开学活动
搜索
    上传资料 赚现金

    2022年必考点解析沪教版七年级数学第二学期第十五章平面直角坐标系必考点解析试卷(含答案解析)

    2022年必考点解析沪教版七年级数学第二学期第十五章平面直角坐标系必考点解析试卷(含答案解析)第1页
    2022年必考点解析沪教版七年级数学第二学期第十五章平面直角坐标系必考点解析试卷(含答案解析)第2页
    2022年必考点解析沪教版七年级数学第二学期第十五章平面直角坐标系必考点解析试卷(含答案解析)第3页
    还剩30页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021学年第十五章 平面直角坐标系综合与测试课后作业题

    展开

    这是一份2021学年第十五章 平面直角坐标系综合与测试课后作业题,共33页。试卷主要包含了点P的坐标为,点A个单位长度.,已知点A等内容,欢迎下载使用。
    七年级数学第二学期第十五章平面直角坐标系必考点解析
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,A、B两点的坐标分别为A(-2,-2)、B(4,-2),则点C的坐标为( )

    A.(2,2) B.(0,0) C.(0,2) D.(4,5)
    2、如图为某停车场的平面示意图,若“奥迪”的坐标是(-2,-1),“奔驰”的坐标是(1,-1),则“东风标致”的坐标是( )

    A.(-3,2) B.(3,2) C.(-3,-2) D.(3,-2)
    3、△ABC在平面直角坐标系中的位置如图所示,将其绕点P顺时针旋转得到△A'B'C′,则点P的坐标是(  )

    A.(4,5) B.(4,4) C.(3,5) D.(3,4)
    4、点P的坐标为(﹣3,2),则点P位于( )
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    5、如图,在坐标系中用手盖住一点,若点到轴的距离为2,到轴的距离为6,则点的坐标是( )

    A. B. C. D.
    6、若在第一象限的ABC关于某条直线对称后的DEF在第四象限,则这条直线可以是(  )
    A.直线x=﹣1 B.x轴 C.y轴 D.直线x=
    7、点A(-3,1)到y轴的距离是(  )个单位长度.
    A.-3 B.1 C.-1 D.3
    8、如图,在平面直角坐标系中,长方形的顶点的坐标分别为,点是的中点,点在上运动,当时,点的坐标是( )

    A. B. C. D.
    9、已知点A(﹣2,a)和点B(2,﹣3)关于原点对称,则a的值为( )
    A.2 B.﹣2 C.3 D.﹣3
    10、点在( )
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、点(2,-3)关于原点的对称点的坐标为_____.
    2、如图,有一个英文单词,它的各个字母的位置依次是,,,,,所对应的字母,如对应的字母是,则这个英文单词为_____.

    3、点关于x轴对称的点的坐标为________.
    4、点P(1,-2)关于轴的对称点的坐标是_________.
    5、在平面直角坐标系中,点与点B关于y轴对称,则点B的坐标是________.
    三、解答题(10小题,每小题5分,共计50分)
    1、如图,在直角坐标系中按要求作图,所画图形的顶点必须与每个小正方形的顶点重合.

    (1)画出一个面积等于9的等腰直角三角形ABC,使△ABC的三个顶点在坐标轴上,且△ABC关于y轴对称,其中点A的坐标为(0,3);(点B在点C的左侧)
    (2)将△ABC向下平移3个单位,再向右平移1个单位得到△A1B1C1(点A、B、C的对应点分别为点A1、B1、C1),画出△A1B1C1,并直接写出A1C的长.
    2、如图,在平面直角坐标系中,AO=CO=6,AC交y轴于点B,∠BAO=30°,CO的垂直平分线过点B交x轴于点E.
    (1)求AE的长;
    (2)动点N从E出发,以1个单位/秒的速度沿射线EC方向运动,过N作x轴的平行线交直线OC于G,交直线BE于P,设GP的长为d,运动时间为t秒,请用含量t的式子表示d,并直接写出t的取值范围;
    (3)在(2)的条件下,动点M从A以1个单位/秒的速度沿射线AE运动,且点M与点N同时出发,MN与射线OC相交于点K,是否存在某一运动时间t,使得=2,若存在,请求出t值;若不存在,请说明理由.

