开学活动
搜索
    上传资料 赚现金

    2021-2022学年最新沪教版七年级数学第二学期第十五章平面直角坐标系专项练习试题(精选)

    2021-2022学年最新沪教版七年级数学第二学期第十五章平面直角坐标系专项练习试题(精选)第1页
    2021-2022学年最新沪教版七年级数学第二学期第十五章平面直角坐标系专项练习试题(精选)第2页
    2021-2022学年最新沪教版七年级数学第二学期第十五章平面直角坐标系专项练习试题(精选)第3页
    还剩30页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试达标测试

    展开

    这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试达标测试,共33页。试卷主要包含了在下列说法中,能确定位置的是,如果点P等内容,欢迎下载使用。
    七年级数学第二学期第十五章平面直角坐标系专项练习
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、一只跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1) →(1,0)→ … ],且每秒跳动一个单位,那么第25秒时跳蚤所在位置的坐标是( )

    A.(4,0) B.(5,0) C.(0,5) D.(5,5)
    2、如图,在坐标系中用手盖住一点,若点到轴的距离为2,到轴的距离为6,则点的坐标是( )

    A. B. C. D.
    3、在平面直角坐标系中,点A的坐标为(﹣4,3),若AB∥x轴,且AB=5,当点B在第二象限时,点B的坐标是(  )
    A.(﹣9,3) B.(﹣1,3) C.(1,﹣3) D.(1,3)
    4、若在第一象限的ABC关于某条直线对称后的DEF在第四象限,则这条直线可以是(  )
    A.直线x=﹣1 B.x轴 C.y轴 D.直线x=
    5、在下列说法中,能确定位置的是( )
    A.禅城区季华五路 B.中山公园与火车站之间
    C.距离祖庙300米 D.金马影剧院大厅5排21号
    6、如图,直角坐标平面xOy内,动点P按图中箭头所示方向依次运动,第1次从点(﹣1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,﹣2),…按这样的运动规律,动点P第2021次运动到点( )

    A.(2020,﹣2) B.(2020,1) C.(2021,1) D.(2021,﹣2)
    7、在平面直角坐标系中,已知点A(-4,3)与点B关于y轴对称,则点B的坐标为( )
    A.(-4,-3) B.(4,3) C.(4,-3) D.(-4,3)
    8、如果点P(m,n)是第三象限内的点,则点Q(-n,0)在( )
    A.x轴正半轴上 B.x轴负半轴上 C.y轴正半轴上 D.y轴负半轴上
    9、如图,在平面直角坐标系上有点A(1,0),点A第一次跳动至点A1(﹣1,1),第四次向右跳动5 个单位至点A4(3,2),…,依此规律跳动下去,点A第2020次跳动至点A2020的坐标是( )

    A.(﹣2020,1010) B.(﹣1011,1010) C.(1011,1010) D.(2020,1010)
    10、点P(﹣2,b)与点Q(a,3)关于x轴对称,则a+b的值为( )
    A.5 B.﹣5 C.1 D.﹣1
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、若点(-1,m)与点(n,2)关于y轴对称,则的值为__________.
    2、如图,在平面直角坐标系中,点P1的坐标为(,),将线段OP1绕点O按顺时针方向旋转45°,再将其长度伸长为OP1的2倍,得到线段OP2;又将线段OP2绕点O按顺时针方向旋转45°,长度伸长为OP2的2倍,得到线段OP3;如此下去,得到线段OP4,OP5,…,OPn(n为正整数),则点P2020的坐标是________.

    3、在平面直角坐标系中,点A的坐标为(a,3),点B的坐标是(4,b),若点A与点B关于原点O对称,则a-b=________.
    4、已知点与关于原点对称,则xy的值是______.
    5、在平面直角坐标系中,轰炸机机群的一个飞行队形如图所示,若其中两架轰炸机的坐标分别表示为A(1,3)、B(3,1),则轰炸机C的坐标是_________.

