终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2022年最新强化训练沪教版七年级数学第二学期第十四章三角形单元测试试题(含解析)

    立即下载
    加入资料篮
    2022年最新强化训练沪教版七年级数学第二学期第十四章三角形单元测试试题(含解析)第1页
    2022年最新强化训练沪教版七年级数学第二学期第十四章三角形单元测试试题(含解析)第2页
    2022年最新强化训练沪教版七年级数学第二学期第十四章三角形单元测试试题(含解析)第3页
    还剩31页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪教版 (五四制)七年级下册第十四章 三角形综合与测试单元测试同步达标检测题

    展开

    这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试单元测试同步达标检测题,共34页。试卷主要包含了已知长方形纸片ABCD,点E,定理等内容,欢迎下载使用。
    沪教版七年级数学第二学期第十四章三角形单元测试
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,,点E在线段AB上,,则的度数为(  )

    A.20° B.25° C.30° D.40°
    2、如图,∠BAD=90°,AC平分∠BAD,CB=CD,则∠B与∠ADC满足的数量关系为(  )

    A.∠B=∠ADC B.2∠B=∠ADC
    C.∠B+∠ADC=180° D.∠B+∠ADC=90°
    3、已知三角形的两边长分别是3cm和7cm,则下列长度的线段中能作为第三边的是(  )
    A.3cm B.4cm C.7cm D.10cm
    4、如图,等腰△ABC中,AB=AC,点D是BC边中点,则下列结论不正确的是( )

    A.ÐB=ÐC B.AD⊥BC C.ÐBAD=ÐCAD D.AB=2BC
    5、如果三角形一边上的中线等于这条边的一半,那么这个三角形一定是( ).
    A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形
    6、已知长方形纸片ABCD,点E、F分别在边AB、CD上,连接EF,将∠BEF对折,点B落在直线EF上的点B′处,得折痕EM,将∠AEF对折,点A落在直线EF上的点A′处,得折痕EN,则图中与∠B′ME互余的角有(  )

    A.2个 B.3个 C.4个 D.5个
    7、下列各条件中,不能作出唯一的的是( )
    A.,, B.,,
    C.,, D.,,
    8、如图,将的BC边对折,使点B与点C重合,DE为折痕,若,,则( ).

    A.45° B.60° C.35° D.40°
    9、定理:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,∠ACD是△ABC的外角.求证:∠ACD=∠A+∠B.
    证法1:如图,
    ∵∠A=70°,∠B=63°,
    且∠ACD=133°(量角器测量所得)
    又∵133°=70°+63°(计算所得)
    ∴∠ACD=∠A+∠B(等量代换).
    证法2:如图,
    ∵∠A+∠B+∠ACB=180°(三角形内角和定理),
    又∵∠ACD+∠ACB=180°(平角定义),
    ∴∠ACD+∠ACB=∠A+∠B+∠ACB(等量代换).
    ∴∠ACD=∠A+∠B(等式性质).
    下列说法正确的是(  )

    A.证法1用特殊到一般法证明了该定理
    B.证法1只要测量够100个三角形进行验证,就能证明该定理
    C.证法2还需证明其他形状的三角形,该定理的证明才完整
    D.证法2用严谨的推理证明了该定理
    10、如图,工人师傅在安装木制门框时,为防止变形,常常钉上两条斜拉的木条,这样做的数学依据是( )

    A.两点确定一条直线
    B.两点之间,线段最短
    C.三角形具有稳定性
    D.三角形的任意两边之和大于第三边
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,△ABC中,∠B=20°,D是BC延长线上一点,且∠ACD=60°,则∠A的度数是____________ 度.

    2、如图,,,BE平分交AD于点E,连接CE,AF交CD的延长线于点F,,若,,则的度数为______.

    3、边长为1的小正方形组成如图所示的6×6网格,点A,B,C,D,E,F,G,H都在格点上.其中到四边形ABCD四个顶点距离之和最小的点是_________.

    4、若一个立体图形从正面看和从左面看都是等腰三角形,从上面看是带有圆心的圆,则这个立体图形是_____.
    5、如图,等腰△ABC中,AB=AC,ÐA=40°,点D在边AC上,ÐADB=100°,则ÐDBC的度数为____________ °.