    3、如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣4,3)、B(﹣3,1)、C(1,3).
    (1)请按下列要求画图:
    ①将△ABC先向右平移4个单位长度、再向上平移2个单位长度,得到△A1B1C1,画出△A1B1C1;
    ②△A2B2C2与△ABC关于原点O成中心对称,画出△A2B2C2.
    (2)在(1)中所得的△A1B1C1和△A2B2C2关于点M成中心对称,请写出对称中心M点的坐标    .

    4、如图1,A(﹣2,6),C(6,2),AB⊥y轴于点B,CD⊥x轴于点D.

    (1)求证:△AOB≌△COD;
    (2)如图2,连接AC,BD交于点P,求证:点P为AC中点;
    (3)如图3,点E为第一象限内一点,点F为y轴正半轴上一点,连接AF,EF.EF⊥CE且EF=CE,点G为AF中点.连接EG,EO,求证:∠OEG=45°.
    5、如图,在平面直角坐标系中,线段AB的两个端点的坐标分别为A(﹣1,﹣2),B(﹣2,﹣4).
    (1)画出线段AB关于y轴对称的线段A1B1,再画出线段A1B1关于x轴对称的线段A2B2;
    (2)点A2的坐标为    ;
    (3)若此平面直角坐标系中有一点M(a,b),点M关于y轴对称的对称点M1,点M1关于x轴对称的对称点M2,则点M2的坐标为    .

    6、如图,图中的小方格都 是边长为1的正方形,△ABC的顶点坐标为A、B、C三点.
    (1)写出顶点A、B、C三点的坐标;
    (2)请在图中画出△ABC关于y轴对称的图形△A′B′C′;
    (3)写出点B′和点C′的坐标.

    7、如图,平面直角坐标系中ABC的三个顶点分别是A(-4,3),B(-2,4),C(-1,1).

    (1)将ABC绕点O逆时针旋转90°,画出旋转后的A1B1C1;
    (2)作出ABC关于点O的中心对称图形A2B2C2;
    (3)如果ABC内有一点P(a,b),请直接写出变换后的图形中对应点P1、P2的坐标.
    8、已知点A(1,﹣1),B(﹣1,4),C(﹣3,1).
    (1)请在如图所示的平面直角坐标系中(每个小正方形的边长都为1)画出△ABC;
    (2)作△ABC关于x轴对称的△DEF,其中点A,B,C的对应点分别为点D,E,F;
    (3)连接CE,CF,请直接写出△CEF的面积.

    9、如图,在平面直角坐标系中,已知的三个顶点都在网格的格点上.

    (1)在图中作出关于轴对称的,并写出点的对应点的坐标;
    (2)在图中作出关于轴对称的,并写出点的对应点的坐标.
    10、在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(﹣4,5),(﹣1,3).

    (1)请在如图所示的网格平面内作出平面直角坐标系.
    (2)请作出△ABC关于y轴对称的△A′B′C′.
    (3)求△ABC的面积 .

    -参考答案-
    一、单选题
    1、B
    【分析】
    根据A、B两点的坐标建立平面直角坐标系即可得到C点坐标.
    【详解】
    解:∵A点坐标为(-2,-2),B点坐标为(4,-2),
    ∴可以建立如下图所示平面直角坐标系,
    ∴点C的坐标为(0,0),
    故选B.

    【点睛】
    本题主要考查了写出坐标系中点的坐标,解题的关键在于能够根据题意建立正确的平面直角坐标系.
    2、D
    【分析】
    由题意,先建立平面直角坐标系,确定原点的位置,即可得到“东风标致”的坐标.
    【详解】
    解:∵“奥迪”的坐标是(2,1),“奔驰”的坐标是(1,1),
    ∴建立平面直角坐标系,如图所示:

    ∴“东风标致”的坐标是(3,2);
    故选:D.
    【点睛】
    本题考查了坐标确定位置:平面坐标系中的点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.
    3、B
    【分析】
    对应点的连线段的垂直平分线的交点,即为所求.
    【详解】
    解:如图,点即为所求,,

