冀教版第30章 二次函数综合与测试精品课后复习题
展开
这是一份冀教版第30章 二次函数综合与测试精品课后复习题,共29页。
九年级数学下册第三十章二次函数同步测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知二次函数的部分图象如图所示,图象过点,对称轴为直线,下列结论错误的是( )
A. B. C. D.
2、已知,是抛物线上的点,且,下列命题正确的是( )
A.若,则 B.若,则
C.若,则 D.若,则
3、若二次函数y=a(x+b)2+c(a≠0)的图象,经过平移后可与y=(x+3)2的图象完全重合,则a,b,c的值可能为( )
A.a=1,b=0,c=﹣2 B.a=2,b=6,c=0
C.a=﹣1,b=﹣3,c=0 D.a=﹣2,b=﹣3,c=﹣2
4、抛物线的函数表达式为,若将y轴向左平移3个单位长度,将x轴向下平移3个单位长度,则该抛物线在新的平面直角坐标系中的函数表达式为( )
A. B.
C. D.
5、二次函数 的图像如图所示, 现有以下结论: (1) : (2) ; (3), (4) ; (5) ; 其中正确的结论有( )
A.2 个 B.3 个 C.4 个 D.5 个.
6、已知二次函数,则关于该函数的下列说法正确的是( )
A.该函数图象与轴的交点坐标是
B.当时,的值随值的增大而减小
C.当取1和3时,所得到的的值相同
D.将的图象先向左平移两个单位,再向上平移5个单位得到该函数图象
7、已知关于的二次函数,当时,随的增大而减小,则实数的取值范围是( )
A. B. C. D.
8、将抛物线向下平移1个单位长度,再向左平移2个单位长度后,得到的抛物线表达式是( )
A. B. C. D.
9、二次函数y=ax2+bx+c的图像全部在x轴的上方,下列判断中正确的是( )
A.a<0,c<0 B.a<0,c>0 C.a>0,c<0 D.a>0,c>0
10、已知二次函数y=ax2-2ax-1(a是常数,a≠0),则下列命题中正确的是( )
A.若a=1,函数图象经过点(-1,1) B.若a=-2,函数图象与x轴交于两点
C.若a<0,函数图象的顶点在x轴下方 D.若a>0且x≥1,则y随x增大而减小
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如果一条抛物线与轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条拋物线的“特征三角形”.已知的“特征三角形”是等腰直角三角形,那么的值为_________.
2、将抛物线y=﹣2x2+3x+1向下平移3个单位,所得的抛物线的表达式是_____.
3、二次函数 y 2x21 的图象开口方向______.(填“向上”或“向下”)
4、对于二次函数与,其自变量与函数值的两组对应值如下表所示,根据二次函数图象的相关性质可知______,______
x
﹣1
c
c
d
5、已知抛物线y=(x﹣1)2有点A(0,y1)和B(3,y2),则y1___y2.(用“>”,“<”,“=”填写)
三、解答题(5小题,每小题10分,共计50分)
1、如图,在平面直角坐标系中,二次函数y=x2+bx+c的图像与x轴交于点A(1,0)、B(4,0),与y轴交于点C. 已知点E(0,3)、点F(4,t)(t>3),点M是线段EF上一动点,过M作x轴的垂线交抛物线于点N.
(1)直接写出二次函数的表达式:
(2)若t=5,当MN最大时,求M的坐标;
(3)在点M从点E运动至点F的过程中,若线段MN的长逐渐增大,求t的取值范围
2、习近平总书记曾强调“利用互联网拓宽销售渠道,多渠道解决农产品卖难问题.” 2021年黑龙江省粮食生产再获丰收,某村通过直播带货对产出的生态米进行销售.每袋成本为40元,物价部门规定每袋售价不得高于55元.市场调查发现,若每袋以45元的价格销售,平均每天销售105袋,而销售价每涨价1元,平均每天就可以少售出3袋.
(1)求该电商平均每天的销售利润w(元)与销售价x(元/袋)之间的函数关系式;
(2)若每日销售利润达到900元,售价为多少元?
