![达标测试鲁教版(五四制)六年级数学下册第五章基本平面图形专题攻克试卷(无超纲)第1页](http://m.enxinlong.com/img-preview/2/3/12733860/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![达标测试鲁教版(五四制)六年级数学下册第五章基本平面图形专题攻克试卷(无超纲)第2页](http://m.enxinlong.com/img-preview/2/3/12733860/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![达标测试鲁教版(五四制)六年级数学下册第五章基本平面图形专题攻克试卷(无超纲)第3页](http://m.enxinlong.com/img-preview/2/3/12733860/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试精品复习练习题
展开这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试精品复习练习题,共23页。试卷主要包含了下列说法中正确的是,延长线段至点,分别取,下列说法错误的是,如图所示,B等内容,欢迎下载使用。
六年级数学下册第五章基本平面图形专题攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,点,为线段上两点,,且,设,则关于的方程的解是( )
A. B. C. D.
2、下列各角中,为锐角的是( )
A.平角 B.周角 C.直角 D.周角
3、如图,下列说法不正确的是( )
A.直线m与直线n相交于点D B.点A在直线n上
C.DA+DB<CA+CB D.直线m上共有两点
4、如图所示,下列表示角的方法错误的是( )
A.∠1与∠AOB表示同一个角
B.图中共有三个角:∠AOB,∠AOC,∠BOC
C.∠β+∠AOB=∠AOC
D.∠AOC也可用∠O来表示
5、下列说法中正确的是( )
A.两点之间直线最短 B.单项式πx2y的系数是
C.倒数等于本身的数为±1 D.射线是直线的一半
6、延长线段至点,分别取、的中点、.若,则的长度( )
A.等于 B.等于 C.等于 D.无法确定
7、下列说法错误的是( )
A.两点之间,线段最短
B.经过两点有一条直线,并且只有一条直线
C.延长线段AB和延长线段BA的含义是相同的
D.射线AB和射线BA不是同一条射线
8、如图,B岛在A岛南偏西55°方向,B岛在C岛北偏西60°方向, C岛在A岛南偏东30°方向.从B岛看A,C两岛的视角∠ABC度数为( )
A.50° B.55° C.60° D.65°
9、如图所示,B、C是线段AB上任意两点,M是AB的中点,N是CD的中点,若,,则线段AD的长是( )
A.15 B.17 C.19 D.20
10、如图,线段,点在线段上,为的中点,且,则的长度( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、45°30'=_____°.
2、同一直线上有两条线段(A在B的左边,C在D的左边),M,N分别是的中点,若,,则_________.
3、如图,已知数轴上点A、B、C所表示的数分别为a、b、c,C为线段AB的中点,且,如果原点在线段AC上,那么______.
4、如图,在一条笔直的马路(直线l)两侧各有一个居民区(点M,N),如果要在这条马路旁建一个购物中心,使购物中心到这两个小区的距离之和最小,那么购物中心应建在线段MN与直线l的交点P处,这样做的依据是_______.
5、、、三个城市的位置如右图所示,城市在城市的南偏东60°方向,且,则城市在城市的______方向.
三、解答题(5小题,每小题10分,共计50分)
1、如图,是直线上一点,是直角,平分.
(1)若,则__________;
(2)若,求__________(用含的式子表示);
(3)在的内部有一条射线,满足,试确定与的度数之间的关系,并说明理由.
2、如图,,是的平分线,是的平分线.
(1)若,求的度数;
(2)若与互补,求的度数.
3、如图,点C为线段AB的中点,点E为线段AB上的点,D为AE的中点,若AB=15,CE=4.5,求线段DE.
4、已知:如图1,是定长线段上一定点,两点分别从,出发以,的速度沿向左运动,运动方向如箭头所示(在线段上,在线段上)
(1)若,当点运动了,求的值;
(2)若点运动时,总有,试说明;
(3)如图2,已知,是线段所在直线上一点,且,求的值.
5、课上,老师提出问题:如图,点O是线段上一点,C,D分别是线段AO,BO的中点,当AB=10时,求线段CD的长度.