    三、解答题(10小题,每小题5分,共计50分)
    1、如图,在平面直角坐标系中,△ABC的三个项点坐标分别为A(1,1)、B(3,4)、C(4,2).
    (1)在图中画出△ABC关于y轴对称的△A1B1C1;
    (2)通过平移,使B1移动到原点O的位置,画出平移后的△A2B2C2.
    (3)在△ABC中有一点P(a,b),则经过以上两次变换后点P的对应点P2的坐标为_______.

    2、如图所示的方格纸中每个小方格都是边长为1个单位的正方形,建立如图所示的平面直角坐标系.
    (1)请写出△ABC各点的坐标A    B    C    ;
    (2)若把△ABC向上平移2个单位,再向右平移2个单位得,在图中画出,
    (3)求△ABC 的面积

    3、如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(0, -1),

    (1)写出A、B两点的坐标;
    (2)画出△ABC关于y轴对称的△A1B1C1 ;
    (3)画出△ABC绕点C旋转180°后得到的△A2B2C2.
    4、如图,ABCDx轴,且AB=CD=3,A点坐标为(-1,1),C点坐标为(1,-1),请写出点B,点D的坐标.

    5、如图1,A(﹣2,6),C(6,2),AB⊥y轴于点B,CD⊥x轴于点D.

    (1)求证:△AOB≌△COD;
    (2)如图2,连接AC,BD交于点P,求证:点P为AC中点;
    (3)如图3,点E为第一象限内一点,点F为y轴正半轴上一点,连接AF,EF.EF⊥CE且EF=CE,点G为AF中点.连接EG,EO,求证:∠OEG=45°.
    6、如图在平面直角坐标系中,△ABC各顶点的坐标分别为: A(4,0),B(﹣1,4),C(﹣3,1)
    (1)在图中作△A′B′C′使△A′B′C′和△ABC关于x轴对称;
    (2)求△ABC的面积

    7、如图,平面直角坐标系中ABC的三个顶点分别是A(-4,3),B(-2,4),C(-1,1).

    (1)将ABC绕点O逆时针旋转90°,画出旋转后的A1B1C1;
    (2)作出ABC关于点O的中心对称图形A2B2C2;
    (3)如果ABC内有一点P(a,b),请直接写出变换后的图形中对应点P1、P2的坐标.
    8、如图,在平面直角坐标系中,已知△ABC.
    (1)将△ABC向下平移6个单位,得,画出;
    (2)画出△ABC关于y轴的对称图形;
    (3)连接,并直接写出△A1A2C2的面积.

    9、如图,方格图中每个小正方形的边长为1,点A,B,C都是格点.
    (1)画出△ABC关于直线MN对称的.
    (2)若B为坐标原点,请写出、、的坐标,并直接写出的长度..
    (3)如图2,A,C是直线同侧固定的点,D是直线MN上的一个动点,在直线MN上画出点D,使最小.(保留作图痕迹)

    10、如图,在平面直角坐标系中,点为坐标原点,点,点在轴的负半轴上,点,连接、,且,

    (1)求的度数;
    (2)点从点出发沿射线以每秒2个单位长度的速度运动,同时,点从点出发沿射线以每秒1个单位长度的速度运动,连接、,设的面积为,点运动的时间为,求用表示的代数式(直接写出的取值范围);
    (3)在(2)的条件下,当点在轴的正半轴上,点在轴的负半轴上时,连接、、,,且四边形的面积为25,求的长.

