初中数学冀教版九年级下册第30章 二次函数综合与测试一课一练
展开这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试一课一练,共28页。试卷主要包含了若二次函数y=a,二次函数图像的顶点坐标是等内容,欢迎下载使用。
九年级数学下册第三十章二次函数同步测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、若将抛物线y=2x2﹣1向上平移2个单位,则所得抛物线对应的函数关系式为( )
A.y=2(x﹣2)2﹣1 B.y=2(x+2)2﹣1 C.y=2x2﹣3 D.y=2x2+1
2、已知关于的二次函数,当时,随的增大而减小,则实数的取值范围是( )
A. B. C. D.
3、若函数,则当函数y=15时,自变量的值是( )
A. B.5 C.或5 D.5或
4、已知抛物线y=mx2+4mx+m﹣2(m≠0),点A(x1,y1),B(3,y2)在该抛物线上,且y1<y2.给出下列结论①抛物线的对称轴为直线x=﹣2;②当m>0时,抛物线与x轴没有交点;③当m>0时,﹣7<x1<3; ④当m<0时,x1<﹣7或x1>3;其中正确结论有( )
A.1个 B.2个 C.3个 D.4个
5、若二次函数y=a(x+b)2+c(a≠0)的图象,经过平移后可与y=(x+3)2的图象完全重合,则a,b,c的值可能为( )
A.a=1,b=0,c=﹣2 B.a=2,b=6,c=0
C.a=﹣1,b=﹣3,c=0 D.a=﹣2,b=﹣3,c=﹣2
6、如图,二次函数的图象经过点,其对称轴为直线,有下列结论:①;②;③;④;⑤若,是抛物线上两点,且,则实数的取值范围是.其中正确结论是( )
A.①③④ B.②④⑤ C.①③⑤ D.①③④⑤
7、二次函数图像的顶点坐标是( )
A.(0,-2) B.(-2,0) C.(2,0) D.(0,2)
8、若点,都在二次函数的图象上,且,则的取值范围是( )
A. B. C. D.
9、已知二次函数的图象经过,,则b的值为( )
A.2 B. C.4 D.
10、抛物线的对称轴是( )
A.直线 B.直线 C.直线 D.直线
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、中国跳水队在第三十二届夏季奥林匹克运动会上获得7金5银12枚奖牌的好成绩.某跳水运动员从起跳至人水的运动路线可以看作是抛物线的一部分.如图所示,该运动员起跳点A距离水面10m,运动过程中的最高点B距池边2.5m,入水点C距池边4m,根据上述信息,可推断出点B距离水面______m.
2、抛物线y=x2+2x+的对称轴是直线______.
3、这是小明在阅读一本关于函数的课外读物时看到的一段图文,则被墨迹污染的二次函数的二次项系数为______.由图像知,当x=﹣1时二次函数y=■x2+6x﹣5有最小值.
4、如图,在矩形中,,点E是的中点,连接,以点为原点,建立平面直角坐标系,点M是上一动点,取的中点为N,连接,则的最小值是________.(提示:两点间距离公式 )
5、已知二次函数y=x2+bx+3图象的对称轴为x=2,则b=________;顶点坐标是________.
三、解答题(5小题,每小题10分,共计50分)
1、2022年北京冬奥会即将召开,敢起了人们对冰雪运动的极大热情.如图是某跳台滑雪训练场的横截面示意图,取某一位置的水平线为x轴,过跳台终点A作水平线的垂线为y轴建立平而直角坐标系,图中的抛物线近似表示滑雪场地上的一座小山坡,某运动员从点О正上方3米处的A点滑出,滑出后沿一段抛物线运动.
(1)当运动员运动到离A处的水平距离为4米时离水平线的高度为7米.求抛物线的函数表达式(不要求写出自变量工的取值范围);
(2)在(1)的条件下.当运动员运动的水平距离为多少米时,运动员恰好落在小山坡的B处?
2、如图,在平面直角坐标系中,直线y=x+4与x轴、y轴分别交于A、B两点,抛物线y=﹣x2+bx+c经过A、B两点,并与x轴交于另一点C(点C点A的右侧),点P是抛物线上一动点.
(1)求抛物线的解析式及点C的坐标;
(2)若点P在第二象限内,过点P作PD⊥x轴于D,交AB于点E.当点P运动到什么位置时,线段PE最长?此时PE等于多少?判断此时△ABP的形状,并证明你的结论.