(3)当每袋大米的销售价为多少元时,可以获得最大利润?最大利润是多少?
3、已知二次函数y=ax2﹣4ax+3a.
(1)求该二次函数图象的对称轴以及抛物线与x轴的交点坐标;
(2)若该二次函数的图象开口向下,当1≤x≤4时,y的最大值是2,且当1≤x≤4时,函数图象的最高点为点P,最低点为点Q,求△OPQ的面积;
(3)若对于该抛物线上的两点P(x1,y1),Q(x2,y2),当t≤x1≤t+1,x2≥5时,均满足y1≥y2,请直接写出t的最大值.
4、如图,抛物线与x轴交于点A,B,与y轴交于点C.点P是线段BC上的动点(点P不与点B,C重合),连结AP并延长AP交抛物线于另一点Q,连结CQ,BQ,设点Q的横坐标为x.
(1)①写出A,B,C的坐标:A( ),B( ),C( );
②求证:是直角三角形;
(2)记的面积为S,求S关于x的函数表达式;
(3)在点P的运动过程中,是否存在最大值?若存在,求出的最大值;若不存在,请说明理由.
5、如图,Rt中,.点P从点A出发,沿射线方向以每秒1个单位长度的速度向终点B运动,当点P不与点A重合时,将线段绕点P旋转使(点在点P右侧),过点作交射线于点M,设点P运动的时间为t(秒).
(1)的长为___________(用含t的代数式表示)
(2)当落在的角平分线上时,求此时t的值.
(3)设与重叠部分图形的面积为S(平方单位),求S关于t的函数关系式.并求当t为何值时,S有最大值,最大值为多少?
-参考答案-
一、单选题
1、B
【解析】
【分析】
由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
【详解】
解:A、函数的对称轴在y轴右侧,则ab<0,而c>0,故abc<0,故A正确,不符合题意;
B、函数的对称轴为:x=−=1,故2a+b=0,即,图象与x轴交于点A(−1,0),
故当时,,即,故B错误,符合题意;
C、图象与x轴交于点A(−1,0),其对称轴为直线x=1,则图象与x轴另外一个交点坐标为:(3,0),故当x=2时,y=4a+2b+c>0,故C正确,不符合题意;
D、图象与x轴另外一个交点坐标为:(3,0),即x=3时,y=9a+3b+c=0,正确,不符合题意;
故选:B.
【点睛】
本题考查的是二次函数图象与系数的关系,要求学生熟悉函数的基本性质,能熟练求解函数与坐标轴的交点及顶点的坐标等.
2、C
【解析】
【分析】
先求出抛物线对称轴,再根据两个点距对称轴距离判断即可.
【详解】
解:抛物线的对称轴为:直线,
∵,
当,点到对称轴的距离近,即,当,点到对称轴的距离远,即,
故选:C.
【点睛】
本题考查了二次函数的性质,解题关键是求出抛物线的对称轴,根据点距对称轴的远近,进行判断开口.
3、A
【解析】
【分析】
根据二次函数的平移性质得出a不发生变化,即可判断a=1.
【详解】
解:∵二次函数y=a(x+b)2+c的图形,经过平移后可与y=(x+3)2的图形完全叠合,
∴a=1.
故选:A.
【点睛】
此题主要考查了二次函数的平移性质,根据已知得出a的值不变是解题关键.
4、C
【解析】
【分析】
此题可以转化为求将抛物线“向右平移3个单位长度,向上平移3个单位长度”后所得抛物线解析式,将抛物线直接利用二次函数的平移规律,左加右减,上加下减,进而得出答案.
【详解】
解:∵抛物线的顶点坐标为 ,
∴将抛物线向右平移3个单位长度,向上平移3个单位长度后得到的抛物线顶点坐标为 ,
∴将抛物线向右平移3个单位长度,向上平移3个单位长度后得到的抛物线的解析式为,
∴将y轴向左平移3个单位长度,将x轴向下平移3个单位长度,则该抛物线在新的平面直角坐标系中的函数表达式为.