    三、解答题(10小题,每小题5分,共计50分)
    1、如图,在中,是的平分线,点在边上,且.
    (Ⅰ)求证:;
    (Ⅱ)若,,求的大小.

    2、下面是“作一个角的平分线”的尺规作图过程.
    已知:如图,钝角.

    求作:射线OC,使.
    作法:如图,

    ①在射线OA上任取一点D;
    ②以点О为圆心,OD长为半径作弧,交OB于点E;
    ③分别以点D,E为圆心,大于长为半径作弧,在内,两弧相交于点C;
    ④作射线OC.
    则OC为所求作的射线.
    完成下面的证明.
    证明:连接CD,CE
    由作图步骤②可知______.
    由作图步骤③可知______.
    ∵,
    ∴.
    ∴(________)(填推理的依据).
    3、如图,点C是线段AB上一点,与都是等边三角形,连接AE,BF.

    (1)求证:;
    (2)若点M,N分别是AE,BF的中点,连接CM,MN,NC.
    ①依题意补全图形;
    ②判断的形状,并证明你的结论.
    4、如图,是的角平分线,于点.

    (1)用尺规完成以下基本作图:过点作于点,连接交于点.(不写作法,保留作图痕迹)
    (2)在(1)中所作的图形中,求证:.
    5、如图,在△ABC中,AB=AC,CD⊥AB于点D,∠A=50°,求∠BCD的度数.

    6、如图是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点为格点,线段的端点都在格点上.要求以为边画一个等腰,且使得点为格点.请在下面的网格图中画出3种不同的等腰.

    7、如图,已知点B,F,C,E在同一直线上,AB∥DE,BF=CE,AB=ED,求证:∠A=∠D.

    8、如图,在△ABC中,AB=AC,M,N分别是AB,AC边上的点,并且MN∥BC.
    (1)△AMN是否是等腰三角形?说明理由;
    (2)点P是MN上的一点,并且BP平分∠ABC,CP平分∠ACB.
    ①求证:△BPM是等腰三角形;
    ②若△ABC的周长为a,BC=b(a>2b),求△AMN的周长(用含a,b的式子表示).

    9、如图,△ABC是等边三角形,点D、E、F分别同时从A、B、C以同样的速度沿AB、BC、CA方向运动,当点D运动到点B时,三个点都停止运动.
    (1)在运动过程中△DEF是什么形状的三角形,并说明理由;
    (2)若运动到某一时刻时,BE=4,∠DEC=150°,求等边△ABC的周长;

    10、已知,在△ABC中,∠BAC=30°,点D在射线BC上,连接AD,∠CAD=,点D关于直线AC的对称点为E,点E关于直线AB的对称点为F,直线EF分别交直线AC,AB于点M,N,连接AF,AE,CE.
    (1)如图1,点D在线段BC上.
    ①根据题意补全图1;
    ②∠AEF = (用含有的代数式表示),∠AMF= °;
    ③用等式表示线段MA,ME,MF之间的数量关系,并证明.
    (2)点D在线段BC的延长线上,且∠CAD<60°,直接用等式表示线段MA,ME,MF之间的数量关系,不证明.


    -参考答案-
    一、单选题
    1、C
    【分析】
    根据全等三角形的性质可证得BC=CE,∠ACB=∠DCE即∠ACD=∠BCE,根据等腰三角形的性质和三角形的内角和定理求解∠B=∠BEC和∠BCE即可.
    【详解】
    解:∵,
    ∴BC=CE,∠ACB=∠DCE,
    ∴∠B=∠BEC,∠ACD=∠BCE,
    ∵,
    ∴∠ACD=∠BCE=180°-2×75°=30°,
    故选:C.
    【点睛】
    本题考查全等三角形的性质、等腰三角形的性质、三角形的内角和定理,熟练掌握全等三角形的性质和等腰三角形的性质是解答的关键.
    2、C
    【分析】
    由题意在射线AD上截取AE=AB,连接CE,根据SAS不难证得△ABC≌△AEC,从而得BC=EC,∠B=∠AEC,可求得CD=CE,得∠CDE=∠CED,证得∠B=∠CDE,即可得出结果.
    【详解】
    解:在射线AD上截取AE=AB,连接CE,如图所示:

    ∵∠BAD=90°,AC平分∠BAD,
    ∴∠BAC=∠EAC,
    在△ABC与△AEC中,

    ∴△ABC≌△AEC(SAS),
    ∴BC=EC,∠B=∠AEC,
    ∵CB=CD,
    ∴CD=CE,
    ∴∠CDE=∠CED,
    ∴∠B=∠CDE,
    ∵∠ADC+∠CDE=180°,
    ∴∠ADC+∠B=180°.
    故选:C.
    【点睛】
    本题主要考查全等三角形的判定与性质,解答的关键是作出适当的辅助线AE,CE.
    3、C
    【分析】
    设三角形第三边的长为x cm,再根据三角形的三边关系求出x的取值范围,找出符合条件的x的值即可.
    【详解】
    解:设三角形的第三边是xcm.则
    7-3<x<7+3.
    即4<x<10,
    四个选项中,只有选项C符合题意,
    故选:C.
    【点睛】
    本题主要考查了三角形三边关系的应用.此类求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.
    4、D
    【分析】
    根据等腰三角形的等边对等角的性质及三线合一的性质判断.
    【详解】
    解:∵AB=AC,点D是BC边中点,
    ∴ÐB=ÐC,AD⊥BC,ÐBAD=ÐCAD,
    故选:D.
    【点睛】
    此题考查了等腰三角形的性质:等边对等角,三线合一,熟记等腰三角形的性质是解题的关键.
    5、B
    【分析】
    根据题意画出图形,利用等腰三角形的性质及三角形内角和定理即可得到答案.
    【详解】
    如图,在△ABC中,CD是边AB上的中线

    ∵AD=CD=BD
    ∴∠A=∠DCA,∠B=∠DCB
    ∵∠A+∠ACB+∠B=180°
    ∴ ∠A+∠DCA+∠DCB+∠B=180
    即2∠A+2∠B=180°
    ∴∠A+∠B=90°
    ∴∠ACB=90°
    ∴△ABC是直角三角形
    故选:B
    【点睛】
    本题考查了等腰三角形的性质及三角形内角和定理,熟练运用这两个知识是关键.
    6、C
    【分析】
    先由翻折的性质得到∠AEN=∠A′EN,∠BEM=∠B′EM,从而可知∠NEM=×180°=90°,然后根据余角的定义找出∠B′ME的余角即可.
    【详解】
    解:由翻折的性质可知:∠AEN=∠A′EN,∠BEM=∠B′EM.
    ∠NEM=∠A′EN+∠B′EM=∠AEA′+∠B′EB=×180°=90°.
    由翻折的性质可知:∠MB′E=∠B=90°.
    由直角三角形两锐角互余可知:∠B′ME的一个余角是∠B′EM.
    ∵∠BEM=∠B′EM,
    ∴∠BEM也是∠B′ME的一个余角.
    ∵∠NBF+∠B′EM=90°,
    ∴∠NEF=∠B′ME.
    ∴∠ANE、∠A′NE是∠B′ME的余角.
    综上所述,∠B′ME的余角有∠ANE、∠A′NE、∠B′EM、∠BEM.
    故选:C.
    【点睛】
    本题主要考查的是翻折的性质、余角的定义,掌握翻折的性质是解题的关键.
    7、B
    【分析】
    根据三角形全等的判定及三角形三边关系即可得出结果.
    【详解】
    解:A、,不能组成三角形;
    B、根据不可以确定选项中条件能作出唯一三角形;
    C、根据可以确定选项中条件能作出唯一三角形;
    D、根据可以确定选项中条件能作出唯一三角形;
    故答案为:B.
    【点睛】
    本题考查确定唯一三角形所需要的条件及三角形三边关系,解题关键在于对全等判定条件的理解.
    8、A
    【分析】
    由折叠得到∠B=∠BCD,根据三角形的内角和得∠A+∠B+∠ACB=180°,代入度数计算即可.
    【详解】
    解:由折叠得∠B=∠BCD,
    ∵∠A+∠B+∠ACB=180°,,,
    ∴65°+2∠B+25°=180°,
    ∴∠B=45°,
    故选:A.
    【点睛】
    此题考查了折叠的性质,三角形内角和定理,熟记折叠的性质是解题的关键.
    9、D
    【分析】
    利用测量的方法只能是验证,用定理,定义,性质结合严密的逻辑推理推导新的结论才是证明,再逐一分析各选项即可得到答案.
    【详解】
    解:证法一只是利用特殊值验证三角形的一个外角等于与它不相邻的两个内角的和,
    证法2才是用严谨的推理证明了该定理,
    故A不符合题意,C不符合题意,D符合题意,
    证法1测量够100个三角形进行验证,也只是验证,不能证明该定理,故B不符合题意;
    故选D
    【点睛】
    本题考查的是三角形的外角的性质的验证与证明,理解验证与证明的含义及证明的方法是解本题的关键.
    10、C
    【分析】
    根据三角形具有稳定性进行求解即可.
    【详解】
    解:工人师傅在安装木制门框时,为防止变形,常常钉上两条斜拉的木条,这样做的数学依据是三角形具有稳定性,
    故选C.
    【点睛】
    本题主要考查了三角形的稳定性,熟知三角形具有稳定性是解题的关键.
    二、填空题
    1、40
    【分析】
    直接根据三角形外角的性质可得结果.
    【详解】
    解:∵∠B=20°,∠ACD=60°,∠ACD是△ABC的外角,
    ∴∠ACD=∠B+∠A,
    ∴,
    故答案为:.
    【点睛】
    本题考查了三角形外角的性质,熟知三角形的一个外角等于与它不相邻的两个内角的和是解本题的关键
    2、80°
    【分析】
    先根据,,得出,可证AD∥BC,再证∠BAD=∠BCD,得出∠AEB=∠F,然后证∠ABC=2∠CBE=2∠F,得出∠ADC=2∠F,利用三角形内角和得出∠CED=180°-∠EDC-∠ECD=180°-2∠F-3∠F=180°-5∠F,根据平角得出∠AEB+∠CED=180°-∠BEC=180°-80°=100°,列方程∠F+180°-5∠F=100°求出∠F=20°即可.
    【详解】
    解:∵,
    ∴∠ABC+∠BCD=180°,