(3)在(2)的前提下,有一动点Q在抛物线上运动(线段AB的下方),当Q点运动到什么位置时,△ABQ的面积等于△ABP的面积.
3、已知抛物线y=x2+bx-3(b是常数)经过点A(-1,0).
(1)求该抛物线的函数表达式和顶点坐标;
(2)抛物线与x轴另一交点为点B,与y轴交于点C,平行于x轴的直线l与抛物线交于点P(x1,y1),Q(x2,y2),与直线BC交于点N(x3,y3).
①求直线BC的解析式;
②若x3<x1<x2,结合函数的图象,求x1+x2+x3的取值范围.
4、如图,已知抛物线与x轴交于点、B,与y轴交于点.
(1)求抛物线的表达式;
(2)若M是抛物线上点A,C之间(含点A,C)的一个动点,直接写出点M的纵坐标的取值范围.
(3)平移直线,设平移后的直线为l,记l与y轴的交点为,若l与上方的抛物线有唯一交点,求m的取值范围.
5、已知二次函数的图像经过点,,.
(1)求二次函数的表达式;
(2)若二次函数的图像与轴交于、两点,与轴交于点,其顶点为,则以,,,为顶点的四边形的面积为__________;
(3)将二次函数的图像向左平移个单位后恰好经过坐标原点,则的值为__________.
-参考答案-
一、单选题
1、D
【解析】
【分析】
由题意知平移后的函数关系式为,进行整理即可.
【详解】
解:由题意知平移后的函数关系式为:,
故选D.
【点睛】
本题考查了二次函数图象的平移.解题的关键在于牢记二次函数图象平移时上加下减,左加右减.
2、C
【解析】
【分析】
由二次函数的性质,取得开口方向以及对称轴,进而可确定出的范围.
【详解】
解:,
抛物线开口向上,对称轴为,
当时,随的增大而减小,
在时,随的增大而减小,
,
解得,
故选:C.
【点睛】
本题考查二次函数图象性质,不等式的解法.能够得出关于的不等式,并正确求解不等式是解题关键.
3、D
【解析】
【分析】
根据题意,利用分类讨论的方法可以求得当函数y=15时,自变量x的值.
【详解】
解:当x<3时,
令2x2-3=15,
解得x=-3;
当x≥3时,
令3x=15,
解得x=5;
由上可得,x的值是-3或5,
故选:D.
【点睛】
本题考查了二次函数的性质、一次函数的性质,解答本题的关键是明确题意,利用分类讨论的方法解答.
4、C
【解析】
【分析】
利用抛物线的对称轴公式可判断①,计算 结合 可判断②,再分别画出符合③,④的图象,结合图象可判断③与④,从而可得答案.
【详解】
解: 抛物线y=mx2+4mx+m﹣2(m≠0),
抛物线的对称轴为: 故①符合题意;
当时,
所以抛物线与轴有两个交点,故②不符合题意;
当时,抛物线的开口向上,如图,
则关于的对称点为: 而
故③符合题意;
当时,抛物线的开口向下,如图,
同理可得:由
则或 故④符合题意,
综上:符合题意的有:①③④
故选:C
【点睛】
本题考查的是抛物线的对称轴方程,抛物线与轴的交点的情况,二次函数的图象与性质,掌握“利用数形结合的方法求解符合条件的自变量的取值范围”是解本题的关键.
5、A
【解析】
【分析】
根据二次函数的平移性质得出a不发生变化,即可判断a=1.
【详解】
解:∵二次函数y=a(x+b)2+c的图形,经过平移后可与y=(x+3)2的图形完全叠合,
∴a=1.
故选:A.
【点睛】
此题主要考查了二次函数的平移性质,根据已知得出a的值不变是解题关键.