故选:C
【点睛】
此题主要考查了二次函数图象与几何变换,正确掌握平移规律——左加右减,上加下减是解题关键.
5、C
【解析】
【分析】
由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
【详解】
解:(1)∵函数开口向下,∴a<0,∵对称轴在y轴的右边,∴,∴b>0,故命题正确;
(2)∵a<0,b>0,c>0,∴abc<0,故命题正确;
(3)∵当x=-1时,y<0,∴a-b+c<0,故命题错误;
(4)∵当x=1时,y>0,∴a+b+c>0,故命题正确;
(5)∵抛物线与x轴于两个交点,∴b2-4ac>0,故命题正确;
故选C.
【点睛】
本题考查了二次函数图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.
6、C
【解析】
【分析】
把,代入,即可判断A,由二次函数的图象开口向上,对称轴是直线,即可判断B,当取和,代入,即可判断C,根据函数图象的平移规律,即可判断D.
【详解】
∵二次函数的图象与轴的交点坐标是,
∴A选项错误;
∵二次函数的图象开口向上,对称轴是直线,
∴当时,的值随值的增大而增大,
∴B选项错误;
∵当取和时,所得到的的值都是11,
∴C选项正确;
∵将的图象先向左平移两个单位,再向上平移个单位得到的图象,
∴D选项错误.
故选:C.
【点睛】
本题主要考查二次函数的图象和性质,理解二次函数的性质是解题的关键.
7、C
【解析】
【分析】
由二次函数的性质,取得开口方向以及对称轴,进而可确定出的范围.
【详解】
解:,
抛物线开口向上,对称轴为,
当时,随的增大而减小,
在时,随的增大而减小,
,
解得,
故选:C.
【点睛】
本题考查二次函数图象性质,不等式的解法.能够得出关于的不等式,并正确求解不等式是解题关键.
8、C
【解析】
【分析】
根据平移的规律:左加右减,上加下减可得函数解析式.
【详解】
解:因为y=x2-2x+3=(x-1)2+2.
所以将抛物线y=(x-1)2+2先向下平移1个单位长度,再向左平移2个单位长度后,得到的抛物线的表达式为y=(x-1+2)2+2-1,即y=(x+1)2+1.
故选:C.
【点睛】
本题主要考查了二次函数图象与几何变换,关键是掌握平移的规律.
9、D
【解析】
【分析】
由抛物线全部在轴的上方,即可得出抛物线与轴无交点且,进而即可得出、,此题得解.
【详解】
解:二次函数的图象全部在轴的上方,
,,
,
,
.
,.
故选:D.
【点睛】
本题考查了二次函数的性质,解题的关键是牢记二次函数的性质.
10、B
【解析】
【分析】
根据二次函数的图象与性质逐项分析即可.
【详解】
A、当a=1,x=-1时,,故函数图象经过点(-1,2),不经过点(-1,1),故命题错误;
B、a=-2时,函数为,令y=0,即,由于,所以方程有两个不相等的实数根,从而函数图象与x轴有两个不同的交点,故命题正确;
C、当a0,
∴二次函数y=2x2+1图象的开口方向是向上,
故答案为:向上.
【点睛】
本题主要考查二次函数的图象与性质,由a的符号确定抛物线的开口方向是解题的关键.
4、 1 3
【解析】
【分析】
根据二次函数的性质可知m=1,将d用含c的式子表示出来即可.
【详解】
解由二次函数的性质可得的对称轴为y轴,故由表可得,
∴m=1;
∵二次函数的对称轴为y轴,
∴d=c+3,
∴3,
故答案为:1,3.
【点睛】
此题考查二次函数的对称性,熟练掌握二次函数的性质是解题的关键.
5、<
【解析】
【分析】
分别把A、B点的横坐标代入抛物线解析式求解即可.
【详解】
解:x=0时,y1=(0﹣1)2=1,
x=3时,y3=(3﹣1)2=4,
∴y1<y2.
故答案为:<.
【点睛】
本题考查了二次函数图象上点的坐标特征,求出相应的函数值是解题的关键.