    ∴,
    ∴AD∥BC,
    ∵,
    ∴∠BAD+∠ADC=180°,∠BAF+∠F=180°,
    ∵∠ADC+∠BCD=180°,
    ∴∠BAD=∠BCD,
    ∵,
    ∴,
    ∵∠BAF=∠BAD+∠DAF,
    ∴∠BAF+∠AEB=180°,
    ∴∠AEB=∠F,
    ∵AD∥BC,
    ∴∠CBE=∠AEB,
    ∵BE平分,
    ∴∠ABC=2∠CBE=2∠F,
    ∴∠ADC=2∠F,
    ∵,
    在△CED中,∠CED=180°-∠EDC-∠ECD=180°-2∠F-3∠F=180°-5∠F,
    ∵,
    ∴∠AEB+∠CED=180°-∠BEC=180°-80°=100°,
    ∴∠F+180°-5∠F=100°,
    解得∠F=20°,
    ∴,
    故答案为80°.
    【点睛】
    本题考查平行线的判定与性质,三角形内角和,角平分线定义,平角,解一元一次方程,掌握平行线的判定与性质,三角形内角和,角平分线定义,平角,解一元一次方程,关键是证出∠ADC=2∠F.
    3、E
    【分析】
    到四边形ABCD四个顶点距离之和最小的点是对角线的交点,连接对角线,直接判断即可.
    【详解】
    如图所示,连接BD、AC、GA、GB、GC、GD,
    ∵,,
    ∴到四边形ABCD四个顶点距离之和最小是,该点为对角线的交点,
    根据图形可知,对角线交点为E,
    故答案为:E.

