![精品试卷鲁教版(五四制)六年级数学下册第五章基本平面图形达标测试试题(无超纲)第1页](http://m.enxinlong.com/img-preview/2/3/12733867/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品试卷鲁教版(五四制)六年级数学下册第五章基本平面图形达标测试试题(无超纲)第2页](http://m.enxinlong.com/img-preview/2/3/12733867/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品试卷鲁教版(五四制)六年级数学下册第五章基本平面图形达标测试试题(无超纲)第3页](http://m.enxinlong.com/img-preview/2/3/12733867/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试优秀课后练习题
展开这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试优秀课后练习题,共21页。试卷主要包含了如果A,下列现象等内容,欢迎下载使用。
六年级数学下册第五章基本平面图形达标测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,某同学从处出发,去位于处的同学家交流学习,其最近的路线是( )
A. B.
C. D.
2、一个角的度数为54°12',则这个角的补角度数等于( )
A.125°48' B.125°88' C.135°48' D.136°48'
3、已知∠α=125°19′,则∠α的补角等于( )
A.144°41′ B.144°81′ C.54°41′ D.54°81′
4、把弯曲的河道改直,就能缩短河道长度.可以解释这一做法的数学原理是( )
A.两点确定一条直线 B.两点之间,线段最短
C.两点之间,直线最短 D.线段比直线短
5、如图,已知点C为线段AB的中点,D为CB上一点,下列关系表示错误的是( )
A.CD=AC﹣DB B.BD+AC=2BC﹣CD
C.2CD=2AD﹣AB D.AB﹣CD=AC﹣BD
6、如果A、B、C三点在同一直线上,且线段AB=6cm,BC=4cm,那么线段AC的长为( )
A.10cm B.2cm C.10或2cm D.无法确定
7、如图,∠BOC=90°,∠COD=45°,则图中互为补角的角共有( )
A.一对 B.二对 C.三对 D.四对
8、下列现象:
①用两个钉子就可以把木条固定在墙上
②从A地到B地架设电线,总是尽可能沿着线段AB架设
③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线
④把弯曲的公路改直,就能缩短路程
其中能用“两点之间线段最短”来解释的现象有( )
A.①④ B.①③ C.②④ D.③④
9、如图,点C是线段AB的中点,点D是线段AC的中点,若AB=8,则CD的长为( )
A.2 B.4 C.6 D.8
10、如图所示,B、C是线段AB上任意两点,M是AB的中点,N是CD的中点,若,,则线段AD的长是( )
A.15 B.17 C.19 D.20
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、北京时间21点30分,此时钟表的时针和分针构成的角度是____________.
2、如图,直线AB和CD相交于点O,∠AOD=3∠AOC,则直线AB和CD的夹角是______.
3、一个圆的周长是31.4cm,它的半径是_____cm,面积是_____cm2.
4、已知射线OA与射线OB垂直,射线OA表示的方向是北偏西25°方向,则射线OB表示的方向为南偏西________方向.
5、的余角等于__________.
三、解答题(5小题,每小题10分,共计50分)
1、如图,已知∠AOB=120°,OC是∠AOB内的一条射线,且∠AOC:∠BOC=1:2.
(1)求∠AOC,∠BOC的度数;
(2)作射线OM平分∠AOC,在∠BOC内作射线ON,使得∠CON:∠BON=1:3,求∠MON的度数;
(3)过点O作射线OD,若2∠AOD=3∠BOD,求∠COD的度数.
2、点是直线上的一点,,平分.
(1)如图,若,求的度数.
(2)如图,若,求的度数.
3、【概念与发现】
当点C在线段AB上,时,我们称n为点C在线段AB上的“点值”,记作.
例如,点C是AB的中点时,即,则;
反之,当时,则有.
因此,我们可以这样理解:“”与“”具有相同的含义.
【理解与应用】
(1)如图,点C在线段AB上.若,,则________;
若,则________AB.
