初中数学冀教版七年级下册第七章 相交线与平行线综合与测试达标测试
展开
这是一份初中数学冀教版七年级下册第七章 相交线与平行线综合与测试达标测试,共20页。试卷主要包含了有下列说法,生活中常见的探照灯等内容,欢迎下载使用。
冀教版七年级下册第七章相交线与平行线定向训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 0分)一、单选题(10小题,每小题0分,共计0分)1、如图,∠1=35°,∠AOC=90°,点B,O,D在同一条直线上,则∠2的度数为 ( )A.125° B.115° C.105° D.95°2、如图,已知OE是的平分线,可以作为假命题“相等的角是对顶角”的反例的是( )A. B. C. D.3、如图,E在线段BA的延长线上,∠EAD=∠D,∠B=∠D,EFHC,连FH交AD于G,∠FGA的余角比∠DGH大16°,K为线段BC上一点,连CG,使∠CKG=∠CGK,在∠AGK内部有射线GM,GM平分∠FGC,则下列结论:①ADBC;②GK平分∠AGC;③∠DGH=37°;④∠MGK的角度为定值且定值为16°,其中正确结论的个数有( )A.4个 B.3个 C.2个 D.1个4、如图,下列给定的条件中,不能判定的是( )A. B. C. D.5、有下列说法:①两条不相交的直线叫平行线;②同一平面内,过一点有且只有一条直线与已知直线垂直;③两条直线相交所成的四个角中,如果有两个角相等,那么这两条直线互相垂直;④有公共顶点的两个角是对顶角.其中说法正确的个数是( )A.1 B.2 C.3 D.46、如图,已知AB∥CD,∠1=30°,∠2=90°,则∠3等于( )A.60° B.50° C.45° D.30°7、如图,△ABC沿BC方向平移到△DEF的位置,若BE=3cm,则平移的距离为( )A.1cm B.2cm C.3cm D.4cm8、如图,测量运动员跳远成绩选取的应是图中( )A.线段的长度 B.线段的长度C.线段的长度 D.线段的长度9、生活中常见的探照灯、汽车大灯等灯具都与抛物线有关.如图,从光源P点照射到抛物线上的光线等反射以后沿着与直线平行的方向射出,若,,则的度数为( )°A. B. C. D.10、如图,点O在直线BD上,已知,,则的度数为( ).A.20° B.70° C.80° D.90°第Ⅱ卷(非选择题 100分)二、填空题(5小题,每小题4分,共计20分)1、如图,直线AB、CD相交于点O,射线OM平分∠AOC,若∠BOD=72°,则∠BOM=_________°.2、如图,过直线AB上一点O作射线OC,∠BOC=29°38′,OD平分∠AOC,则∠DOC的度数为 _____.3、命题“a<2a”是 ___命题(填“真”或“假”).4、如图,给出下列条件:①;②;③;④.其中,能推出AD//BC的条件是 __.(填上所有符合条件的序号)5、如图,平分,,,则__.三、解答题(5小题,每小题10分,共计50分)1、P是三角形ABC内一点,射线PDAC,射线PEAB.(1)当点D,E分别在AB,BC上时,①补全图1;②猜想∠DPE与∠A的数量关系,并证明;(2)当点D,E都在线段BC上时,你在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由.2、根据要求画图或作答:如图所示,已知A、B、C三点.(1)连结线段AB;(2)画直线AC和射线BC;(3)过点B画直线AC的垂线,垂足为点D,则点A到直线BD的距离是线段_______的长度.3、如图,已知EFAB,∠DEF=∠A.(1)求证:DEAC;(2)若CD平分∠ACB,∠BED=60°,求∠ACD的度数.4、阅读下面的推理过程,将空白部分补充完整.已知:如图,在△ABC中,FGCD,∠1 = ∠3.求证:∠B + ∠BDE= 180°.解:因为FGCD(已知),所以∠1= .又因为∠1 = ∠3 (已知),所以∠2 = (等量代换).所以BC ( ),所以∠B + ∠BDE = 180°(___________________).5、如图,已知射线AB与直线CD交于点O,OF平分∠BOC,AE∥DC,且∠A=70°,求∠DOF. -参考答案-一、单选题1、A【解析】【分析】利用互余角的概念与邻补角的概念解答即可.【详解】解:∵∠1=35°,∠AOC=90°,∴∠BOC=∠AOC−∠1=55°.∵点B,O,D在同一条直线上,∴∠2=180°−∠BOC=125°.故选:A.【点睛】本题主要考查了角的和差运算,互余角的关系以及邻补角的关系.准确使用邻补角的关系是解题的关键.2、B【解析】【分析】根据角平分线定义得到,由于反例要满足角相等且不是对顶角,所以可作为反例.【详解】解:OE是的平分线,可作为说明命题“相等的角是对顶角”为假命题的反例故选:B.