冀教版七年级下册第七章 相交线与平行线综合与测试课后练习题
展开
这是一份冀教版七年级下册第七章 相交线与平行线综合与测试课后练习题,共23页。试卷主要包含了直线,如图,直线b等内容,欢迎下载使用。
冀教版七年级下册第七章相交线与平行线专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 0分)一、单选题(10小题,每小题0分,共计0分)1、如图,一定能推出的条件是( )A. B. C. D.2、下列语句正确的个数是( )(1)经过平面内一点有且只有一条直线与已知直线垂直;(2)经过平面内一点有且只有一条直线与已知直线平行;(3)在同一平面内,如果两条直线都与第三条直线平行,那么这两条直线也互相平行;(4)在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线也互相平行.A.1个 B.2个 C.3个 D.4个3、生活中常见的探照灯、汽车大灯等灯具都与抛物线有关.如图,从光源P点照射到抛物线上的光线等反射以后沿着与直线平行的方向射出,若,,则的度数为( )°A. B. C. D.4、如图,下列给定的条件中,不能判定的是( )A. B. C. D.5、如图,一束平行光线中,插入一张对边平行的纸版,如果光线与纸版右下方所成的∠1是110°,那么光线与纸版左上方所成的∠2的度数是( )A.110° B.100° C.90° D.70°6、直线、、、如图所示.若∠1=∠2,则下列结论错误的是( )A.ABCD B.∠EFB=∠3 C.∠4=∠5 D.∠3=∠57、如图,直线b、c被直线a所截,则与是( )A.对顶角 B.同位角 C.内错角 D.同旁内角8、如图,点在延长线上,下列条件中不能判定的是( )A. B. C. D.9、下面的四个图形中,能够通过基本图形平移得到的图形有( )A.1个 B.2个 C.3个 D.4个10、如图,O为直线AB上一点,∠COB=36°12',则∠AOC的度数为( )A.164°12' B.136°12' C.143°88' D.143°48'第Ⅱ卷(非选择题 100分)二、填空题(5小题,每小题4分,共计20分)1、如图,已知∠1=30°,∠2或∠3满足条件_________,则a∥b.2、如图,AB∥CD,M在AB上,N在CD上,求∠1+∠2+∠3+∠4=_______.3、如图,直线AB和CD相交于点O,∠BOE=90°,∠DOE=130°,则∠AOC=______.4、如图,若,,,那么_____.(用、表示)5、在平面内,把一个图形沿某一方向移动一定的距离,会得到一个新图形. 图形的这种移动叫做平移变换,简称_________.平移的性质:(1)新图形与原图形形状和大小_________,位置_________.(2)对应点的连线_________.三、解答题(5小题,每小题10分,共计50分)1、如图,已知AB∥CD,BE平分∠ABC,DB平分∠CDF,且∠ABC+∠CDF=180°.求证:BE⊥DB.证明:∵AB∥CD∴∠ABC=∠BCD( )∵∠ABC+∠CDF=180°( )∴∠BCD+∠CDF=180°( )∴BC∥DF( )于是∠DBC=∠BDF( )∵BE平分∠ABC,DB平分∠CDF∴∠EBC=∠ABC,∠BDF= ( )∵∠EBC+∠DBC=∠EBC+∠BDF=(∠ABC+∠CDF)即∠EBD= ∴BE⊥DB( )2、如图,已知点A,B,C,D是不在同一直线上的四个点,请按要求画出图形.(1)画直线AB和射线CB;(2)连接AC,过点C画直线AB的垂线,垂足为E;(3)在直线AB上找一点P,连接PC、PD,使的和最短.3、如图所示的方格纸中,每个小正方形的边长为1,每个小正方形的顶点叫做格点,请利用格点和直尺画图,并完成填空.