【拓展与延伸】
(2)已知线段,点P以1cm/s的速度从点A出发,向点B运动.同时,点Q以3cm/s的速度从点B出发,先向点A方向运动,到达点A后立即按原速向点B方向返回.当P,Q其中一点先到达终点时,两点均停止运动.设运动时间为t(单位:s).
①小王同学发现,当点Q从点B向点A方向运动时,的值是个定值,则m的值等于________;
②t为何值时,.
4、如图,在同一直线上,有A、B、C、D四点.已知DB=AD,AC=CD,CD=4cm,求线段AB的长.
5、(1)如图1,已知线段a、b(),用无刻度的直尺和圆规画一条线段MN,使它等于(保留作图痕迹,不要求写作法).
(2)如图2,已知点C在线段AB上,其中,,点E是AC的中点,点F在线段CB上,且,求线段EF的长度.
-参考答案-
一、单选题
1、B
【解析】
【分析】
根据两点之间线段最短,对四个选项中的路线作比较即可.
【详解】
解:四个选项均为从A→C然后去B
由两点之间线段最短可知,由C到B的连线是最短的
由于F在CB线上,故可知A→C→F→B是最近的路线
故选B.
【点睛】
本题考查了两点之间线段最短的应用.解题的关键在于正确理解两点之间线段最短.
2、A
【解析】
【分析】
由计算求解即可.
【详解】
解:∵
∴这个角的补角度数为
故选A.
【点睛】
本题考查了补角.解题的关键在于明确.
3、C
【解析】
【分析】
两个角的和为 则这两个角互为补角,根据互为补角的含义列式计算即可.
【详解】
解: ∠α=125°19′,
∠α的补角等于
故选C
【点睛】
本题考查的是互补的含义,掌握“两个角的和为 则这两个角互为补角”是解本题的关键.
4、B
【解析】
【分析】
由把弯曲的河道改直,就缩短了河道的长度,涉及的知识点与距离相关,从而可以两点之间,线段最短来解析.
【详解】
解:把弯曲的河道改直,就能缩短河道长度.可以解释这一做法的数学原理是
两点之间,线段最短.
故选:B
【点睛】
本题考查的是两点之间,线段最短,掌握“利用两点之间线段最短解析生活现象”是解本题的关键.
5、D
【解析】
【分析】
根据图形可以明确线段之间的关系,对线段CD、BD、AD进行和、差转化,即可发现错误选项.
【详解】
解:∵C是线段AB的中点,
∴AC=BC,AB=2BC=2AC,
∴CD=BC﹣BD=AB﹣BD=AC﹣BD;
∵BD+AC=AB﹣CD=2BC﹣CD;
∵CD=AD﹣AC,
∴2CD=2AD﹣2AC=2AD﹣AB;
∴选项A、B、C均正确.
而答案D中,AB﹣CD=AC+BD;
∴答案D错误符合题意.
故选:D.
【点睛】
本题考查线段的和差,是基础考点,掌握相关知识是解题关键.
6、C
【解析】
【分析】
分AC=AB+BC和AC=AB-BC,两种情况求解.
【详解】
∵A、B、C三点在同一直线上,且线段AB=6cm,BC=4cm,
当AC=AB+BC时,
AC=6+4=10;
当AC=AB-BC时,
AC=6-4=2;
∴AC的长为10或2cm
故选C.
【点睛】
本题考查了线段的和差计算,分AB,BC同向和逆向两种情形是解题的关键.
7、C
【解析】
【分析】
根据∠BOC=90°,∠COD=45°求出∠AOC=90°,∠BOD=45°,∠AOD=135°,进而得出答案.
【详解】
解:∵∠BOC=90°,∠COD=45°,
∴∠AOC=90°,∠BOD=45°,∠AOD=135°,
∴∠AOC+∠BOC=180°,∠AOD+∠COD=180°,∠AOD+∠BOD=180°,
∴图中互为补角的角共有3对,
故选:C.