    故选:B.
    【点睛】
    本题考查坐标与图形变化旋转,解题的关键是理解对应点的连线段的垂直平分线的交点即为旋转中心.
    4、B
    【分析】
    根据平面直角坐标系中四个象限中点的坐标特点求解即可.
    【详解】
    解:∵点P的坐标为(﹣3,2),
    ∴则点P位于第二象限.
    故选:B.
    【点睛】
    此题考查了平面直角坐标系中四个象限中点的坐标特点,解题的关键是熟练掌握平面直角坐标系中四个象限中点的坐标特点:第一象限横坐标为正,纵坐标为正;第二象限横坐标为负,纵坐标为正;第三象限横坐标为负,纵坐标为负;第四象限横坐标为正,纵坐标为负.
    5、C
    【分析】
    首先根据P点在第四象限,可以确定P点横纵坐标的符号,再由P到坐标轴的距离即可确定P点坐标.
    【详解】
    解:∵P点在第四象限,
    ∴P点横坐标大于0,纵坐标小于0,
    ∵P点到x轴的距离为2,到y轴的距离为6,
    ∴P点的坐标为(6,-2),
    故选C.
    【点睛】
    本题主要考查了点所在的象限的坐标特征,点到坐标轴的距离,解题的关键在于能够熟练掌握第四象限点的坐标特征.
    6、B
    【分析】
    根据轴对称的性质判断即可.
    【详解】
    解:若在第一象限的ABC关于某条直线对称后的DEF在第四象限,则这条直线可以是x轴
    故选:B.
    【点睛】
    本题考察了轴对称的性质,利用轴对称的性质找出对称轴是本题的关键.
    7、D
    【分析】
    由点到轴的距离等于该点坐标横坐标的绝对值,可以得出结果.
    【详解】
    解:由题意知到轴的距离为
    到轴的距离是个单位长度
    故选D.
    【点睛】
    本题考察了点到坐标轴的距离.解题的关键在于明确距离的求解方法.距离为正值是易错点.解题技巧:点到轴的距离=;到轴的距离=.
    8、A
    【分析】
    由点是的中点,可得出点D的坐标,当,由等腰三角形的性质即可得出点P的坐标
    【详解】
    解:过点P作PM⊥OD于点M,

    ∵长方形的顶点的坐标分别为,点是的中点,
    ∴点D(5,0)
    ∵,PM⊥OD,
    ∴OM=DM
    即点M(2.5,0)
    ∴点P(2.5,4),
    故选:A
    【点睛】
    此题主要考查了坐标与图形的性质和等腰三角形的性质,熟练掌握等腰三角形“三线合一”的性质是解题的关键.
    9、C
    【分析】
    根据两个点关于原点对称时,它们横、纵坐标均互为相反数,即可求出a的值.
    【详解】
    解:∵点A(﹣2,a)和点B(2,﹣3)关于原点对称,
    ∴a=3,
    故选:C.
    【点睛】
    此题考查的是关于原点对称的两点坐标关系,掌握关于原点对称的两点坐标关系:横、纵坐标均互为相反数是解决此题的关键.
    10、C
    【分析】
    根据各象限内点的坐标特征解答.
    【详解】
    解:点的横坐标小于0,纵坐标小于0,点所在的象限是第三象限.
    故选:C.
    【点睛】
    本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).
    二、填空题
    1、 (-2,3)
    【分析】
    根据“关于原点对称的点的坐标关系,横坐标与纵坐标都互为相反数”,即可求解.
    【详解】
    点(2,-3)关于原点的对称点的坐标是(-2,3).
    故答案为: (-2,3).
    【点睛】
    本题主要考查点关于原点对称,解决本题的关键是要熟练掌握关于原点对称点的坐标的关系.
    2、
    【分析】
    根据题目所给坐标,得出相应位置的字母,即可得出代表的英文单词.
    【详解】
    解:对应的字母为,
    对应的字母为,
    对应的字母为,
    对应的字母为,
    对应的字母为,
    对应的字母为,
    这个英文单词为:,
    故答案为:.
    【点睛】
    本题考查了平面直角坐标系,能准确根据所给的坐标得出点的位置是解本题的关键.
    3、 (-2,-5)
    【分析】
    关于轴对称,横坐标不变,纵坐标互为相反数,进而可求解.
    【详解】
    解:由点关于轴对称点的坐标为:,
    故答案为:.
    【点睛】
    本题主要考查平面直角坐标系中点的坐标关于坐标轴对称问题,熟练掌握点的坐标关于坐标轴对称的方法是解题的关键.
    4、
    【分析】
    根据若点关于y轴对称的点的坐标为,据此可求解.
    【详解】
    解:点P(1,-2)关于轴的对称点的坐标是;
    故答案为.
    【点睛】
    本题主要考查点的坐标关于坐标轴对称问题,熟练掌握点的坐标关于坐标轴对称的特征是解题的关键.
    5、(-2,4)
    【分析】
    根据点(x,y)关于y轴对称的点的坐标为(-x, y)进行解答即可.
    【详解】
    解:点A(2,4)关于y轴对称的点B的坐标是(-2,4),
    故答案为:(-2,4).
    【点睛】
    本题考查关于y轴对称的点的坐标,熟知关于y轴对称的点的坐标变换规律是解答的关键.
    三、解答题
    1、(1)见解析;(2)画图见解析,A1C的长为4.
    【详解】
    解:(1)如图,△ABC即为所求.