6、C
【解析】
【分析】
根据开口方向,对称轴,以及与轴负半轴的交点位置判断的符号即可判断①,根据二次函数图象的对称性可知时的函数值与的函数值相等,进而可得,即可判断②,根据对称轴为以及顶点坐标公式即可判断③,根据二次函数图象与轴有两个交点,则,即可判断④,根据对称性可得时的函数值与时的函数值相等,进而根据抛物线的开口方向以及,即可判断,根据顶点位置的函数值最小,进而即可判断⑤
【详解】
解:∵抛物线的开口朝上,则,对称轴,可得,根据抛物线与轴交于负半轴,则
∴
故①正确;
∵二次函数的图象经过点,
则当时,
对称轴为直线,则时的函数值与的函数值相等,
时,
即
故②不正确
对称轴为直线,
∴,即
故③正确;
∵二次函数图象与轴有两个交点,则
即
故④错误;
对称轴为直线,则时的函数值与的函数值相等,
,是抛物线上两点,且,抛物线开口向上,
故⑤正确
故正确的是①③⑤
故选C
【点睛】
本题考查了二次函数图象的性质以及与各系数之间的关系,二次函数与一元一次不等式,根据图象判断方程的根的情况,二次函数的对称性,掌握二次根式图象的性质是解题的关键.
7、C
【解析】
【分析】
直接利用顶点式写出二次函数的顶点坐标即可得到正确的选项.
【详解】
解:抛物线的顶点坐标为,
故选:C.
【点睛】
本题考查了二次函数的性质,解题的关键是了解二次函数的顶点式,难度不大.
8、D
【解析】
【分析】
先求出抛物线的对称轴,再根据二次函数的性质,当点和在直线的右侧时;当点和在直线的两侧时,然后分别解两个不等式即可得到的范围.
【详解】
抛物线的对称轴为直线,
∵,,
当点和在直线的右侧,则,
解得,
当点和在直线的两侧,则,
解得,
综上所述,的范围为.
故选:D.
【点睛】
本题考查了二次函数图象上点的坐标特征,熟练掌握二次函数图象上点的坐标满足其解析式是解题的关键.
9、C
【解析】
【分析】
由二次函数的图象经过,,可得二次函数图象的对称轴为 再结合对称轴方程的公式列方程求解即可.
【详解】
解: 二次函数的图象经过,,
二次函数图象的对称轴为:
解得:
故选C
【点睛】
本题考查的是二次函数的对称轴方程,掌握“利用纵坐标相等的两个点求解对称轴方程”是解本题的关键.
10、C
【解析】
【分析】
抛物线的对称轴为:,根据公式直接计算即可得.
【详解】
解:,
其中:,,,
,
故选:C.
【点睛】
本题考查的是抛物线的对称轴,掌握抛物线的对称轴的公式是解本题的关键,注意对称轴是直线.
二、填空题
1、
【解析】
【分析】
如图建立平面直角坐标系,求出抛物线解析式,再求顶点坐标即可.
【详解】
解:建立平面直角坐标系如图:
根据题意可知,点A的坐标为(3,10),点C的坐标为(5,0),抛物线的对称轴为直线x=3.5,
设抛物线的的解析式为y=ax2+bx+c,把上面信息代入得,
,
解得,,
抛物线解析式为:,
把代入得,;
故答案为:
【点睛】
本题考查了二次函数的应用,解题关键是建立平面直角坐标系,求出二次函数解析式,利用二次函数解析式的性质求解.
2、x=﹣1
【解析】
【分析】
抛物线的对称轴方程为: 利用公式直接计算即可.
【详解】
解:抛物线y=x2+2x+的对称轴是直线:
故答案为:
【点睛】
本题考查的是抛物线的对称轴方程,掌握“抛物线的对称轴方程的公式”是解本题的关键.
3、
【解析】
【分析】
由图象可得:抛物线的对称轴为: 再利用抛物线的对称轴公式建立方程求解即可.
【详解】
解:由图象可得:抛物线的对称轴为:
而
解得:
故答案为:
【点睛】
本题考查的是二次函数的图象与性质,掌握“利用二次函数的对称轴方程求解未知系数的值”是解本题的关键.
4、
【解析】
【分析】
分别求出点A,C,E的坐标,求出直线BE的解析式,设点的坐标为,由中点坐标公式得,由两点之间的距离公式得:,进一步可得出AN的最小值.
【详解】
解:在矩形中,,点是的中点,
,
∴,
设直线BE的解析式为y=kx,
把E(3,3)代入y=kx,得,k=1
直线的函数解析式为,
设点的坐标为,
点是上一动点,
,
点是的中点,
,
由两点之间的距离公式得:,
由二次函数的性质得:在内,随的增大而增大,
则当时,取得最小值,最小值为36,
因此,的最小值为,
故答案为:.
【点睛】
本题这一切考查了坐标与图形以及二次函数的性质等知识,熟练掌握二次函数的性质是解答本题的关键.
