开学活动
搜索
    上传资料 赚现金

    2022年沪教版七年级数学第二学期第十五章平面直角坐标系综合训练试题(无超纲)

    2022年沪教版七年级数学第二学期第十五章平面直角坐标系综合训练试题(无超纲)第1页
    2022年沪教版七年级数学第二学期第十五章平面直角坐标系综合训练试题(无超纲)第2页
    2022年沪教版七年级数学第二学期第十五章平面直角坐标系综合训练试题(无超纲)第3页
    还剩27页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课堂检测

    展开

    这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课堂检测,共30页。试卷主要包含了若点在第三象限,则点在.,一只跳蚤在第一象限及x轴等内容,欢迎下载使用。
    七年级数学第二学期第十五章平面直角坐标系综合训练
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、已知点在一、三象限的角平分线上,则的值为( )
    A. B. C. D.
    2、已知点M(2,﹣3),点N与点M关于x轴对称,则点N的坐标是(  )
    A.(﹣2,3) B.(﹣2,﹣3) C.(3,2) D.(2,3)
    3、若点P(2,b)在第四象限内,则点Q(b,-2)所在象限是( )
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    4、若点在第三象限,则点在( ).
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    5、如图,是由ABO平移得到的,点A的坐标为(-1,2),它的对应点的坐标为(3,4),ABO内任意点P(a,b)平移后的对应点的坐标为( )

    A.(a,b) B.(-a,-b) C.(a+2,b+4) D.(a+4,b+2)
    6、点(a,﹣3)关于原点的对称点是(2,﹣b),则a+b=( )
    A.5 B.﹣5 C.1 D.﹣1
    7、一只跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1) →(1,0)→ … ],且每秒跳动一个单位,那么第25秒时跳蚤所在位置的坐标是( )

    A.(4,0) B.(5,0) C.(0,5) D.(5,5)
    8、如图,直角坐标平面xOy内,动点P按图中箭头所示方向依次运动,第1次从点(﹣1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,﹣2),…按这样的运动规律,动点P第2021次运动到点( )

    A.(2020,﹣2) B.(2020,1) C.(2021,1) D.(2021,﹣2)
    9、在平面直角坐标系中,将点(3,-4)平移到点(-1,4),经过的平移变换为( )
    A.先向左平移4个单位长度,再向上平移4个单位长度
    B.先向左平移4个单位长度,再向上平移8个单位长度
    C.先向右平移4个单位长度,再向下平移4个单位长度
    D.先向右平移4个单位长度,再向下平移8个单位长度
    10、如图所示,在平面直角坐标系中,点A(0,4),B(2,0),连接AB,点D为AB的中点,将点D绕着点A旋转90°得到点D的坐标为( )

    A.(﹣2,1)或(2,﹣1) B.(﹣2,5)或(2,3)
    C.(2,5)或(﹣2,3) D.(2,5)或(﹣2,5)
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、平面直角坐标系中,已知点,,且ABx轴,若点到轴的距离是到轴距离的2倍,则点的坐标为________.
    2、在平面直角坐标系中,点P(2,3)向右平移3个单位再向下平移2个单位后的坐标是___.
    3、在平面直角坐标系中,点A(-2,4)与点关于轴对称,则点的坐标为________.
    4、有一个英文单词的字母顺序对应如图中的有序数对分别为(5,3),(6,3)(7,3)(4,1)(4,4)请你把这个英文单词写出来或者翻译中文为______.

    5、将自然数按图规律排列:如果一个数在第m行第n列,那么记它的位置为有序数对,例如:数2在第2行第1列,记它的位置为有序数对.按照这种方式,(1)位置为有序数对的数是______;(2)数位置为有序数对______.

    三、解答题(10小题,每小题5分,共计50分)
    1、如图所示的方格纸中每个小方格都是边长为1个单位的正方形,建立如图所示的平面直角坐标系.
    (1)请写出△ABC各点的坐标A    B    C    ;
    (2)若把△ABC向上平移2个单位,再向右平移2个单位得,在图中画出,
    (3)求△ABC 的面积

    2、如图,已知△ABC三个顶点的坐标分A(﹣3,2),B(﹣1,3),C(﹣2,1).将△ABC先向右平移4个单位,再向下平移3个单位后,得到△A′B′C′,点A,B,C的对应点分别为A′、B′、C′.
    (1)根据要求在网格中画出相应图形;
    (2)写出△A′B′C′三个顶点的坐标.