三、解答题
1、 (1)
(2)
(3)t≥9
【解析】
【分析】
(1)从交点式即可求得表达式;
(2)求得直线EF的关系式,设出,,表示出MN的关系式,配方求得结果;
(3)先求得直线EF的关系式,设,,进而表示出MN的关系式,进一步求得结果.
(1)
由题意得,
故答案是:;
(2)
∵t=5
∴F(4,5),
∵E(0,3),F(4,5),
∴设直线EF的关系式为y=kx+b
把E(0,3),F(4,5)代入y=kx+b得,
解得,
∴直线EF的关系式是:y=x+3,
设,,
∴,
∴当a=3时,MN最大=,
当a=3时,,
∴;
(3)
∵E(0,3),F(4,t),
∴直线EF的关系式是:,
设,
∴,
∵对称轴,0≤m≤4,
∴当时,MN随m的增大而增大,
∴t≥9.
【点睛】
本题考查了二次及其图象性质,求一次函数的关系式等知识,解决问题的关键是熟练掌握二次函数图图象性质.
2、 (1)w=-3x2+360x-9600;
(2)若每日销售利润达到900元,售价为50元;
(3)当销售价为55元时,可以获得最大利润,为1125元.
【解析】
【分析】
(1)利用该电商平均每天的销售利润w(元)=每袋的销售利润×每天的销售量得出即可;
(2)根据(1)的关系式列出一元二次方程即可;
(3)根据题中所给的自变量的取值得到二次的最值问题即可.
(1)
解:w=(x-40)[105-3(x-45)]
=(x-40)(-3x+240)
=-3x2+360x-9600,
答:该电商平均每天的销售利润w(元)与销售价x(元/袋)之间的函数关系式为w=-3x2+360x-9600;
(2)
解:由题意得,w=-3x2+360x-9600=900,
解得:x1=50,x2=70>55(舍),
答:若每日销售利润达到900元,售价为50元;
(3)
解:w=-3x2+360x-9600=-3(x-60)2+1200,
∵a=-3<0,
∴抛物线开口向下.
又∵对称轴为x=60,
∴当x<60,w随x的增大而增大,
由于50≤x≤55,
∴当x=55时,w的最大值为1125元.
∴当销售价为55元时,可以获得最大利润,为1125元.
【点睛】
本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常用函数的增减性来解答,要注意应该在自变量的取值范围内求最大值(或最小值),也就是说二次函数的最值不一定在x=-时取得.
3、 (1)对称轴x=2;交点坐标为(1,0)和(3,0)
(2)10
(3)4
【解析】
【分析】
(1)解析式化成顶点式即可求得对称轴,令y=0,得到关于x的方程,解方程即可求得抛物线与x轴的交点坐标;
(2)构建方程求出a的值,再求出△OPQ的面积即可解决问题;
(3)当t≤x1≤t+1,x2≥5时,均满足y1≥y2,推出当抛物线开口向下,点P在点Q左边或重合且在点Q关于对称轴对称点的右边时,满足条件,可得t+1≤5且t≥﹣1,由此即可解决问题.
(1)
解:∵y=ax2﹣4ax+3a=a(x﹣2)2﹣a,
∴对称轴x=2;
令y=0,则ax2﹣4ax+3a=0,
解得x=1或3,
∴抛物线与x轴的交点坐标为(1,0)和(3,0);
(2)
解:∵该二次函数的图象开口向下,且对称轴为直线x=2,
∴当x=2时,y取到在1≤x≤4上的最大值为2,即P(2,2),
∴4a﹣8a+3a=2,
∴a=﹣2,
∴y=﹣2x2+8x﹣6,
∵当1≤x≤2时,y随x的增大而增大,
∴当x=1时,y取到在1≤x≤2上的最小值0.
∵当2≤x≤4时,y随x的增大而减小,
∴当x=4时,y取到在2≤x≤4上的最小值﹣6.
∴当1≤x≤4时,y的最小值为﹣6,即Q(4,﹣6).