(画出的点、线请用铅笔描粗描黑)(1)画线段和直线;(2)过点画的垂线,垂足为点,并标出经过的格点;(3)线段长是点______到直线______的距离;(4)三角形的面积是______.4、(1)探究:如图1,ABCDEF,试说明.(2)应用:如图2,ABCD,点在、之间,与交于点,与交于点.若,,则的大小是多少?(3)拓展:如图3,直线在直线、之间,且ABCDEF,点、分别在直线、上,点是直线上的一个动点,且不在直线上,连接、.若,则 度(请直接写出答案).5、如图,方格纸中每个小正方形的边长为1cm,点A、B、C均为格点.(1)根据要求画图:①过C点画直线MN∥AB;②过点C画AB的垂线,垂足为D点.(2)图中线段 的长度表示点A到直线CD的距离;(3)三角形ABC的面积= cm2. -参考答案-一、单选题1、D【解析】【分析】平行线的判定方法有:同位角相等,两直线平行;内错角相等,两直线平行,同旁内角互补,两直线平行;根据平行线的判定方法逐一判定即可.【详解】解:A.和是直线和被直线所截所成的内错角,不能推出,故本选项不符合题意;B.和是直线和被直线所截所成的内错角,不能推出,故本选项不符合题意;C.和是直线和被直线所截所成的内错角,但不能判定,不能判定,和是直线和被直线所截所成的同位角,但不能判定,不能判定,不能推出,故本选项不符合题意;D.和是直线和被直线所截所成的同位角,能推出,故本选项符合题意;故选:D.【点睛】本题主要考查了平行线的判定,熟记同位角相等,两直线平行是解决问题的关键.2、C【解析】【分析】由题意直接根据平行公理及平行线的判定定理进行判断即可.【详解】解:经过平面内一点有且只有一条直线与已知直线垂直,故(1)正确;经过直线外一点有且只有一条直线与已知直线平行,故(2)不正确;平面内,平行具有传递性,故(3)正确;同一平面内,如果两条直线都与第三条直线垂直,则同位角(内错角)相等,这两条直线互相平行,故(4)正确,∴正确的有(1)、(3)、(4),故选:C.【点睛】本题考查平行公理及平行线的判定定理,熟练掌握理解平行线公理及判定定理是解题的关键.3、C【解析】【分析】根据平行线的性质可得,进而根据即可求解【详解】解:故选C【点睛】本题考查了平行线的性质,掌握平行线的性质是解题的关键.4、A【解析】【分析】根据平行线的判定条件:同位角相等,两直线平行,同旁内角互补,两直线平行,内错角相等,两直线平行,进行逐一判断即可.【详解】解:A选项:当∠1=∠A时,可知是DE和AC被AB所截得到的同位角,可得到DE∥AC,而不是AB∥DF,故符合题意;B选项:当∠A=∠3时,可知是AB、DF被AC所截得到的同位角,可得AB∥DF,故不符合题意;C选项:当∠1=∠4时,可知是AB、DF被DE所截得到的内错角,可得AB∥DF,故不符合题意;D选项:当∠2+∠A=180°时,是一对同旁内角,可得AB∥DF;故不符合题意;故选A.【点睛】本题主要考查了平行线的判定,熟知平行线的判定条件是解题的关键.5、A【解析】【分析】根据AB∥CD,BC∥AD,分别得到∠1+∠ADC=180°,∠2+∠ADC=180°,因此∠1=∠2,即可求解.【详解】解:如图:∵AB∥CD,∴∠1+∠ADC=180°,∵BC∥AD,∴∠2+∠ADC=180°,∴∠1=∠2.∵∠1=110°,∴∠2=110°.故选:A.【点睛】本题考查平行线的性质,两直线平行,同旁内角互补.6、D【解析】【分析】根据平行线的判定与性质、对顶角相等逐项判断即可.【详解】解:∵∠1=∠2,∴AB∥CD,故A正确,不符合题意;∴∠4=∠5,故C正确,不符合题意;∵∠EFB与∠3是对顶角,∴∠EFB=∠3,故B正确,无法判断∠3=∠5,故D错误,符合题意,故选:D.