【点睛】本题考查命题与定理:判断一件事情的语句叫做命题,命题由题设和结论组成,题设是已知事项,结论是由已知事项推出的事实,一个命题可以写出“如果…那么…”的形式,任何一个命题非真即假,判断一个命题是假命题,只要举出反例即可.3、B【解析】【分析】根据平行线的判定定理得到AD∥BC,故①正确;由平行线的性质得到∠AGK=∠CKG,等量代换得到∠AGK=∠CGK,求得GK平分∠AGC;故②正确;根据题意列方程得到∠FGA=∠DGH=37°,故③正确;设∠AGM=α,∠MGK=β,得到∠AGK=α+β,根据角平分线的定义即可得到结论.【详解】解:∵∠EAD=∠D,∠B=∠D,∴∠EAD=∠B,∴AD∥BC,故①正确;∴∠AGK=∠CKG,∵∠CKG=∠CGK,∴∠AGK=∠CGK,∴GK平分∠AGC;故②正确;∵∠FGA的余角比∠DGH大16°,∴90°-∠FGA-∠DGH=16°,∵∠FGA=∠DGH,∴90°-2∠FGA=16°,∴∠FGA=∠DGH=37°,故③正确;设∠AGM=α,∠MGK=β,∴∠AGK=α+β,∵GK平分∠AGC,∴∠CGK=∠AGK=α+β,∵GM平分∠FGC,∴∠FGM=∠CGM,∴∠FGA+∠AGM=∠MGK+∠CGK,∴37°+α=β+α+β,∴β=18.5°,∴∠MGK=18.5°,故④错误,故选:B.【点睛】本题考查了平行线的判定和性质,角平分线的定义,对顶角性质,一元一次方程,正确的识别图形是解题的关键.4、A【解析】【分析】根据平行线的判定条件:同位角相等,两直线平行,同旁内角互补,两直线平行,内错角相等,两直线平行,进行逐一判断即可.【详解】解:A选项:当∠1=∠A时,可知是DE和AC被AB所截得到的同位角,可得到DE∥AC,而不是AB∥DF,故符合题意;B选项:当∠A=∠3时,可知是AB、DF被AC所截得到的同位角,可得AB∥DF,故不符合题意;C选项:当∠1=∠4时,可知是AB、DF被DE所截得到的内错角,可得AB∥DF,故不符合题意;D选项:当∠2+∠A=180°时,是一对同旁内角,可得AB∥DF;故不符合题意;故选A.【点睛】本题主要考查了平行线的判定,熟知平行线的判定条件是解题的关键.5、A【解析】【分析】根据平行线的定义、垂直的定义及垂线的唯一性、对顶角的含义即可判断.【详解】同一平面内不相交的两条直线叫做平行线,故说法①错误;说法②正确;两条直线相交所成的四个角中,如果有一个角是直角,那么这两条直线互相垂直,当这两个相等的角是对顶角时则不垂直,故说法③错误;根据对顶角的定义知,说法④错误;故正确的说法有1个;故选:A【点睛】本题考查了两条直线的位置关系中的相关概念及性质,掌握这些概念是关键.6、A【解析】略7、C【解析】【分析】根据题意可得 的长度等于平移的距离,即可求解.【详解】∵△ABC沿BC方向平移到△DEF的位置,∴点 的对应点为 ,即 的长度等于平移的距离,∵BE=3cm,∴平移的距离为3cm.故选:C【点睛】本题主要考查了图形的平移,熟练掌握平移的距离都等于对应点间长度是解题的关键.8、D【解析】【分析】直接利用过一点向直线作垂线,利用垂线段最短得出答案.【详解】解:如图所示:过点P作PH⊥AB于点H,PH的长就是该运动员的跳远成绩,故选:D.【点睛】本题主要考查了垂线段最短,正确理解垂线段最短的意义是解题关键.9、C【解析】【分析】根据平行线的性质可得,进而根据即可求解【详解】解:故选C【点睛】本题考查了平行线的性质,掌握平行线的性质是解题的关键.10、B【解析】【分析】直接利用垂直的定义结合互余得出答案.【详解】解:∵点O在直线DB上, OC⊥OA, ∴∠AOC=90°,∵∠1=20°,∴∠BOC=90°−20°=70°,故选:B.【点睛】此题主要考查了垂线以及互余,正确把握相关定义是解题关键.二、填空题1、144【解析】【分析】首先根据邻补角互补,对顶角相等可得∠AOC=72°,∠BOC=108°,再根据角平分线的性质可得∠MOC的度数,进而可得答案.【详解】解:∵∠BOD=72°,∴∠AOC=72°,∠BOC=108°,∵OM平分∠AOC,∴∠MOC=36°,∴∠BOM=∠BOC+∠MOC=144°.故答案为:144.【点睛】本题主要考查了对顶角和邻补角,角平分线的定义,关键是掌握邻补角互补,对顶角相等.2、【解析】【分析】先根据邻补角互补求出∠AOC=150°22′,再由角平分线的定义求解即可.【详解】解:∵∠BOC=29°38′,∠AOC+∠BOC=180°,∴∠AOC=150°22′,∵OD平分∠AOC,∴,故答案为:.【点睛】本题主要考查了邻补角互补,角度制的计算,角平分线的定义,熟知相关知识是解题的关键.3、假【解析】【分析】根据实数比较大小的原则求解即可.【详解】当a为负数时,,∴命题“a<2a”是假命题.