    -参考答案-
    一、单选题
    1、C
    【分析】
    根据题意,找出其运动规律,质点每秒移动一个单位,质点到达(1,0)时,共用3秒;质点到达(2,0)时,共用4秒;质点到达(0,2)时,共用4+4=8秒;质点到达(0,3)时,共用9秒;质点到达(3,0)时,共用9+6=15秒;以此类推, 即可得出答案.
    【详解】
    解:由题意可知,质点每秒移动一个单位
    质点到达(1,0)时,共用3秒;
    质点到达(2,0)时,共用4秒;
    质点到达(0,2)时,共用4+4=8秒;
    质点到达(0,3)时,共用9秒;
    质点到达(3,0)时,共用9+6=15秒;
    以此类推,质点到达(4,0)时,共用16秒;
    质点到达(0,4)时,共用16+8=24秒;
    质点到达(0,5)时,共用25秒;
    故选:C.
    【点睛】
    本题考查图形变化与运动规律,根据所给质点运动的特点能够正确确定点运动的顺序,确定运动的距离,从而可以得到到达每个点所用的时间.找出规律是解题的关键.
    2、C
    【分析】
    首先根据P点在第四象限,可以确定P点横纵坐标的符号,再由P到坐标轴的距离即可确定P点坐标.
    【详解】
    解:∵P点在第四象限,
    ∴P点横坐标大于0,纵坐标小于0,
    ∵P点到x轴的距离为2,到y轴的距离为6,
    ∴P点的坐标为(6,-2),
    故选C.
    【点睛】
    本题主要考查了点所在的象限的坐标特征,点到坐标轴的距离,解题的关键在于能够熟练掌握第四象限点的坐标特征.
    3、A
    【分析】
    根据平行及线段长度、点B在第二象限,可判断点B一定在点A的左侧,且两个点纵坐标相同,再由线段长即可确定点B的坐标.
    【详解】
    解:∵轴,且,点B在第二象限,
    ∴点B一定在点A的左侧,且两个点纵坐标相同,
    ∴,即,
    故选:A.
    【点睛】
    题目主要考查坐标系中点的坐标,理解题意,掌握坐标系中点的特征是解题关键.
    4、B
    【分析】
    根据轴对称的性质判断即可.
    【详解】
    解:若在第一象限的ABC关于某条直线对称后的DEF在第四象限,则这条直线可以是x轴
    故选:B.
    【点睛】
    本题考察了轴对称的性质,利用轴对称的性质找出对称轴是本题的关键.
    5、D
    【分析】
    根据确定位置的方法逐一判处即可.
    【详解】
    解:A、禅城区季华五路,确定了路线,没能确定准确位置,故不符合题意;
    B、中山公园与火车站之间,没能确定准确位置,故不符合题意;
    C、距离祖庙300米,有距离但没有方向,故不符合题意;
    D、金马影剧院大厅5排21号,确定了位置,故符合题意.
    故选:D
    【点睛】
    本题考查了位置的确定,熟练掌握常见的确定位置的方法:①用有序数对确定物体位置;②用方向和距离来确定物体的位置.
    6、B
    【分析】
    观察图形可知,每4次运动为一个循环组循环,并且每一个循环组向右运动4个单位,用2021除以4,然后根据商和余数的情况确定运动后点的坐标即可.
    【详解】
    解:点的运动规律是每运动四次向右平移四个单位,

    动点第2021次运动时向右个单位,
    点此时坐标为,
    故选:B.
    【点睛】
    本题主要考查平面直角坐标系下的规律探究题,解答时注意探究动点的运动规律,又要注意动点的坐标的象限符号.
    7、B
    【分析】
    利用y轴对称的点的坐标特征:横坐标互为相反数,纵坐标相等,即可求出点B的坐标.
    【详解】
    解:∵ A(-4,3) ,
    ∴关于y轴对称点B的坐标为(4,3).
    故答案为:B.
    【点睛】
    本题主要是考查了y轴对称的点的坐标特征,熟练掌握关于不同坐标轴对称的点的坐标特征,是解决此类问题的关键.
    8、A
    【分析】
    根据平面直角坐标系中象限的坐标特征可直接进行求解.
    【详解】
    解:∵点P(m,n)是第三象限内的点,
    ∴n<0,
    ∴-n>0,
    ∴点Q(-n,0)在x轴正半轴上;
    故选A.
    【点睛】
    本题主要考查平面直角坐标系中象限的坐标,熟练掌握在第一象限的点坐标为(+,+);在第二象限的点坐标为(-,+),在第三象限的点坐标为(-,-),在第四象限的点坐标为(+,-)是解题的关键.
    9、C
    【分析】
    根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,然后写出即可.
    【详解】
    解:观察发现,第2次跳动至点的坐标是(2,1),
    第4次跳动至点的坐标是(3,2),
    第6次跳动至点的坐标是(4,3),
    第8次跳动至点的坐标是(5,4),