    ∵AO=BO=CO=3,且AO⊥BC,
    ∴∠BAO=∠CAO=45°,△ABC的面积=BCAO=9,
    ∴∠BAC=90°,且△ABC关于y轴对称;
    (2)如图,△A1B1C1即为所求.
    如图,A1C的长为4.
    【点睛】
    本题考查了根据平移变换作图以及等腰直角三角形的判定和性质,解答本题的关键是根据网格结构作出对应点的位置,然后顺次连接.
    2、(1)12;(2);(3)当或时,使得.
    【分析】
    (1)由OA=OC=6,∠BAO=30°,得到∠OAC=∠OCA=30°,则∠COE=∠OAC+∠OCA=60°,再由BE是线段OC的垂直平分线平分线,得到OE=CE,则△COE是等边三角形,由此即可得到答案;
    (2)分三种情况:当直线PN在H点下方时(包括H点),当直线PN在H点上方,且在C点下方时(包括C点),当直线PN在C点上方时,三种情况讨论求解即可;
    (3)分N在EC上和EC的延长线上两种情况,构造全等三角形求解即可.
    【详解】
    解:(1)∵OA=OC=6,∠BAO=30°,
    ∴∠OAC=∠OCA=30°,
    ∴∠COE=∠OAC+∠OCA=60°,
    ∵BE是线段OC的垂直平分线平分线,
    ∴OE=CE,
    ∴△COE是等边三角形,
    ∴OE=OC=AO=6,
    ∴AE=AO+OE=12;
    (2)如图1所示,过点C作CK⊥x轴于K,设OC与BE的交点为H,当直线PN在H点下方时(包括H点),
    ∵BE是线段OC的垂直平分线,
    ∴∠CEP=∠OEP,
    ∵PN∥OE,
    ∴∠NPE=∠OEP,∠CGN=∠COE=60°,∠CNG=∠CEO=60°,
    ∴∠NPE=∠NEP,△CGN是等边三角形,
    ∴NP=NE=t,NG=CN=CE-NE=6-t,
    ∴PG=d=NG-NP=6-t-t=6-2t,
    ∵当直线PN刚好经过H点时,此时CH=CN=3,
    即当t=3时,直线PN经过H点,
    ∴当直线PN在H点下方或经过H点时,d=6-2t(0≤t≤3);

    如图2所示,当直线PN在H点上方,且在C点下方时(包括C点),
    同理可证NP=NE=t,NG=CN=CE-CN=6-t,
    ∴PG=d=NP-NG=t-(6-t)=2t-6(3<t≤6);

    如图3所示,当直线PN在C点上方时

    同理可证NP=NE=t,NG=CN=EN-CE=t-6,
    ∴PG=d=NP+NG=t+t-6=2t-6(t>6),
    ∴综上所述, ;
    (3)如图3-1所示,当N在CE上时,过点N作NR∥x轴交OC于R,
    同(2)可证△CRN是等边三角形,
    ∴RN=CN=CR,
    ∵M、N运动的速度相同,
    ∴AM=NE,
    又∵AO=EC,
    ∴MO=NR,
    ∵NR∥MO,
    ∴∠RNK=∠OMK,∠NRK=∠MOK,
    ∴△MOK≌△NRK(ASA),
    ∴OK=RK,OM=RN,
    ∵,
    ∴,
    ∵,
    ∴,即,
    解得;

    如图3-2所示,当C在EC的延长线上时,
    同理可证,,
    ∵,
    解得,
    ∴综上所述,当或时,使得.