(1)下面是小明根据老师的要求进行的分析及解答过程,请你补全解答过程;
思路方法 | 解答过程 | 知识要素 |
未知线段 已知线段 …… | 因为C,D分别是线段AO,BO的中点, 所以CO=AO,DO= . 因为AB=10, 所以CD=CO+DO =AO+ = = . | 线段中点的定义 线段的和、差 等式的性质 |
(2)小明进行题后反思,提出新的问题:如果点O运动到线段AB的延长线上,CD的长度是否会发生变化?请你帮助小明作出判断并说明理由.
-参考答案-
一、单选题
1、D
【解析】
【分析】
先根据线段的和差运算求出的值,再代入,解一元一次方程即可得.
【详解】
解:,
,
,
,
解得,
则关于的方程为,
解得,
故选:D.
【点睛】
本题考查了线段的和差、一元一次方程的应用,熟练掌握方程的解法是解题关键.
2、B
【解析】
【分析】
求出各个选项的角的度数,再判断即可.
【详解】
解:A. 平角=90°,不符合题意;
B. 周角=72°,符合题意;
C. 直角=135°,不符合题意;
D. 周角=180°,不符合题意;
故选:B.
【点睛】
本题考查了角的度量,解题关键是明确周角、平角、直角的度数.
3、D
【解析】
【分析】
根据直线相交、点与直线、两点之间线段最短逐项判断即可得.
【详解】
解:A、直线与直线相交于点,则此项说法正确,不符合题意;
B、点在直线上,则此项说法正确,不符合题意;
C、由两点之间线段最短得:,则此项说法正确,不符合题意;
D、直线上有无数个点,则此项说法不正确,符合题意;
故选:D.
【点睛】
本题考查了直线相交、点与直线、两点之间线段最短,熟练掌握直线的相关知识是解题关键.
4、D
【解析】
【分析】
根据角的表示方法表示各个角,再判断即可.
【详解】
解:A、∠1与∠AOB表示同一个角,正确,故本选项不符合题意;
B、图中共有三个角:∠AOB,∠AOC,∠BOC,正确,故本选不符合题意;
C、∠β表示的是∠BOC,∠β+∠AOB=∠AOC,正确,故本选项不符合题意;
D、∠AOC不能用∠O表示,错误,故本选项符合题意;
故选:D.
【点睛】
本题考查了对角的表示方法的应用,主要检查学生能否正确表示角.
5、C
【解析】
【分析】
分别对每个选项进行判断:两点之间线段最短;单项式单项式πx2y的系数是;倒数等于本身的数为±1;射线是是直线的一部分.
【详解】
解:A.两点之间线段最短,故不符合题意;
B.单项式πx2y的系数是,不符合题意;
C.倒数等于本身的数为±1,故符合题意;
D.射线是是直线的一部分,故不符合题意;
故选:C.
【点睛】
本题考查直线、射线、线段的定义和性质,熟练掌握直线、射线、线段的性质和之间的区别联系,会求单项式的系数是解题的关键.
6、B
【解析】
【分析】
由题意知,如图分两种情况讨论①②;用已知线段表示求解即可.
【详解】
解:由题意知
①如图1
∵,
∴;
②如图2
∵,
∴;
综上所述,
故选B.
【点睛】
本题考查了线段中点.解题的关键在于正确的找出线段的数量关系.
7、C
【解析】
【分析】
根据两点之间线段最短的性质、两点确定一条直线、延长线的定义以及射线的定义依次分析判断.
【详解】
解:A. 两点之间,线段最短,故该项不符合题意;
B. 经过两点有一条直线,并且只有一条直线,故该项不符合题意;
C. 延长线段AB和延长线段BA的含义是不同的,故该项符合题意;
D. 射线AB和射线BA不是同一条射线,故该项不符合题意;
故选:C.
【点睛】
此题考查了两点之间线段最短的性质、两点确定一条直线、延长线的定义以及射线的定义,综合掌握各知识点是解题的关键.
8、D
【解析】
【分析】
根据B岛在A与C的方位角得出∠ABD=55°,∠CBE=60°,再根据平角性质求出∠ABC即可.