5、 4 (2,7)
【解析】
【分析】
由对称轴公式即可求得b,把解析式化成顶点式即可求得顶点坐标.
【详解】
解:∵二次函数y=x2+bx+3图象的对称轴为x=2,
∴−=2,
∴b=4,
∴二次函数y=−x2+4x+3,
∵y=−x2+4x+3=−(x−2)2+7,
∴顶点坐标是(2,7),
故答案为:4,(2,7).
【点睛】
本题考查了二次函数的图象和性质,熟知对称轴公式和二次函数解析式的三种表现形式是解题的关键.
三、解答题
1、 (1)
(2)运动员运动的水平距离为12米时,运动员恰好落在小山坡的B处
【解析】
【分析】
(1)运用待定系数法求解即可;
(2)设运动员运动的水平距离为m米时,依题意列出方程求解即可.
(1)
由题意可知抛物线过点和,将其代人得:
,
解得: ,
∴抛物线的函数表达式为:
(2)
设运动员运动的水平距离为m米时,依题意得:
整理得:,
解得: (舍去),
故运动员运动的水平距离为12米时,运动员恰好落在小山坡的B处.
【点睛】
本题考查二次函数的基本性质及其应用,熟练掌握二次函数的基本性质,并能将实际问题与二次函数模型相结合是解决本题的关键.
2、 (1),C(1,0);
(2)△ABP的形状为直角三角形,见解析;
(3)Q的坐标为(﹣2+2,﹣2+2)或(﹣2﹣2,﹣2﹣2)
【解析】
【分析】
(1)先通过直线求得与坐标轴的交点,然后应用待定系数法即可求得抛物线的解析式,进而求得抛物线与x轴的交点.
(2)设出D的坐标(t,0),根据已知表示点E、P的坐标,根据PD⊥x轴即可求得线段PE关于t的解析式,配方即可得最大值,再算出此时的△ABP的三边即可得知其形状.
(3)过P作AB的平行线l,通过平移得到直线l关于线段AB对称的直线l',再求得l'与抛物线交点即可得Q的坐标.
(1)
解:如图1,
∵直线y=x+4与x轴、y轴分别交于A、B两点,
∴A(﹣4,0),B(0,4),
∵抛物线y=﹣x2+bx+c经过A、B两点,
∴,
解得,
∴抛物线的解析式为:y=﹣x2﹣3x+4,
令y=0,则﹣x2﹣3x+4=0,
解得x=﹣4或x=1,
∴C(1,0);
(2)
解:如图2,
设D(t,0),
∴E(t,t+4),P(t,﹣t2﹣3t+4),
∴PE=﹣t2﹣3t+4﹣t﹣4=﹣(t+2)2+4,
∴当t=﹣2时,线段PE有最大值是4,此时P(﹣2,6);
△ABP的形状为直角三角形,
证明:∵AP2=(﹣2+4)2+(6﹣0)2=40,BA2=(﹣4﹣0)2+(0﹣4)2=32,BP2=(﹣2﹣0)2+(6﹣4)2=8,
∴BA2+BP2=AP2,
∴△ABP的形状为直角三角形;
(3)
解:如图,过P作AB的平行线l,
设直线l的解析式为:y=x+m,
代入(﹣2,6),得:6=﹣2+m,
解得:m=8,即直线l:y=x+8,
∵直线AB:y=x+4,直线l:y=x+8,
∴将直线l向下平移8个单位即可得到直线l关于线段AB对称的直线l',
∴直线l':y=x,
令y=x=﹣x2﹣3x+4,
解得:x=﹣2+2或﹣2﹣2,
∴Q的坐标为(﹣2+2,﹣2+2)或(﹣2﹣2,﹣2﹣2).
【点睛】
此题是一次函数与二次函数的综合题,考查了求一次函数与坐标轴的交点,待定系数法求函数解析式,二次函数与坐标轴的交点,勾股定理的逆定理,二次函数的最值,一次函数的平移规律,一次函数与二次函数交点坐标,此题综合性比较强,较基础,综合掌握各知识点并应用是解题的关键.
3、 (1)y=x2-2x-3,(1,−4)
(2)①y=x−3;②
【解析】
【分析】
(1)把A(-1,0)代入y=x2+bx-3其凷b得到抛物线解析式,然后把一般式配成顶点式得到抛物线的顶点坐标;
(2)①解方程x2-2x-3=0得B(3,0),再确定C(0,-3),然后利用待定系数法求直线BC的解析式;
②如图,利用对称性得到x2-1=1-x1,则x1+x2=2,所以x1+x2+x3=2+x3,利用函数图象得到-1<x3<0,从而得到1<x1+x2+x3<2.