    3、如图,在平面直角坐标系中,已知的三个顶点都在网格的格点上.

    (1)在图中作出关于轴对称的,并写出点的对应点的坐标;
    (2)在图中作出关于轴对称的,并写出点的对应点的坐标.
    4、如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC 的顶点均在格点上,点A的坐标为(1,-4).

    (1)△A1B1C1是△ABC关于y轴的对称图形,则点A的对称点A1的坐标是_______,并在图中画出△A1B1C1.
    (2)将△ABC绕原点逆时针旋转90°得到△A2B2C2,则A点的对应点A2的坐标是______,并在图中画出△A2B2C2 .
    5、如图,在平面直角坐标系中,ABC的顶点坐标为A(﹣1,1),B(﹣3,2),C(﹣2,4).
    (1)在图中作出ABC向右平移4个单位,再向下平移5个单位得到的A1B1C1;
    (2)在图中作出A1B1C1关于y轴对称的A2B2C2;
    (3)经过上述平移变换和轴对称变换后,ABC内部的任意一点P(a,b)在A2B2C2内部的对应点P2的坐标为 .

    6、在平面直角坐标系中描出以下各点:A(3,2)、B(-1,2)、C(-2,-1)、D(4,-1).顺次连接A、B、C、D得到四边形ABCD;

    7、如图,在平面直角坐标系中,△ABC的两个顶点A,B在x轴上,顶点C在y轴上,且∠ACB=90°.
    (1)图中与∠ABC相等的角是    ;
    (2)若AC=3,BC=4,AB=5,求点C的坐标.

    8、如图,在平面直角坐标系中,线段AB的两个端点的坐标分别为A(﹣1,﹣2),B(﹣2,﹣4).
    (1)画出线段AB关于y轴对称的线段A1B1,再画出线段A1B1关于x轴对称的线段A2B2;
    (2)点A2的坐标为    ;
    (3)若此平面直角坐标系中有一点M(a,b),点M关于y轴对称的对称点M1,点M1关于x轴对称的对称点M2,则点M2的坐标为    .

    9、(1)如图①所示,图中的两个三角形关于某点对称,请找出它们的对称中心O.
    (2)如图②所示,已知△ABC的三个顶点的坐标分别为A(4,﹣1),B(1,1),C(3,﹣2).将△ABC绕原点O旋转180°得到△A1B1C1,请画出△A1B1C1,并写出点A1的坐标.

    10、如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(﹣1,0),B(﹣4,1),C(﹣2,2).

    (1)直接写出点B关于原点对称的点B′的坐标:  ;
    (2)平移△ABC,使平移后点A的对应点A1的坐标为(2,1),请画出平移后的△A1B1C1;
    (3)画出△ABC绕原点O逆时针旋转90°后得到的△A2B2C2.