【详解】
解:过点B作南北方向线DE,
∵B岛在A岛南偏西55°方向,
∴∠ABD=55°,
∵B岛在C岛北偏西60°方向,
∴∠CBE=60°,
∴∠ABC=180°-∠ABD-∠CBE=180°-55°-60°=65°.
故选D.
【点睛】
本题考查方位角,平角,角的和差,掌握方位角,平角,角的和差是解题关键.
9、D
【解析】
【分析】
由M是AB的中点,N是CD的中点,可得先求解 从而可得答案.
【详解】
解: M是AB的中点,N是CD的中点,
故选D
【点睛】
本题考查的是线段的中点的含义,线段的和差运算,熟练的利用线段的和差关系建立简单方程是解本题的关键.
10、D
【解析】
【分析】
设cm,则cm,根据题意列出方程求解即可.
【详解】
解:设,则,
∵为的中点,
∴,
∴,
解得,
cm,
故选:D.
【点睛】
本题考查了线段的和差和线段的中点,解一元一次方程,解题关键是明确相关定义,设未知数列出方程求解.
二、填空题
1、45.5
【解析】
【分析】
先将化为度数,然后与整数部分的度数相加即可得.
【详解】
解:
.
故答案为:.
【点睛】
题目主要考查角度的变换,熟练掌握角度之间的变换进率是解题关键.
2、17
【解析】
【分析】
根据A在B的左边,C在D的左边,M,N分别是的中点,得出AM=BM,CN=DN,当点B在点C的右边时满足条件,分三种情况,当点B在NM上,设AM=BM=x,得出BN=MN-BM=5-x,ND=CN=12-x,可求AD=AM+MN+ND=x+5+12-x=17;当MN在BC上,设AM=BM=x,CM=7-x, 得出ND=CN=12-x,可求AD=AM+MN+ND=x+5+12-x=17;当点C在MN上,设AM=BM=x,MC=BM-BC=x-7,得出CN=DN=MN-MC=5-(x-7)=12-x,可求AD=AM+MN+ND=x+5+12-x=17即可.
【详解】
解:∵A在B的左边,C在D的左边,M,N分别是的中点,
∴AM=BM,CN=DN,
当点B在点C的右边时满足条件,分三种情况:
当点B在NM上,设AM=BM=x,
∴BN=MN-BM=5-x,
∴CN=BC+BN=7+5-x=12-x,
∴ND=CN=12-x,
∴AD=AM+MN+ND=x+5+12-x=17;
当MN在BC上,设AM=BM=x,
∴BN=x-5,CM=7-x,
∴CN=CM+MN=7-x+5=12-x,
∴ND=CN=12-x,
∴AD=AM+MN+ND=x+5+12-x=17;
当点C在MN上,设AM=BM=x,
∴MC=BM-BC=x-7,
∴CN=DN=MN-MC=5-(x-7)=12-x,
∴AD=AM+MN+ND=x+5+12-x=17;
综合得AD=17.
故答案为17.
【点睛】
本题考查线段中点有关的计算,线段和差,整式加减运算,分类思想的应用使问题得以全面解决是解题关键.
3、2
【解析】
【分析】
根据中点的定义可知,再由原点在线段AC上,可判断,再化简绝对值即可.
【详解】
解:∵C为线段AB的中点,且,
∴,即,
∵原点在线段AC上,
∴,
;
故答案为:2.
【点睛】
本题考查了线段的中点和化简绝对值,解题关键是根据中点的定义和数轴确定.
4、两点之间,线段最短
【解析】
【分析】
根据两点之间线段最短即可求出答案.
【详解】
解:依据是两点之间,线段最短,
故答案为:两点之间,线段最短.
【点睛】
本题考查作图问题,解题的关键是正确理解两点之间线段最短,本题属于基础题型.
5、35°##35度
【解析】
【分析】
根据方向角的表示方法可得答案.
【详解】
解:如图,
∵城市C在城市A的南偏东60°方向,
∴∠CAD=60°,
∴∠CAF=90°-60°=30°,
∵∠BAC=155°,
∴∠BAE=155°-90°-30°=35°,
即城市B在城市A的北偏西35°,
故答案为:35°.
【点睛】
本题考查了方向角,用方向角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边,故描述方向角时,一般先叙述北或南,再叙述偏东或偏西.