    ∴第2n次跳动至点的坐标是(n+1,n),
    ∴第2020次跳动至点的坐标是(1010+1,1010)即(1011,1010).
    故选C.
    【点睛】
    本题考查了坐标与图形的性质,以及图形的变化问题,结合图形得到偶数次跳动的点的横坐标与纵坐标的变化情况是解题的关键.
    10、B
    【分析】
    根据关于x轴对称的两点的坐标特征:横坐标相同,纵坐标互为相反数,即可求得a与b的值,从而求得a+b的值.
    【详解】
    ∵点P(﹣2,b)与点Q(a,3)关于x轴对称
    ∴a=−2,b=−3
    ∴a+b=−2+(−3)=−5
    故选:B
    【点睛】
    本题考查了关于x轴对称的两点的坐标特征,掌握这个特征是关键.
    二、填空题
    1、3
    【分析】
    根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”求出m、n的值,然后相加计算即可得解.
    【详解】
    解:∵点(-1,m)与点(n,2)关于y轴对称,
    ∴,,
    ∴;
    故答案为:3.
    【点睛】
    本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:
    (1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;
    (2)关于y轴对称的点,纵坐标相同,横坐标互为相反数.
    2、(0,)
    【分析】
    根据题意得出OP1=1,OP2=2,OP3=4,如此下去,得到线段OP4=8=23,OP5=16=24…,OPn=2n-1,再利用旋转角度得出点P2020的坐标与点P4的坐标在同一直线上,进而得出答案.
    【详解】
    解:∵点P1的坐标为(,),将线段OP1绕点O按顺时针方向旋转45°,再将其长度伸长为OP1的2倍,得到线段OP2;
    ∴OP1=1,OP2=2,
    ∴OP3=4,如此下去,得到线段OP4=23,OP5=24…,
    ∴OPn=2n-1,
    由题意可得出线段每旋转8次旋转一周,
    ∵2020÷8=252…4,
    ∴点P2020的坐标与点P4的坐标在同一直线上,正好在y轴的负半轴上,
    ∴点P2020的坐标是(0,).
    故答案为:(0,).
    【点睛】
    此题主要考查了点的变化规律,根据题意得出点P2020的坐标与点P4的坐标在同一直线上是解题关键.
    3、-1
    【分析】
    直接利用关于原点对称点的性质得出a,b的值,进而得出答案.
    【详解】
    解:∵点A的坐标为(a,3),点B的坐标是(4,b),点A与点B关于原点O对称,
    ∴a=﹣4,b=-3,
    则a-b=-4+3=-1.
    故答案为:﹣1.
    【点睛】
    此题主要考查了关于原点对称点的性质,正确得出a,b的值是解题关键.
    4、
    【分析】
    直接利用关于原点对称点的性质得出x,y的值进而得出答案.
    【详解】
    解:∵点与关于原点对称,

    解得:,
    则xy的值是:-3.
    故答案为:-3.
    【点睛】
    此题主要考查了关于原点对称点的性质,正确得出的值是解题关键.
    5、
    【分析】
    直接利用已知点坐标得出原点位置,进而得出答案.
    【详解】
    解:如图所示,建立平面直角坐标系,
    ∴轰炸机C的坐标为(-1,-2),
    故答案为:(-1,-2).

    【点睛】
    此题主要考查了坐标确定位置,正确得出原点位置建立坐标系是解题关键..
    三、解答题
    1、(1)见解析;(2)见解析;(3)
    【分析】
    (1)关于y轴对称可知,对应点纵坐标不变,横坐标互为相反数,由此可作出;
    (2)由移动到原点O的位置可知,对应点向右平移了3个单位,向下平移了4个单位,由此可作出;
    (3)根据两次变换可知,点P先关于y轴对称,再进行平移,即先纵坐标不变,横坐标互为相反数,再向右平移了3个单位,最后向下平移了4个单位,即可得到的坐标.
    【详解】