    【点睛】
    本题主要考查了等边三角形的性质与判定,等腰三角形的性质与判定,平行线的性质,坐标与图形,三角形外角的性质,全等三角形的性质与判定,解题的关键在于能够利用数形结合的思想进行求解.
    3、(1)①见解析;②见解析;(2)M(2,1)
    【分析】
    (1)①利用平移变换的性质分别作出A,B,C的对应点A1,B1,C1即可;
    ②利用中心对称的性质分别作出A,B,C的对应点A2,B2,C2即可;
    (3)对应点连线的交点M即为所求.
    【详解】
    解:(1)①如图,△A1B1C1即为所求;
    ②如图,△A2B2C2即为所求;
    (2)如图,点M即为所求,M(2,1),
    故答案为:(2,1).

    【点睛】
    本题考查作图−旋转变换,平移变换等知识,解题的关键是掌握旋转变换,平移变换的性质,属于中考常考题型.
    4、(1)见解析;(2)见解析;(3)见解析
    【分析】
    (1)根据即可证明;
    (2)过点作轴,交于点,得出,由平行线的性质得,由轴得,由得,故可得,从而得出,推出,根据证明,得出即可得证;
    (3)延长到,使,连接,,延长交于点,根据证明,得出,,故,由平行线的性质得出,进而推出,根据证明,故,,即可证明.
    【详解】
    (1)轴于点,轴于点,

    ,,
    ,,

    (2)

    如图2,过点作轴,交于点,


    轴,



    ,,,

    在与中,


    ,即点为中点;
    (3)

    如图3,延长到,使,连接,,延长交于点,
    ,,,

    ,,





    ,,




    ,,

    ,即.
    【点睛】
    本题考查全等三角形的判定与性质,利用做辅助线作全等三角形是解决本题的关键.
    5、(1)见详解;(2)(1,2);(3)(-a,-b).
    【分析】
    (1)分别作出A、B二点关于y轴的对称点A1、B1,再分别作出A1、B1二点关于x轴的对称点A2、B2即可;
    (2)根据图示得出坐标即可;
    (3)根据轴对称的性质得出坐标即可.
    【详解】
    解:(1)如图所示:

    线段A1B1和线段A2B2即为所求;
    (2) 点A2的坐标为(1,2);
    (3)点M(a,b),关于y轴对称的对称点M1(-a,b),点M1关于x轴对称的对称点M2(-a,-b),故点M2的坐标为(-a,-b).
    【点睛】
    本题考查作图-轴对称变换,轴对称-最短问题,两点之间线段最短等知识,解题的关键是熟练掌握轴对称的概念,利用对称解决最短问题,属于中考常考题型.
    6、(1)A( 0, -2 ),B( 3 , -1 ),C( 2, 1 );(2)图见解析;(3)(-3,-1 ),(-2,1 )
    【分析】
    (1)根据三角形在坐标中的位置可得;
    (2)分别作出点A、B、C关于y轴的对称点,再顺次连接可得;
    (3)利用点的坐标的表示方法求解.
    【详解】
    解:(1)△ABC的各顶点坐标:A(0,-2)、B(3,-1)、C(2,1);
    (2)△A′B′C′如图所示:
    (3)(-3,-1 ),(-2,1 ).