三、解答题
1、 (1)30°
(2)
(3)5∠DOE-7∠AOF=270°
【解析】
【分析】
(1)先根据∠DOB与∠BOC的互余关系得出∠BOC,再根据角平分线的性质即可得出∠COE;
(2)先根据∠AOC与∠BOC的互余关系得出∠BOC,再根据角平分线的性质即可得出∠COE,再根据∠DOE与∠COE的互余关系即可得出答案;
(3)结合(2)把所给等式整理为只含所求角的关系式即可.
(1)
解:∵∠COD是直角,∠BOD=30°,
∴∠BOC=90°-∠BOD=60°,
∵OE平分∠BOC,
∴∠COE=30°,
(2)
∵,
∴,
∵OE平分∠BOC,
∴∠COE=∠BOE,
∵∠COD是直角,
∴∠DOE=90°-∠COE=,
(3)
∵
∴6∠AOF+3∠BOE=∠AOC-∠AOF,
∴7∠AOF+3∠BOE=∠AOC,
∵∠COD是直角,OE平分∠BOC,
∴∠BOE=90°-∠DOE,
由(2)可知,∠AOC=2∠DOE
∴7∠AOF+3(90°-∠DOE)=2∠DOE
∴7∠AOF+270°=5∠DOE,
∴5∠DOE-7∠AOF=270°.
【点睛】
本题考查角的计算;根据所求角的组成进行分析是解决本题的关键;应用相应的桥梁进行求解是常用的解题方法;注意应用题中已求得的条件.
2、 (1)50°
(2)60°
3、6
【解析】
【分析】
利用线段中点的含义先求解 再利用线段的和差关系求解 结合D为AE的中点,从而可得答案.
【详解】
解: AB=15,点C为线段AB的中点,
D为AE的中点,
【点睛】
本题考查的是线段的和差关系,线段的中点的含义,理解线段的和差关系逐步求解需要的线段的长度是解本题的关键.
4、 (1)2cm
(2)见解析
(3)或
【解析】
【分析】
(1)根据运动的时间为2s,结合图形可得出,,即可得出,再由,即得出AC+MD的值;
(2)根据题意可得出,.再由,可求出,从而可求出,即证明;
(3)①分类讨论当点在线段上时、②当点在线段的延长线上时和③当点在线段的延长线上时,根据线段的和与差结合,即可求出线段MN和AB的等量关系,从而可求出的值,注意舍去不合题意的情形.
(1)
∵时间时,
,,
∴
;
(2)
∵,,
又∵,
∴,
∴,
∴,
∴;
(3)
①如图,当点在线段上时,
∵,
∴,
∴,
∴;
②如图,当点在线段的延长线上时,
∵,
∴,
∴,
③如图,当点在线段的延长线上时,
,这种情况不可能,
综上可知,的值为或.
【点睛】
本题考查线段的和与差、与线段有关的动点问题.利用数形结合和分类讨论的思想是解答本题的关键.
5、 (1)BO,BO,AB,5
(2)不变,见解析
【解析】
【分析】
(1)根据已知条件及解答过程中的每步推理即可完成;
(2)由线段中点的定义及线段的差即可完成.
(1)
因为C,D分别是线段AO,BO的中点,
所以CO=AO,DO=.
因为AB=10,
所以CD=CO+DO
=AO+BO
=AB
=5.
故答案为:BO,BO,AB,5
(2)
不会发生变化:
理由如下:如图
因为C,D分别是线段AO,BO的中点,
所以,.
因为,
所以.
【点睛】
本题考查了线段中点的定义,线段的和、差等知识,掌握这些知识是关键.
相关试卷
这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试习题,共25页。试卷主要包含了在一幅七巧板中,有我们学过的,下列说法中正确的是,下列四个说法等内容,欢迎下载使用。
这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试随堂练习题,共23页。试卷主要包含了能解释,如图,一副三角板,如图所示,点E等内容,欢迎下载使用。
这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试优秀课后作业题,共20页。试卷主要包含了在一幅七巧板中,有我们学过的,如图所示,点E等内容,欢迎下载使用。