把一次函数图象上两点的坐标代入得到关于k、b的方程组,解方程组求出k、b的值,从而确定一次函数的解析式.也考查了分类讨论思想的运用.3、 (1)3.5小时,76;(2)线段AD对应的函数表达式为.(3)甲出发或或或小时,甲乙两车相距10km.【解析】【分析】(1)根据乙车3小时到货站,在货站装货耗时半小时,得出小时,甲提前30分钟,可求甲车行驶的时间为:0.5+4.5=5小时,然后甲车速度=千米/时即可;(2)利用待定系数法AD解析式为:,把AD两点坐标代入解析式得解方程即可;(3)分两种情况,甲出发,乙未出发76t=10,乙出发后,设乙车的速度为xkm/h,利用行程列方程3x+(x-40)×1=380解方程求出x=105km/h,再用待定系数法,列方程,CD段乙车速度为105-40=65km/h,求出CD的解析式为,列方程,结合甲先行30分根据有理数加法求出甲所用时间即可.(1)解:∵3小时到货站,在货站装货耗时半小时,∴小时,甲车行驶的时间为:0.5+4.5=5小时,甲车速度=千米/时,故答案为:3.5小时,76;(2)点A表示的路程为:76×0.5=38,设AD解析式为:,把AD两点坐标代入解析式得:,解得:,线段AD对应的函数表达式为.(3)甲出发乙未出发,∴76t=10,∴t=,乙出发后;设乙车的速度为vkm/h,3v+(v-40)×1=380解得v=105km/h,∴点B(3,315)设OB解析式为,代入坐标得:,∴OB解析式为∴,化简为:或,解得或,∵CD段乙车速度为105-40=65km/h,设CD的解析式为代入点D坐标得,,解得:,∴CD的解析式为,∴,解得:,∵甲提前出发30分钟,,,,甲出发或或或小时,甲乙两车相距10km.【点睛】本题考查待定系数法求一次函数解析式,利用函数图像获取信息,绝对值方程,一元一次方程,二元一次方程组解法,分类讨论思想的应用使问题完整解决是解题关键.4、 (1)k=;(2)−1<k<,且k≠0.【解析】【分析】(1)设OA的中点为M,根据M、P两点的坐标,运用待定系数法求得k的值;(2)当一次函数y=kx+b的图象过B、P两点时,求得k的值;当一次函数y=kx+b的图象过A、P两点时,求得k的值,最后判断k的取值范围.(1)解:设OA的中点为M,∵O(0,0),A(4,0),∴OA=4,∴OM=2,∴M(2,0),∵一次函数y=kx+b的图象过M(2,0),P(6,1)两点,∴,解得:k=;(2)如图,由一次函数y=kx+b的图象过定点P,作直线BP,AP与平行四边形只有一个交点,由于直线与平行四边形有两个交点,所以直线应在直线BP,AP之间,当一次函数y=kx+b的图象过B、P两点时,代入表达式y=kx+b得到:,解得:k=-1,当一次函数y=kx+b的图象过A、P两点时,代入表达式y=kx+b得到:,解得:k=,所以−1<k<,由于要满足一次函数的存在性,所以−1<k<,且k≠0.【点睛】本题考查了运用待定系数法求一次函数解析式,解题时注意:求正比例函数y=kx,只要一对x,y的值;而求一次函数y=kx+b,则需要两组x,y的值.5、 (1)这个函数的图像与坐标轴的交点为(0,2),(2,0);(2)见解析(3)①y<2;②x>2【解析】【分析】(1)令x=0,求函数与y轴的交点,令y=0,求函数与x轴的交点;(2)两点法画出函数图象;(3)通过观察函数图象求解即可.(1)解:令x=0,则y=2, 令y=0,则x=2,∴这个函数的图像与坐标轴的交点为(0,2),(2,0);(2)解:这个函数的图像如图所示:,(3)解:①观察图像可知:当x>0时,y<2,故答案为:y<2;②观察图像可知:当y<0时,x>2,故答案为:x>2.【点睛】本题考查了一次函数的图象及性质,熟练掌握一次函数的图象及性质,数形结合解题是关键.
相关试卷
这是一份初中冀教版第二十一章 一次函数综合与测试复习练习题,共31页。试卷主要包含了,两地相距80km,甲,已知一次函数y=kx+b等内容,欢迎下载使用。
这是一份2020-2021学年第二十一章 一次函数综合与测试课后作业题,共27页。试卷主要包含了下列不能表示是的函数的是等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试同步练习题,共25页。试卷主要包含了巴中某快递公司每天上午7,,两地相距80km,甲,已知一次函数y=等内容,欢迎下载使用。