故答案为:假.【点睛】本题考查了命题的真假判定,实数的比较大小,重点是掌握实数比较大小的运算法则.4、②④##④②【解析】【分析】利用平行线的判定定理依次判断.【详解】①,;②,;③,;④,.故答案为:②④.【点睛】此题考查了平行线的判定定理,熟记平行线的判定定理并熟练应用是解题的关键.5、##BC//DE【解析】【分析】由平分,可得,再根据同旁内角互补两直线平行可得结论.【详解】解:平分,,∴=2=110°,,∴∠C+∠CDE=70°+110°=180°,.故答案为:.【点睛】本题考查了角的平分线的性质,平行线的判定,熟练的掌握平行线的判定方法是解题关键.三、解答题1、 (1)①见解析;②∠DPE+∠A=180°.证明见解析(2)不成立,此时∠DPE=∠A.证明见解析【解析】【分析】(1)①根据题意补全图形即可;②根据平行线的性质,即可得到∠A=∠BDP,∠DPE+∠BDP=180°,即可得到∠DPE与∠A的数量关系;(2)先反向延长射线PD交AB于点D1,可知∠DPE+∠D1PE=180°,由(1)结论可知∠D1PE+∠A=180°,进而得出∠DPE=∠A.(1)解:①补全图形,如图1所示.②∠DPE+∠A=180°. 证明:∵PD∥AC,∴∠A=∠BDP. ∵PE∥AB,∴∠DPE+∠BDP=180°,∴∠DPE+∠A=180°;(2)解:不成立,此时∠DPE=∠A.理由如下:如图2,反向延长射线PD交AB于点D1,可知∠DPE+∠D1PE=180°. 由(1)结论可知∠D1PE+∠A=180°.∴∠DPE=∠A.【点睛】本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同旁内角互补.2、(1)画图见解析;(2)画图见解析;(3)画图见解析,【解析】【分析】(1)连接即可;(2)过两点画直线即可,以为端点画射线即可;(3)利用三角尺过画的垂线,垂足为 可得 从而可得点A到直线BD的距离是垂线段的长度.【详解】解:(1)如图,线段AB即为所求作的线段,(2)如图,直线AC和射线BC即为所求作的直线与射线,(3)如图,BD即为所画的垂线,点A到直线BD的距离是线段的长度.故答案为:【点睛】本题考查的是画直线,射线,线段,过一点画已知直线的垂线,点到直线的距离的含义,掌握画直线,射线,线段及画已知直线的垂线是解本题的关键.3、 (1)见解析(2)30°【解析】【分析】(1)根据EFAB,可得∠BDE=∠DEF,又∠DEF=∠A等量代换可得∠BDE=∠A,进而可得DEAC;(2)根据(1)的结论可得,根据角平分线的定义即可求得∠ACD的度数.(1)∵EFAB,∴∠BDE=∠DEF,又∠DEF=∠A∴∠BDE=∠A,∴DEAC;(2) DEAC,∠BED=60°, CD平分∠ACB,【点睛】本题考查了平行线的性质与判定,角平分线的意义,掌握平行线的性质与判定是解题的关键.4、∠2;∠3;DE;内错角相等,两直线平行;两直线平行,同旁内角互补.【解析】【分析】首先根据两直线平行,同位角相等可得到,然后根据角度之间的等量代换可得到,然后根据内错角相等,两直线平行可得到,最后根据两直线平行,同旁内角互补可得到∠B + ∠BDE = 180°.【详解】解:因为FGCD(已知),所以∠1=∠2.又因为∠1 = ∠3 (已知),所以∠2 =∠3(等量代换).所以(内错角相等,两直线平行),所以∠B + ∠BDE = 180°(两直线平行,同旁内角互补).故答案为:∠2;∠3;DE;内错角相等,两直线平行;两直线平行,同旁内角互补.【点睛】本题考查了平行线的判定与性质,解决本题的关键是准确区分平行线的判定与性质,并能熟练运用.5、145°【解析】【分析】根据平行线的性质,两直线平行,同位角相等可得∠A=∠BOC=70°,由角平分线的性质可得∠BOF=∠FOC=35°,再根据平角的性质即可得出答案.【详解】解:∵AE∥DC,∴∠A=∠BOC=70°,又∵OF平分∠BOC,∴∠BOF=∠FOC=35°,∴∠DOF=180°-∠FOC=180°-35°=145°.【点睛】本题主要考查了平行线的性质、邻补角的概念等,熟练应用平行线的性质进行求解是解决本题的关键.
相关试卷
这是一份初中冀教版第七章 相交线与平行线综合与测试习题,共21页。试卷主要包含了下列命题是真命题的是,如图,直线b等内容,欢迎下载使用。
这是一份冀教版七年级下册第七章 相交线与平行线综合与测试一课一练,共22页。试卷主要包含了下列语句正确的个数是,下列说法中不正确的是等内容,欢迎下载使用。
这是一份冀教版七年级下册第七章 相交线与平行线综合与测试课时作业,共22页。试卷主要包含了下列命题中,是真命题的是,下列命题中,为真命题的是,下列说法正确的是,下列A等内容,欢迎下载使用。