(1)
解:把A(-1,0)代入y=x2+bx-3得1-b-3=0,解得b=-2,
∴抛物线解析式为y=x2-2x-3,
∵y=(x-1)2-4,
∴抛物线的顶点坐标为(1,-4);
(2)
解:①当y=0时,x2-2x-3=0,解得x1=-1,x2=3,则B(3,0),
当x=0时,y=x2-2x-3=-3,则C(0,-3),
设直线BC的解析式为y=mx+n,
把B(3,0),C(0,-3)代入得,解得,
∴直线BC的解析式为y=x-3;
②如图,
x2-1=1-x1,
∴x1+x2=2,
∴x1+x2+x3=2+x3,
∵y3<-3,即x3-3<-3,
∴x3<0,
∵y=-4时,x-3=-4,解得x=-1,
∴-1<x3<0,
∴1<x1+x2+x3<2.
【点睛】
本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.
4、 (1);
(2);
(3)-1<m<3或.
【解析】
【分析】
(1)利用待定系数法求解;
(2)将函数解析式化为顶点式,得到抛物线的顶点坐标,即可得到的取值范围;
(3)利用待定系数法求出直线AC的解析式,得到直线l的解析式为y=-x+m,求出点B的坐标,由此得到当直线l与BC段相交时,m的取值范围;解,求出当时m的值,由此得到m的取值范围.
(1)
解:将点、代入中,得
,解得,
∴抛物线的表达式为;
(2)
解:∵,M是抛物线上点A,C之间(含点A,C)的一个动点,,
∴抛物线的顶点坐标为(1,4),
∴点M的纵坐标的取值范围为;
(3)
解:设直线AC的解析式为y=kx+b,
∴,解得,
∴直线AC的解析式为y=-x+3,
∵设平移后的直线为l,记l与y轴的交点为,
∴直线l的解析式为y=-x+m,
∵抛物线的对称轴为直线x=1,点A(3,0),
∴B(-1,0),
将点B坐标代入y=-x+m,得m=-1,
当直线l与BC段相交时,m的取值范围是-1<m<3;
当直线l与AC段相交时,则,
整理得,
当时,得;
综上,若l与上方的抛物线有唯一交点,m的取值范围为-1<m<3或.
【点睛】
此题考查了待定系数法求函数解析式,将一般式解析式化为顶点式,直线的平移,一元二次方程的判别式,图象交点问题,综合掌握一次函数与二次函数的知识是解题的关键.
5、 (1)
(2)18
(3)1或5
【解析】
【分析】
(1)把点,,代入二次函数解析式:y=ax2+bx+c,求出即可;
(2)分别求出A、B、C、P四点的坐标.利用S四边形ACBP=S△ABP+S△ABC进行计算;
(3)观察抛物线的图像可直接得到结果.
(1)
解:(1)设二次函数的表达式为(,,为常数,),
由题意知,该函数图象经过点,,,得
,
解得,
∴二次函数的表达式为.
(2)
解:∵
当y=0时,
解得:x1=1,x2=5
∴点A坐标为(1,0)、点B坐标为(5,0);
当x=0时,y=-5,
∴点C坐标为(0,-5);
把化为y=-(x-3)2+4
∴点P坐标为(3,4);
由题意可画图如下:
∴S四边形ACBP=S△ABP+S△ABC
=
=18,
故答案是:18;
(3)
由图像知:将抛物线向左平移1个单位长度或5个单位长度,抛物线经过原点.
故:m=1或.
【点睛】
本题考查了待定系数法求二次函数的解析式:二次函数的解析式可设为一般式、顶点式或交点式.也考查了二次函数的性质.解题的关键是掌握数形结合能力.
相关试卷
这是一份冀教版第30章 二次函数综合与测试精品课后复习题,共29页。
这是一份冀教版九年级下册第30章 二次函数综合与测试当堂检测题,共28页。试卷主要包含了若二次函数y=ax2+bx+c等内容,欢迎下载使用。
这是一份冀教版九年级下册第30章 二次函数综合与测试一课一练,共35页。试卷主要包含了一次函数与二次函数的图象交点等内容,欢迎下载使用。