    (1)如图所示,即为所作;
    (2)如图所示,即为所作;
    (3)点关于y轴对称得,
    向右平移3个单位,再向下平移4个单位得.
    故答案为:.
    【点睛】
    本题考查平移与轴对称变换,掌握平移和轴对称的性质是解题的关键.
    2、(1);(2)见解析;(3)7
    【分析】
    (1)根据平面直角坐标系直接写出点的坐标即可;
    (2)分别将点的横坐标和纵坐标都加2得到,并顺次连接,则即为所求
    (3)根据长方形减去三个三角形的面积即可求得△ABC 的面积
    【详解】
    (1)根据平面直角坐标系可得
    故答案为:
    (2)如图所示,分别将点的横坐标和纵坐标都加2得到,并顺次连接,则即为所求

    (3)的面积等于


    【点睛】
    本题考查了坐标与图形,平移作图,掌握平移的性质是解题的关键.
    3、(1)A(-1,2) B(-3,1); (2)见解析;(3)见解析
    【分析】
    (1)根据 A,B 的位置写出坐标即可;
    (2)分别求出 A,B,C 的对应点 A1,B1,C1的坐标,然后描点A1(1,2),B1(3,1),C1(0,-1),顺次连结A1B1, B1C1,C1A1即可;
    (3)分别求出 A,B,C 的对应点A2(1,-4)、B2(3,-3)、C2(0,-1),然后描点,顺次连结A2B2, B2C2,C2A2即可.
    【详解】
    (1)由题意 A(-1,2),B(-3,1).
    (2)△ABC关于y轴对称的△A1B1C1,对应点的坐标纵坐标不变,横坐标互为相反数,
    ∵A(-1,2),B(-3,1).C(0,-1),
    ∴A1(1,2),B1(3,1),C1(0,-1),
    在平面直角坐标系中描点A1(1,2),B1(3,1),C1(0,-1),顺次连结A1B1, B1C1,C1A1,
    如图△A1B1C1即为所求.
    (3)△ABC绕点C旋转180°后得到的△A2B2C2,关于点C成中心对称,对应点的横坐标为互为相反数,
    ∵A(-1,2),B(-3,1).C(0,-1),
    ∴A2、B2、C2的横坐标分别为1,3,0,
    纵坐标分别为-1-(2+1)=-4,-1-(1+1)=-3,-1,
    ∴A2(1,-4)、B2(3,-3)、C2(0,-1),
    在平面直角坐标系中描点A2(1,-4)、B2(3,-3)、C2(0,-1),顺次连结A2B2, B2C2,C2A2,
    如图△A2B2C2即为所求.

    【点睛】
    本题主要考查图形与坐标,作图-轴对称变换,旋转变换等知识,解答本题的关键是熟练掌握基本知识,属于中考常考题型.
    4、B(2,1),D(﹣2,﹣1).
    【分析】
    根据平行于x轴的直线上点的坐标的特点求出纵坐标,再根据AB=CD=3得出横坐标.
    【详解】
    解:∵AB∥CD∥x轴,A点坐标为(﹣1,1),点C(1,﹣1),
    ∴点B、D的纵坐标分别是1,﹣1,
    ∵AB=CD=3,
    ∴点B、D的横坐标分别是-1+3=2,1-3=-2,
    ∴B(2,1),D(﹣2,﹣1).
    【点睛】
    本题主要是考查平行于x轴的直线的特点,解题关键是明确平行于x轴的直线上点的纵坐标相同.
    5、(1)见解析;(2)见解析;(3)见解析
    【分析】
    (1)根据即可证明;
    (2)过点作轴,交于点,得出,由平行线的性质得,由轴得,由得,故可得,从而得出,推出,根据证明,得出即可得证;
    (3)延长到,使,连接,,延长交于点,根据证明,得出,,故,由平行线的性质得出,进而推出,根据证明,故,,即可证明.
    【详解】
    (1)轴于点,轴于点,

    ,,
    ,,

    (2)

    如图2,过点作轴,交于点,


    轴,



    ,,,

    在与中,


    ,即点为中点;
    (3)

    如图3,延长到,使,连接,,延长交于点,
    ,,,

    ,,





    ,,




    ,,

    ,即.
    【点睛】
    本题考查全等三角形的判定与性质,利用做辅助线作全等三角形是解决本题的关键.
    6、(1)见解析;(2)11.5
    【分析】
    (1)直接利用关于x轴对称点的性质,进而得出答案;
    (2)利用△ABC所在矩形面积减去周围三角形面积进而得出答案.
    【详解】
    解:(1)如图所示