    -参考答案-
    一、单选题
    1、A
    【分析】
    根据平面直角坐标系一三象限角平分线上点的特征是横纵坐标相等列式计算即可;
    【详解】
    ∵点在一、三象限的角平分线上,
    ∴,
    ∴;
    故选A.
    【点睛】
    本题主要考查了一三象限角平分线上点的特征,准确分析计算是解题的关键.
    2、D
    【分析】
    根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可直接得到答案.
    【详解】
    ∵点M(2,﹣3),点N与点M关于x轴对称,
    ∴点N的坐标是(2,3),
    故选:D.
    【点睛】
    本题考查了坐标轴中轴对称变化,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.
    3、C
    【分析】
    根据点P(2,b)在第四象限内,确定的符号,即可求解.
    【详解】
    解:点P(2,b)在第四象限内,∴,
    所以,点Q(b,-2)所在象限是第三象限,
    故选:C.
    【点睛】
    本题主要考查了平面直角坐标系中各象限的点的坐标的符号特点,解决本题的关键是要熟练掌握点在各象限的符号特征.
    4、A
    【分析】
    根据第三象限点的横坐标与纵坐标都是负数,然后判断点Q所在的象限即可.
    【详解】
    ∵点P(m,n)在第三象限,
    ∴m<0,n<0,
    ∴-m>0,-n>0,
    ∴点在第一象限.
    故选:A.
    【点睛】
    本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
    5、D
    【分析】
    根据点A的坐标和点的坐标确定平移规律,即可求出点P(a,b)平移后的对应点的坐标.
    【详解】
    解:∵△A′B′O′是由△ABO平移得到的,点A的坐标为(-1,2),它的对应点A′的坐标为(3,4),
    ∴△ABO平移的规律是:先向右移4个单位长度,再向上平移2个单位长度,
    ∴△ABO内任意点P(a,b)平移后的对应点P′的坐标为(a+4,b+2).
    故选:D.
    【点睛】
    此题考查了平面直角坐标系中点的平移规律,解题的关键是熟练掌握平面直角坐标系中点的平移规律.点向左平移,点的横坐标减小,纵坐标不变;向右平移,点的横坐标增大,纵坐标不变;点向上平移,点的横坐标不变,纵坐标增大;向下平移,点的横坐标不变,纵坐标减小.
    6、B
    【分析】
    根据关于原点对称的点的坐标特证构造方程-b=3,a=−2,再解方程即可得到a、b的值,进而可算出答案.
    【详解】
    解:∵点(a,﹣3)关于原点的对称点是(2,﹣b),
    ∴−b=3,a=−2,
    解得:b=-3,a=−2,
    则,
    故选择B.
    【点睛】
    本题主要考查了关于原点对称的点的坐标:掌握关于原点对称的特征,两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(−x,−y).关键是利用对称性质构造方程.
    7、C
    【分析】
    根据题意,找出其运动规律,质点每秒移动一个单位,质点到达(1,0)时,共用3秒;质点到达(2,0)时,共用4秒;质点到达(0,2)时,共用4+4=8秒;质点到达(0,3)时,共用9秒;质点到达(3,0)时,共用9+6=15秒;以此类推, 即可得出答案.
    【详解】
    解:由题意可知,质点每秒移动一个单位
    质点到达(1,0)时,共用3秒;
    质点到达(2,0)时,共用4秒;
    质点到达(0,2)时,共用4+4=8秒;
    质点到达(0,3)时,共用9秒;
    质点到达(3,0)时,共用9+6=15秒;
    以此类推,质点到达(4,0)时,共用16秒;
    质点到达(0,4)时,共用16+8=24秒;
    质点到达(0,5)时,共用25秒;
    故选:C.
    【点睛】
    本题考查图形变化与运动规律,根据所给质点运动的特点能够正确确定点运动的顺序,确定运动的距离,从而可以得到到达每个点所用的时间.找出规律是解题的关键.
    8、B
    【分析】
    观察图形可知,每4次运动为一个循环组循环,并且每一个循环组向右运动4个单位,用2021除以4,然后根据商和余数的情况确定运动后点的坐标即可.
    【详解】
    解:点的运动规律是每运动四次向右平移四个单位,

    动点第2021次运动时向右个单位,
    点此时坐标为,
    故选:B.
    【点睛】
    本题主要考查平面直角坐标系下的规律探究题,解答时注意探究动点的运动规律,又要注意动点的坐标的象限符号.
    9、B
    【分析】
    利用平移中点的变化规律求解即可.
    【详解】
    解:∵在平面直角坐标系中,点(3,-4)的坐标变为(-1,4),
    ∴点的横坐标减少4,纵坐标增加8,
    ∴先向左平移4个单位长度,再向上平移8个单位长度.
    故选:B.
    【点睛】
    本题考查了坐标与图形变化-平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.
    10、C
    【分析】
    分顺时针和逆时针旋转90°两种情况讨论,构造全等三角形即可求解.
    【详解】
    解:设点D绕着点A逆时针旋转90°得到点D1,
    分别过点D,D1作轴的垂线,分别交轴于点C、E,如图:

    根据旋转的性质得∠DAD1=90°,AD1=AD,
    ∴∠AED1=∠ACD=90°,
    ∴∠D1+∠EAD1=90°,∠EAD1 +∠DAC=90°,
    ∴∠D1=∠DAC,
    ∴△AD1E≌△DAC,
    ∴CD=AE,ED1=AC,
    ∵A(0,4),B(2,0),点D为AB的中点,
    ∴点D的坐标为(1,2),
    ∴CD=AE=1,ED1=AC=AO-OC=2,
    ∴点D1的坐标为(2,5);
    设点D绕着点A顺时针旋转90°得到点D2,
    同理,点D2的坐标为(-2,3),
    综上,点D绕着点A旋转90°得到点D的坐标为(-2,3)或(2,5),
    故选:C.
    【点睛】
    本题考查了坐标与图形的变化-旋转,全等三角形的判定和性质,根据平面直角坐标系确定出点D1和D2的位置是解题的关键.
    二、填空题
    1、或
    【分析】
    根据AB平行x轴,两点的纵坐标相同,得出y=2,再根据点到轴的距离是到轴距离的2倍,得出即可.
    【详解】
    解:∵点,,且ABx轴,
    ∴y=2,
    ∵点到轴的距离是到轴距离的2倍,
    ∴,
    ∴,
    ∴B(-4,2)或(4,2).
    故答案为(-4,2)或(4,2).
    【点睛】
    本题考查两点组成线段与坐标轴的位置关系,点到两轴的距离,掌握两点组成线段与坐标轴的位置关系,与x轴平行,两点纵坐标相同,与y轴平行,两点的横坐标相同,点到两轴的距离,到x轴的距离为|y|,到y轴的距离是|x|是解题关键.
    2、 (5,1)
    【分析】
    利用坐标点平移的性质:左右平移,对横坐标进行加减,上下平移对纵坐标进行加减,解决该题即可.
    【详解】
    解:点P(2,3)向右平移3个单位再向下平移2个单位,即横坐标加3,纵坐标减2,
    所以平移后的点坐标为(5,1).
    故答案为:(5,1).
    【点睛】
    本题主要是考查了点坐标的平移,熟练掌握点坐标的上下左右平移与横纵坐标的关系,是求解该类问题的关键.
    3、.
    【分析】
    根据“关于轴对称的点,纵坐标相同,横坐标互为相反数”解答即可.
    【详解】
    解:点关于轴对称点的坐标为.
    故答案为:.
    【点睛】
    本题考查了关于轴、轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.
    4、学习
    【分析】
    根据每一个点的坐标确定其对应的位置,最后写出答案.
    【详解】
    解:有序数对(5,3),(6,3)(7,3)(4,1)(4,4)对应的字母分别为S、T、U、D、Y,
    组成的英文单词为study,中文为学习,
    故答案为:学习.
    【点睛】
    此题考查了有序数对,正确理解有序数对的定义,确定各数对对应的字母是解题的关键.
    5、 (9,6)
    【分析】
    根据题意,找出题目的规律,中含有4个数,中含有9个数,中含有16个数,……,中含有64个数,且奇数行都是从左边第一个数开始,然后根据这个规律即可得出答案.
    【详解】
    解:根据题意,如图:

    ∴有序数对的数是;
    由图可知,中含有4个数,中含有9个数,中含有16个数;
    ……
    ∴中含有64个数,且奇数行都是从左边第一个数开始,
    ∵,
    ∴是第九行的第6个数;
    ∴数位置为有序数对是(9,6).
    故答案为:;(9,6).
    【点睛】
    此题考查数字的变化规律,找出数字之间的联系,得出运算规律,解决问题.
    三、解答题
    1、(1);(2)见解析;(3)7
    【分析】
    (1)根据平面直角坐标系直接写出点的坐标即可;
    (2)分别将点的横坐标和纵坐标都加2得到,并顺次连接,则即为所求
    (3)根据长方形减去三个三角形的面积即可求得△ABC 的面积
    【详解】
    (1)根据平面直角坐标系可得
    故答案为:
    (2)如图所示,分别将点的横坐标和纵坐标都加2得到,并顺次连接,则即为所求