【点睛】
本题考查了补角的定义,理解互为补角的两角之和为180°是解题的关键.
8、C
【解析】
【分析】
直接利用直线的性质和线段的性质分别判断得出答案.
【详解】
解:①用两个钉子就可以把木条固定在墙上,利用的是两点确定一条直线,故此选项不合题意;
②从A地到B地架设电线,总是尽可能沿着线段AB架设,能用“两点之间,线段最短”来解释,故此选项符合题意;
③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线,利用的是两点确定一条直线,故此选项不合题意;
④把弯曲的公路改直,就能缩短路程,能用“两点之间,线段最短”来解释,故此选项符合题意.
故选:C.
【点睛】
本题考查了直线的性质和线段的性质,正确掌握相关性质是解题关键.
9、A
【解析】
【分析】
根据线段中点的定义计算即可.
【详解】
解:∵点C是线段AB的中点,
∴AC=,
又∵点D是线段AC的中点,
∴CD=,
故选:A.
【点睛】
本题考查了线段中点的定义,掌握线段中点的定义是关键.
10、D
【解析】
【分析】
由M是AB的中点,N是CD的中点,可得先求解 从而可得答案.
【详解】
解: M是AB的中点,N是CD的中点,
故选D
【点睛】
本题考查的是线段的中点的含义,线段的和差运算,熟练的利用线段的和差关系建立简单方程是解本题的关键.
二、填空题
1、105
【解析】
【分析】
根据题意,得3、9点所在直线和6、12点所在直线垂直,通过角度的乘除和和差运算,即可得到答案.
【详解】
如图
∵3、9点所在直线和6、12点所在直线垂直
∴北京时间21点30分时,分针和x的夹角为:
∴此时钟表的时针和分针构成的角度是:
故答案为:105.
【点睛】
本题考查了角的知识;解题的关键是熟练掌握角度的乘除和和差计算,即可得到答案.
2、45°##45度
【解析】
【分析】
∠AOD=3∠AOC,∠AOD+∠AOC=180°,计算求解∠AOC的值即为所求.
【详解】
解:由题意知,直线AB和CD的夹角是∠AOC或∠BOD
∵∠AOD=3∠AOC,∠AOD+∠AOC=180°
∴∠AOC=45°
故答案为:45°.
【点睛】
本题考查了补角.解题的关键在于正确的找出角度之间的数量关系.
3、 5 78.5
【解析】
【分析】
设圆的半径为.先利用圆的周长公式求出,再利用圆的面积公式即可得.
【详解】
解:设圆的半径为,
由题意得:,
解得,
则圆的面积为,
故答案为:5,78.5.
【点睛】
本题考查了圆的周长、面积等知识,解题的关键是记住圆的周长公式和面积公式.
4、
【解析】
【分析】
如图(见解析),先根据射线的方位角可得,再根据角的和差即可得.
【详解】
解:如图,由题意得:,,
则,
即射线表示的方向为南偏西方向,
故答案为:.
【点睛】
本题考查了方位角、角的和差、垂直,掌握理解方位角是解题关键.
5、
【解析】
【分析】
根据和为90°的两个角互为余角解答即可.
【详解】
解:的余角等于90°-=,
故答案为:.
【点睛】
本题考查求一个角的余角,会进行度分秒的运算,熟知余角定义是解答的关键.
三、解答题
1、 (1)∠AOC=40°,∠BOC=80°
(2)40°
(3)∠COD的度数为32°或176°
【解析】
【分析】
(1)根据∠AOC:∠BOC=1:2,即可求解;
(2)先求出∠COM,再求出∠CON,相加即可求解;
(3)分OD在∠AOB内部和外部两种情况分类讨论即可求解.