∴△OPQ的面积为4×(2+6)﹣2×2÷2﹣4×6÷2﹣(4﹣2)×(2+6)÷2=10;
(3)
解:∵当t≤x1≤t+1,x2≥5时,均满足y1≥y2,
∴当抛物线开口向下,点P在点Q左边或重合且在点Q关于对称轴对称点的右边时,满足条件,
∴t+1≤5且t≥﹣1,
∴﹣1≤t≤4,
∴t的最大值为4.
【点睛】
本题考查二次函数的图象和性质,二次函数图象上点的坐标特征,函数的最值问题等知识,解题的关键是读懂题意、灵活运用所学知识解决问题.
4、 (1)①-1,0;4,0;0,-2;②见解析
(2)
(3)存在,当时,最大,最大为.
【解析】
【分析】
(1)①分别令即可求得抛物线与坐标轴的交点坐标;②根据点的坐标,分别求得进而勾股定理逆定理即可证明;
(2)连接OQ,设点Q的坐标为,进而根据进行求解即可;
(3)过点Q作于点H,证明,由(2)可得,进而列出关于的关系式,根据二次函数的性质求最值即可
(1)
①由,
令,则,
令,即
解得
,,
故答案为:-1,0;4,0;0,-2;
②证明:∵,,
∴,,
∴
∴是.
(2)
连接OQ,如图所示
设点Q的坐标为
(3)
过点Q作于点H,如图所示
∴
∵
∴
∴当时,最大,最大为.
【点睛】
本题考查了二次函数坐标轴的交点问题,相似三角形的性质与判定,二次函数求面积问题,二次函数的最值问题,熟练运用以上知识是解题的关键.
5、 (1)
(2)
(3),当时,S有最大值
【解析】
【分析】
(1)先利用勾股定理求出,然后证明,得到,即,则,,即可得到;
(2)延长交BC于D,由,得到,,则
再由在∠ABC的角平分线上,,,得到,则,由此求解即可;
(3)先求出当点正好落在BC上时,,然后讨论当△ABC与重叠部分即为,然后求出当点M恰好与B重合时,,讨论当时,如图3所示,△ABC与重叠部分即为四边形PMTS,当时,如图4所示,,△ABC与重叠部分即为△BPS,由此求解即可.
(1)
解:由旋转的性质可得,
∵在Rt△ABC,∠ACB=90°,AC=4,BC=3,
∴,
∵,,
∴,,
∴,
∴,即,
∴,,
∴;
(2)
解:如图所示,延长交BC于D,
∵∠ACB=90°,
∴AC⊥BC,
∵,
∴,,
∴
∵在∠ABC的角平分线上,,,
∴,
∴,
∴,
∴,
又∵,
∴,
解得;
(3)
解:如图2所示,当点正好落在BC上时,
∴,
∵,
∴,
∴,即,
∴,
又∵,
∴,
解得,
当,如图1所示,△ABC与重叠部分即为,
∴此时;
当点M恰好与B重合时,此时,
∴,
解得,
当时,如图3所示,△ABC与重叠部分即为四边形PMTS,
∴,
同理可证,
∴,即,,
∴,
∴,
∵,
∴,
∴即,
∴,
∴,
∴;
当时,如图4所示,,△ABC与重叠部分即为△BPS,
同理可证,
∴,即,
∴,,
∴,
∴综上所述,
∴,
∴由二次函数的性质可知,
∴当时,S有最大值.
【点睛】
本题主要考查了相似三角形的性质与判定,勾股定理,角平分线的性质,熟知相关知识是解题的关键.
相关试卷
这是一份冀教版九年级下册第30章 二次函数综合与测试一课一练,共35页。试卷主要包含了一次函数与二次函数的图象交点等内容,欢迎下载使用。
这是一份冀教版九年级下册第30章 二次函数综合与测试随堂练习题,共26页。试卷主要包含了抛物线,,的图象开口最大的是,二次函数y=ax2+bx+c等内容,欢迎下载使用。
这是一份冀教版九年级下册第30章 二次函数综合与测试复习练习题,共35页。试卷主要包含了一次函数与二次函数的图象交点,抛物线的顶点为等内容,欢迎下载使用。