    (2)
    【点睛】
    此题主要考查了轴对称变换以及三角形面积求法,正确得出对应点位置是解题关键.
    7、(1)见解析;(2)见解析;(3)
    【分析】
    (1)找到绕点O逆时针旋转90°的对应点,顺次连接,则即为所求;
    (2)找到关于点O的中心对称的对应点,顺次连接,则即为所求;
    (3)根据A(-4,3),B(-2,4),C(-1,1)经过旋转变换得到的,即横纵坐标的绝对值交换,且在第三象限,都取负号,即可求得,根据中心对称,横纵坐标都取相反数即可求得
    【详解】
    (1)如图所示,找到绕点O逆时针旋转90°的对应点,顺次连接,则即为所求;
    (2)如图所示,找到关于点O的中心对称的对应点,顺次连接,则即为所求;

    (3)
    【点睛】
    本题考查了求关于原点中心对称的点的坐标,绕原点旋转90度的点的坐标,画旋转图形,画中心对称图形,图形与坐标,掌握中心对称与旋转的性质是解题的关键.
    8、(1)见解析;(2)见解析;(3)见解析,7
    【分析】
    (1)依据平移的方向和距离,即可得到;
    (2)依据轴对称的性质,即可得到;
    (3)依据割补法进行计算,即可得到△A1A2C2的面积.
    【详解】
    (1)如图所示,即为所求;
    (2)如图所示,即为所求;
    (3)如图所示,△A1A2C2即为所求作的三角形,
    △A1A2C2的面积=3×6-×2×3-×2×6-×1×4
    =18-3-6-2
    =7.

    【点睛】
    本题考查作图−平移变换,轴对称变换,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.
    9、(1)画图见解析;(2),;(3)画图见解析
    【分析】
    (1)分别确定关于对称的对称点 再顺次连接从而可得答案;
    (2)根据在坐标系内的位置直接写其坐标与的长度即可;
    (3)先确定关于的对称点,再连接 交于 则 从而可得答案.
    【详解】
    解:(1)如图1,是所求作的三角形,

    (2)如图1,为坐标原点,


    (3)如图2,点即为所求作的点.

    【点睛】
    本题考查的是画轴对称图形,建立坐标系,用根据点的位置确定点的坐标,轴对称的性质,掌握“利用轴对称的性质得到两条线段和取最小值时点的位置”是解本题的关键.
    10、(1);(2);(3)5
    【分析】
    (1)根据非负数的性质求得的值,进而求得,即可证明是等腰直角三角形,即可求得的度数;
    (2)分点在轴正半轴,原点,轴负半轴三种情况,根据点的运动表示出线段长度,进而根据三角形的面积公式即可列出代数式;
    (3)过点作,连接,根据四边形的面积求得,进而求得,由,设,,则,证明,进而可得,,进一步导角可得,根据等角对等边即可求得
    【详解】
    (1)




    是等腰直角三角形,

    (2)①当点在轴正半轴时,如图,

    ,,




    ②当点在原点时,都在轴上,不能构成三角形,则时,不存在
    ③当点在轴负半轴时,如图,

    ,,




    综上所述:
    (3)如图,过点作,连接






    设,,则,


    是等腰直角三角形




    在和中






    是等腰直角三角形

    中,







    【点睛】
    本题考查了非负数的性质,等腰三角形的性质与判定,全等三角形的性质与判定,正确的添加辅助线是解题的关键.

    相关试卷

    2021学年第十五章 平面直角坐标系综合与测试练习:

    这是一份2021学年第十五章 平面直角坐标系综合与测试练习,共34页。试卷主要包含了点关于轴对称的点的坐标是,点M,在平面直角坐标系中,点A,已知A等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试练习题:

    这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试练习题,共27页。试卷主要包含了在平面直角坐标系中,点P等内容,欢迎下载使用。

    沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试巩固练习:

    这是一份沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试巩固练习,共30页。试卷主要包含了在平面直角坐标系中,点P,点P在第二象限内,P点到x,如图,A等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map