【小题1】
解:∵∠AOC:∠BOC=1:2,∠AOB=120°,
∴∠AOC=∠AOB=×120°=40°,
∠BOC=∠AOB=×120°=80°;
【小题2】
∵OM平分∠AOC,
∴∠COM=∠AOC=×40°=20°,
∵∠CON:∠BON=1:3,
∴∠CON=∠BOC=×80°=20°,
∴∠MON=∠COM+∠CON=20°+20°=40°;
【小题3】
如图,当OD在∠AOB内部时,
设∠BOD=x°,
∵2∠AOD=3∠BOD,
∴∠AOD=,
∵∠AOB=120°,
∴x+=120,
解得:x=48,
∴∠BOD=48°,
∴∠COD=∠BOC-∠BOD=80°-48°=32°,
如图,当OD在∠AOB外部时,
设∠BOD=y°,
∵2∠AOD=3∠BOD,
∴∠AOD=,
∵∠AOB=120°,
∴+y+120°=360°
解得:y=96°,
∴∠COD=∠BOD+∠BOC
=96°+80°
=176°,
综上所述,∠COD的度数为32°或176°.
【点睛】
本题考查了角的计算及角平分线,掌握角的特点及比例的意义是解决问题的关键.
2、(1)=25°;(2)
【解析】
【分析】
(1)结合题意,根据平角的性质,得,根据角平分线的性质,得;根据余角的性质计算,即可得到答案;
(2)设,根据角平分线性质,得,结合,通过列一元一次方程并求解,得;再通过角度和差计算,即可得到答案.
【详解】
(1)∵是一个平角
∴
∴
∵
∴
∴;
(2)设,则
∵平分
∴
∵
∴
∴
∴
∴
∴.
【点睛】
本题考查了角、角平分线、一元一次方程的知识;解题的关键是熟练掌握角平分线、余角、角度和差运算、一元一次方程的性质.
3、 (1),
(2)①3;②2或6
【解析】
【分析】
(1)根据“点值”的定义即可得出答案;
(2)①设运动时间为t,再根据的值是个定值即可得出m的值;
②分点Q从点B向点A方向运动时和点Q从点A向点B方向运动时两种情况加以分析即可
(1)
解:∵,,
∴
∴,
∵,
∴
(2)
解:①设运动时间为t,则AP=t,AQ=10-3t,
则,
∵的值是个定值,
∴的值是个定值,
∴m=3
②当点Q从点B向点A方向运动时,
∵
∴
∴t=2
当点Q从点A向点B方向运动时,
∵
∴
∴t=6
∴t的值为2或6
【点睛】
本题考查了一元一次方程的应用,理解新定义,并能运用是本题的关键.
4、
【解析】
【分析】
根据,求出、的长度,再根据即可求解.
【详解】
解:,,
,
,
,
.
【点睛】
本题考查两点间的距离,解题的关键是根据条件先利用线段之间的关系得出线段、.
5、(1)见解析;(2)4cm
【解析】
【分析】
(1)先画一条射线AP,依次截取AB=BN=a,AM=b,即可得到所求作的线段;
(2)利用,,求出AB,根据点E是AC的中点,分别求出CE、CF的长,相加即可得到线段EF的长度.
【详解】
解:(1)线段MN即为所求作的线段;
(2)∵,,
∴AB=AC+BC=10cm,
∵点E是AC的中点,
∴,
∵,
∴
∴EF=CE+CF=4cm.
【点睛】
此题考查了线段的和差作图,线段中点的有关计算,正确掌握作线段等于已知线段的方法及线段中点的定义是解题的关键.
相关试卷
这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试当堂检测题,共19页。试卷主要包含了在下列生活,若的补角是,则的余角是等内容,欢迎下载使用。
这是一份数学六年级下册第五章 基本平面图形综合与测试课时练习,共22页。试卷主要包含了如图,一副三角板,下列说法正确的是,下列说法错误的是,下列说法中正确的是等内容,欢迎下载使用。
这是一份鲁教版 (五四制)第五章 基本平面图形综合与测试精品精练,共25页。试卷主要包含了下列两个生活,下列说法,已知,则的补角的度数为,如图,下列说法不正确的是,如图,D,下列现象等内容,欢迎下载使用。