    (3)的面积等于


    【点睛】
    本题考查了坐标与图形,平移作图,掌握平移的性质是解题的关键.
    2、(1)见解析;(2),,
    【分析】
    (1)利用平移变换的性质分别作出,,的对应点,,即可.
    (2)根据平面直角坐标系写出,,的坐标.
    【详解】
    解:(1)如图,△即为所求,

    (2)根据平面直角坐标系可得:,,.
    【点睛】
    本题考查作图平移变换等知识,解题的关键是掌握平移变换的性质,属于中考常考题型.
    3、(1)为所求,图形见详解,点B1(-5,-1);(2)为所求,图形见详解,点B2(5,1).
    【分析】
    (1)根据关于轴对称的,求出A1(-6,-6),B1(-5,-1),C1(-1,-6),然后在平面直角坐标系中描点,顺次连接A1B1, B1C1,C1A1即可;
    (2)根据关于轴对称的,求出A2(6,6),点B2(5,1),点C2(1,6),
    然后在平面直角坐标系中描点,顺次连接A2B2, B2C2,C2A2即可.
    【详解】
    解:(1)根据点在平面直角坐标系中的位置,△ABC三点坐标分别为A(-6,6),B(-5,1),C(-1,6),
    关于轴对称的,
    关于x轴对称点的特征是横坐标不变,纵坐标互为相反数,
    ∴中点A1(-6,-6),点B1(-5,-1),点C1(-1,-6),
    在平面直角坐标系中描点A1(-6,-6),B1(-5,-1),C1(-1,-6),
    顺次连接A1B1, B1C1,C1A1,
    则为所求,点B1(-5,-1);
    (2)∵关于轴对称的,
    ∴点的坐标特征是横坐标互为相反数,纵坐标不变,
    ∵△ABC三点坐标分别为A(-6,6),B(-5,1),C(-1,6),
    ∴中点A2(6,6),点B2(5,1),点C2(1,6),
    在平面直角坐标系中描点A2(6,6),B2(5,1),C2(1,6),
    顺次连接A2B2, B2C2,C2A2,
    则为所求,点B2(5,1).

    【点睛】
    本题考查在平面直角坐标系中画称轴对称的图形,掌握画图方法,先求坐标,描点,顺次连接是解题关键.
    4、(1)图见解析,A1(-1,-4);(2)图见解析,A2(4,1).
    【分析】
    (1)根据网格结构,找出点A、B、C关于y轴对称的点A1、B1、C1的位置,然后顺次连接即可,再根据平面直角坐标系写出点A1的坐标即可;
    (2)根据网格结构,找出点A、B、C绕点逆时针旋转90°的对应点A2、B2、C2的位置,然后顺次连接即可,再根据平面直角坐标系写出点A2的坐标即可.
    【详解】
    解:(1)如图所示,△A1B1C1即为所求作的三角形,点A1(-1,-4);
    (2)如图所示,△A2B2C2即为所求作的三角形,点A2(4,1).
    故答案为:(4,1).

    【点睛】
    本题考查了旋转和轴对称作图,掌握画图的方法和图形的特点是关键;注意根据对应点得到对称轴.
    5、(1)见解析;(2)见解析;(3)(﹣a﹣4,b﹣5)
    【分析】
    (1)利用平移变换的性质分别作出A,B,C 的对应点A1,B1,C1即可;
    (2)利用轴对称变换的性质分别作出A1,B1,C1的对应点A2,B2,C2即可;
    (3)利用平移变换的性质,轴对称变换的性质解决问题即可.
    【详解】
    解:(1)如图,△A1B1C1即为所求;
    (2)如图,△A2B2C2即为所求;

    (3)由题意得:P(﹣a﹣4,b﹣5).
    故答案为:(﹣a﹣4,b﹣5);
    【点睛】
    本题考查作图−轴对称变换,平移变换的性质等知识,解题的关键是掌握轴对称的性质,平移变换的性质,属于中考常考题型.
    6、见解析
    【分析】
    根据各点的坐标描出各点,然后顺次连接即可
    【详解】
    解:如图所示:

    【点睛】
    本题考查了坐标与图形,熟练掌握相关知识是解题的关键
    7、(1)∠ACO;(2)点C的坐标为(0,).
    【分析】
    (1)由同角的余角相等,可得到∠ABC=∠ACO;
    (2)利用面积法可求得CO的长,进而得到点C的坐标.
    【详解】
    解:(1)∵OC⊥AB,∠ACB=90°.
    ∴∠ABC+∠BCO=∠ACO+∠BCO=90°,
    ∴∠ABC=∠ACO;
    故答案为:∠ACO;
    (2)∵AC=3,BC=4,AB=5,
    ∴三角形ABC是直角三角形,∠ACB=90°
    ABCO=ACBC,即CO==,
    ∴点C的坐标为(0,).
    【点睛】
    本题考查了同角的余角相等,面积法求线段的长,坐标与图形,解题的关键是灵活运用所学知识解决问题.
    8、(1)见详解;(2)(1,2);(3)(-a,-b).
    【分析】
    (1)分别作出A、B二点关于y轴的对称点A1、B1,再分别作出A1、B1二点关于x轴的对称点A2、B2即可;
    (2)根据图示得出坐标即可;
    (3)根据轴对称的性质得出坐标即可.
    【详解】
    解:(1)如图所示:

    线段A1B1和线段A2B2即为所求;
    (2) 点A2的坐标为(1,2);
    (3)点M(a,b),关于y轴对称的对称点M1(-a,b),点M1关于x轴对称的对称点M2(-a,-b),故点M2的坐标为(-a,-b).
    【点睛】
    本题考查作图-轴对称变换,轴对称-最短问题,两点之间线段最短等知识,解题的关键是熟练掌握轴对称的概念,利用对称解决最短问题,属于中考常考题型.
    9、(1)见解析;(2)画图见解析,点A1的坐标为(-4,1).
    【分析】
    (1)根据对称中心的性质可得对应点连线的交点即为对称中心;
    (2)根据题意作出A,B,C绕原点O旋转180°得到的点A1,B1,C1,然后顺次连接A1,B1,C1即可,根据点A1的在平面直角坐标系中的位置即可求得坐标.
    【详解】
    (1)如图所示,点O即为要求作的对称中心.

    (2)如图所示,△A1B1C1即为要求作的三角形,

    由点A1的在平面直角坐标系中的位置可得,
    点A1的坐标为(-4,1).
    【点睛】
    此题考查了平面直角坐标系中的几何旋转作图,中心对称的性质,解题的关键是熟练掌握中心对称的性质.
    10、(1)(4,﹣1);(2)见解析;(3)见解析.
    【分析】
    (1)根据关于原点对称的两点的横纵坐标均与原来点的横纵坐标互为相反数,据此可得答案;
    (2)将三个点分别向右平移3个单位、再向上平移1个单位,继而首尾顺次连接即可;
    (3)将三个点分别绕原点O逆时针旋转90°后得到对应点,再首尾顺次连接即可.
    【详解】
    (1)点B关于原点对称的点B′的坐标为(4,﹣1),
    故答案为:(4,﹣1);
    (2)如图所示,△A1B1C1即为所求.

    (3)如图所示,△A2B2C2即为所求.
    【点睛】
    本题主要考查作图—平移变换、旋转变换,解题的关键是掌握平移变换和旋转变换的定义与性质,并据此得出变换后的对应点.

    相关试卷

    初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试测试题:

    这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试测试题,共28页。试卷主要包含了点A的坐标为,则点A在,平面直角坐标系内一点P,点A个单位长度.,平面直角坐标系中,点P等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试同步训练题:

    这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试同步训练题,共27页。试卷主要包含了在平面直角坐标系中,点P等内容,欢迎下载使用。

    沪教版 (五四制)第十五章 平面直角坐标系综合与测试课后测评:

    这是一份沪教版 (五四制)第十五章 平面直角坐标系综合与测试课后测评,共31页。试卷主要包含了点P的坐标为,在平面直角坐标系中,点,平面直角坐标系中,点P等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map