【点睛】本题考查平行线的判定与性质、对顶角相等,熟练掌握平行线的判定与性质是解答的关键.7、B【解析】【分析】根据对顶角、同位角、内错角、同旁内角的特征去判断即可.【详解】∠1与∠2是同位角故选:B【点睛】本题考查了同位角的含义,理解同位角的含义并正确判断同位角是关键.8、A【解析】【分析】根据平行线的判定方法直接判定即可.【详解】解:选项B中,,(内错角相等,两直线平行),所以正确;选项C中,,(内错角相等,两直线平行),所以正确;选项D中,,(同旁内角互补,两直线平行),所以正确;而选项A中,与是直线、被所截形成的内错角,因为,所以应是,故A错误.故选:A.【点睛】本题主要考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.9、B【解析】【分析】根据平移的性质,对逐个选项进行分析即可.【详解】解:第一个、第二个图不能由基本图形平移得到,第三个、第四个图可以由基本图形平移得到,故选:B.【点睛】本题主要考查了图形的平移,图形的平移只改变图形的位置,不改变图形的形状,大小,方向.学生比较难区分平移、旋转或翻转.10、D【解析】【分析】根据邻补角及角度的运算可直接进行求解.【详解】解:由图可知:∠AOC+∠BOC=180°,∵∠COB=36°12',∴∠AOC=180°-∠BOC=143°48',故选D.【点睛】本题主要考查邻补角及角度的运算,熟练掌握邻补角及角度的运算是解题的关键.二、填空题1、∠2=150°或∠3=30°【解析】略2、540°【解析】【分析】首先过点E、F作EG、FH平行于AB,根据两直线平行,同旁内角互补,即可求得答案.【详解】如图,过点E、F作EG、FH平行于AB,∵AB∥CD,∵AB∥EG∥FH∥CD,∴∠1+∠MEG=180°,∠GEF+∠EFH=180°,∠HFN+∠4=180°,∴∠1+∠MEF+∠EFN+∠4=540°,故答案为:540°.【点睛】此题考查了平行线的性质.注意掌握辅助线的作法是解此题的关键.3、40°##40度【解析】【分析】先根据角的和差关系可求∠BOD,再根据对顶角相等可求∠AOC.【详解】解:∵∠BOE=90°,∠DOE=130°,∴∠BOD=130°-90°=40°,又 ∴∠AOC=40°.故答案为:40°.【点睛】本题考查了对顶角,关键是根据角的和差关系可求∠BOD.4、【解析】【分析】过点作,证明,可得再结合角的和差关系可得结论.【详解】解:过点作,,, ,,故答案为:.【点睛】本题考查的是平行公理的应用,平行线的性质的应用,作出适当的辅助线是解本题的关键.5、 平移 完全相同 不同 平行且相等【解析】略三、解答题1、两直线平行,内错角相等;已知;等量代换;同旁内角相等,两直线平行;两直线平行,内错角相等;∠CDF,角平分线定义;90°;垂直的定义.【解析】【分析】结合条件与图形,读懂每一步推理及推理的依据,即可完成解答.【详解】∵AB∥CD,∴∠ABC=∠BCD(两直线平行,内错角相等),∵∠ABC+∠CDF=180°(已知),∴∠BCD+∠CDF=180°(等量代换),∴BC∥DF(同旁内角互补,两直线平行),于是∠DBC=∠BDF(两直线平行,内错角相等),∵BE平分∠ABC,DB平分∠CDF,∴∠EBC=∠ABC,∠BDF=∠CDF(角平分线定义),∵∠EBC+∠DBC=∠EBC+∠BDF=(∠ABC+∠CDF),即∠EBD=90°,∴BE⊥DB(垂直的定义).