    【点睛】
    本题考查了利用轴对称变换作图,熟练掌握网格结构并准确找出对应点的位置是解题的关键.
    7、(1)见解析;(2)见解析;(3)
    【分析】
    (1)找到绕点O逆时针旋转90°的对应点,顺次连接,则即为所求;
    (2)找到关于点O的中心对称的对应点,顺次连接,则即为所求;
    (3)根据A(-4,3),B(-2,4),C(-1,1)经过旋转变换得到的,即横纵坐标的绝对值交换,且在第三象限,都取负号,即可求得,根据中心对称,横纵坐标都取相反数即可求得
    【详解】
    (1)如图所示,找到绕点O逆时针旋转90°的对应点,顺次连接,则即为所求;
    (2)如图所示,找到关于点O的中心对称的对应点,顺次连接,则即为所求;

    (3)
    【点睛】
    本题考查了求关于原点中心对称的点的坐标,绕原点旋转90度的点的坐标,画旋转图形,画中心对称图形,图形与坐标,掌握中心对称与旋转的性质是解题的关键.
    8、(1)作图见详解;(2)作图见详解;(3)的面积为2.
    【分析】
    (1)直接在坐标系中描点,然后依次连线即可;
    (2)先确定A、B、C三点关于x轴对称的点的坐标,然后依次连接即可;
    (3)根据三角形在坐标系中的位置,确定三角形的底和高,直接求面积即可.
    【详解】
    解:(1)如图所示,即为所求;

    (2)A、B、C三点关于x轴对称的点的坐标分别为:,,,
    然后描点、连线,
    ∴即为所求;
    (3)由图可得:SΔCEF=12×2×2=2,
    ∴的面积为2.
    【点睛】
    题目主要考查在坐标系中作轴对称图形及点的坐标特点,熟练掌握轴对称图形的性质是解题关键.
    9、(1)为所求,图形见详解,点B1(-5,-1);(2)为所求,图形见详解,点B2(5,1).
    【分析】
    (1)根据关于轴对称的,求出A1(-6,-6),B1(-5,-1),C1(-1,-6),然后在平面直角坐标系中描点,顺次连接A1B1, B1C1,C1A1即可;
    (2)根据关于轴对称的,求出A2(6,6),点B2(5,1),点C2(1,6),
    然后在平面直角坐标系中描点,顺次连接A2B2, B2C2,C2A2即可.
    【详解】
    解:(1)根据点在平面直角坐标系中的位置,△ABC三点坐标分别为A(-6,6),B(-5,1),C(-1,6),
    关于轴对称的,
    关于x轴对称点的特征是横坐标不变,纵坐标互为相反数,
    ∴中点A1(-6,-6),点B1(-5,-1),点C1(-1,-6),
    在平面直角坐标系中描点A1(-6,-6),B1(-5,-1),C1(-1,-6),
    顺次连接A1B1, B1C1,C1A1,
    则为所求,点B1(-5,-1);
    (2)∵关于轴对称的,
    ∴点的坐标特征是横坐标互为相反数,纵坐标不变,
    ∵△ABC三点坐标分别为A(-6,6),B(-5,1),C(-1,6),
    ∴中点A2(6,6),点B2(5,1),点C2(1,6),
    在平面直角坐标系中描点A2(6,6),B2(5,1),C2(1,6),
    顺次连接A2B2, B2C2,C2A2,
    则为所求,点B2(5,1).

    【点睛】
    本题考查在平面直角坐标系中画称轴对称的图形,掌握画图方法,先求坐标,描点,顺次连接是解题关键.
    10、
    (1)见解析;
    (2)见解析;
    (3)4.
    【分析】
    (1)根据点坐标直接确定即可;
    (2)根据轴对称的性质得到点A′、B′、C′,顺次连线即可得到△A′B′C′;
    (3)利用面积加减法计算.
    (1)
    如图所示:
    (2)
    解:如图所示:
    (3)
    解:△ABC的面积:3×4﹣4×2﹣2×1﹣2×3=12﹣4﹣1﹣3=4,
    故答案为:4.
    【点睛】
    此题考查了确定直角坐标系,作轴对称图形,计算网格中图形的面积,正确掌握轴对称的性质及网格中图形面积的计算方法是解题的关键.

    相关试卷

    沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课时作业:

    这是一份沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课时作业,共30页。试卷主要包含了点A的坐标为,则点A在,若点P,如图,A,在平面直角坐标系中,点等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试同步测试题:

    这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试同步测试题,共33页。试卷主要包含了已知点A象限,下列各点,在第一象限的是,在平面直角坐标系中,点P,已知A等内容,欢迎下载使用。

    沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试一课一练:

    这是一份沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试一课一练,共33页。试卷主要包含了平面直角坐标系中,点P,已知点A等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map