故答案分别为;两直线平行,内错角相等;已知;等量代换;同旁内角相等,两直线平行;两直线平行,内错角相等;∠CDF,角平分线定义;90°;垂直的定义【点睛】本题考查了平行线的判定与性质,角平分线的定义及垂直的定义等知识,根据题意读懂每步推理,弄清每步推理的依据是完成本题的关键.2、 (1)见解析(2)见解析(3)见解析【解析】【分析】(1)根据直线和射线的定义,即可求解;(2)根据垂线的定义,即可求解;(3)根据题意可得:PC+PD≥CD,从而得到当P、C、D三点共线时,PC+PD的和最短,即可求解.(1)解:直线AB和射线CB即为所求,如图所示;(2)如图,直线CE即为所求;(3)连接CD交AB于点P,如图所示,点P即为所求根据题意得:PC+PD≥CD,∴当P、C、D三点共线时,PC+PD的和最短.【点睛】本题主要考查了直线、射线、线段、垂线的定义,熟练掌握直线是两端都没有端点、可以向两端无限延伸、不可测量长度的线;射线是只有一个端点,它从一个端点向另一边无限延长不可测量长度的线;直线上两个点和它们之间的部分叫做线段;当两条直线相交所成的四个角中,有一个角是直角时,即两条直线互相垂直,其中一条直线叫做另一直线的垂线,交点叫垂足是解题的关键.3、 (1)见解析(2)见解析(3),(4)【解析】【分析】(1)连接 过两点画直线即可;(2)观察线段,可得是网格图中3个小正方形组成的小长方形的对角线,利用这个特点画线段即可;(3)由点到直线的距离的概念可直接得到答案;(4)利用长方形的面积减去周围三个三角形的面积即可.(1)解:如图,线段 直线即为所求作的线段与直线,(2)解:如(1)中图,即为所求作的垂线,为格点,为垂足.(3)解:由点到直线的距离的概念可得:线段长是点到直线的距离.故答案为:(4)解: 故答案为:【点睛】本题考查的是画线段,直线,利用网格图作已知直线的垂线,点到直线的距离,网格三角形的面积的计算,掌握以上基础知识是解本题的关键.4、(1)见解析;(2)60°;(3)70或290【解析】【分析】(1)由可得,,,则;(2)利用(1)中的结论可知,,则可得的度数为,由对顶角相等可得;(3)结合(1)中的结论可得,注意需要讨论是钝角或是锐角时两种情况.【详解】解:(1)如图1,,,,,.(2)由(1)中探究可知,,,且,,;(3)如图,当为钝角时,由(1)中结论可知,,;当为锐角时,如图,由(1)中结论可知,,即,综上,或.故答案为:70或290.【点睛】本题主要考查平行线的性质与判定,难度适中,观察图形,推出角之间的和差关系是解题关键.5、 (1)画图见详解.(2)AD##DA(3)2.5####【解析】【分析】(1)①根据方格纸的特点,过C点与AB平行的直线MN,应是过点C的相连的三个横方格左下角到右上角连成的对角线所在的直线.②过C点与AB垂直的直线CD,应是过点C的相连的三个竖方格左上角到右下角连成的对角线所在的直线.(2)因为CD与AB垂直,所以点A到CD的距离就是线段AD的长度.(3)三角形ABC的面积等于三角形所在的方格所形成的长方形的面积减掉三个小三角形的面积.(1)如图所示①直线MN即为所求作的图形;②CD即为所求的AB的垂线;(2)∵CD⊥AB∴点A到直线CD的距离就是线段AD的长度.(3)三角形ABC的面积=3×2-(1×2÷2+1×2÷2+1×3÷2)=6-3.5=2.5(cm2)【点睛】本题考查了作图-应用与设计作图、点到直线的距离、平行线的判定和性质、三角形的面积,解决本题的关键是准确画图.
相关试卷
这是一份数学七年级下册第七章 相交线与平行线综合与测试测试题,共25页。试卷主要包含了如图,直线b,下列命题不正确的是等内容,欢迎下载使用。
这是一份冀教版七年级下册第七章 相交线与平行线综合与测试课后测评,共22页。试卷主要包含了如图,直线b等内容,欢迎下载使用。
这是一份冀教版七年级下册第七章 相交线与平行线综合与测试同步训练题,共20页。试卷主要包含了下列各图中,和是对顶角的是,如图,直线AB,下列说法中正确的有,下列说法正确的有等内容,欢迎下载使用。