    【点睛】
    本题考查了三角形三边关系,解题关键是通过连接辅助线,运用三角形三边关系判断点的位置.
    4、圆锥
    【分析】
    根据立体图形视图、等腰三角形的性质分析,即可得到答案.
    【详解】
    根据题意,这个立体图形是圆锥
    故答案为:圆锥.
    【点睛】
    本题考查了等腰三角形、圆锥、立体图形视图的知识;解题的关键是熟练掌握立体图形视图的性质,从而完成求解.
    5、30
    【分析】
    先根据等腰三角形的性质和三角形内角和定理求出,再根据三角形外角的性质求解即可.
    【详解】
    解:∵AB=AC,ÐA=40°,
    ∴,
    ∵∠ADB=∠DBC+∠C=100°,
    ∴∠DBC=30°,
    故答案为:30.
    【点睛】
    本题主要考查了三角形内角和定理,三角形外角的性质,等腰三角形的性质,熟知相关知识是解题的关键.
    三、解答题
    1、(Ⅰ)见解析;(Ⅱ)
    【分析】
    (Ⅰ)由CD是的平分线得出,由得出
    从而得出,由平行线的判断即可得证;
    (Ⅱ)由三角形内角和求出,由角平分线得出,由三角形内角和求出即可得出答案.
    【详解】
    (Ⅰ)∵CD是的平分线,
    ∴,
    ∵,
    ∴,
    ∴,
    ∴;
    (Ⅱ)∵,,
    ∴,
    ∴,
    ∴.
    【点睛】
    本题考查平行线的判定以及三角形内角和定理,掌握相关知识是解题的关键
    2、OE; CE;全等三角形的对应角相等
    【分析】
    根据圆的半径相等可得OD=OE,CD=CE,再利用SSS可证明,从而根据全等三角形的性质可得结论.
    【详解】
    证明:连接CD,CE
    由作图步骤②可知___OE___.
    由作图步骤③可知__CE___.
    ∵,
    ∴.
    ∴(__全等三角形对应角相等__)
    故答案为:OE; CE;全等三角形的对应角相等
    【点睛】
    本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了全等三角形的判定和性质.
    3、
    (1)证明见解析;
    (2)①补全图形见解析;②是等边三角形,证明见解析.
    【分析】
    (1)由等边三角形的性质可知,,.结合题意易得出.即可利用“SAS”证明,即得出;
    (2)①根据题意补全图形即可;
    ②由全等三角形的性质可知,.再由题意点M,N分别是AE,BF的中点,即得出.即可利用“SAS”证明,得出结论,.最后根据,即得出,即可判定是等边三角形.
    (1)
    ∵与都是等边三角形,
    ∴,,,
    ∴,即,
    在和中,
    ∴,
    ∴,
    ∴.
    (2)
    ①画图如下:

    ②是等边三角形.
    理由如下:∵,
    ∴,.
    ∵点M,N分别是AE,BF的中点,
    ∴,
    在和中,
    ∵,
    ∴,
    ∴,,
    ∴,即,
    ∴是等边三角形.
    【点睛】
    本题考查等边三角形的判定和性质,全等三角形的判定和性质,线段的中点.利用数形结合的思想是解答本题的关键.
    4、(1)见解析;(2)见解析.
    【分析】
    (1)以点D为圆心,适当长为半径,作弧,交AC于两点,再分别以这两点为圆心,适当长为半径作弧,连接两条弧的交点所在的直线,该直线与AC的交点即为点F,连接交于点;
    (2)利用角平分线性质可得,由此证明,得到,继而证明,证得即可解题.
    【详解】
    解:(1)如图,点F、G即为所求作的点;

    (2)是的角平分线,,,










    【点睛】
    本题考查角平分线的性质、全等三角形的判定与性质等知识,是重要考点,难度一般,掌握相关知识是解题关键.
    5、25°
    【分析】
    直接利用等腰三角形的性质得出∠ABC=∠ACB=65°,进而利用三角形内角和定理得出答案.
    【详解】
    ∵AB=AC,∠A=50°,
    ∴∠ABC=∠ACB=65°,
    ∵CD⊥BC于点D,
    ∴∠BCD的度数为:180°−90°−65°=25°.
    【点睛】
    此题主要考查了等腰三角形的性质,正确得出∠B的度数是解题关键.
    6、答案见解析
    【分析】
    AB为4个等边三角形组成的平行四边形的对角线,因此只要找到另一腰也4个等边三角形组成的平行四边形的对角线即可
    【详解】
    解:如图,
    ……
    [答案不唯一]
    【点睛】
    本题考查等腰三角形的绘图,掌握等边三角形和等腰三角形性质即可.
    7、见解析
    【分析】
    根据平行线的性质得出∠B=∠E,进而利用SAS证明,利用全等三角形的性质解答即可.
    【详解】
    证明:,

    即.


    在和中,



    【点睛】
    本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证是解题的关键.
    8、
    (1)△AMN是是等腰三角形;理由见解析;
    (2)①证明见解析;②a﹣b.
    【分析】
    (1)由等腰三角形的性质得到∠ABC=∠ACB,由平行线的性质得到∠AMN=∠ABC,∠ANM=∠ACB,于是得到∠AMN=∠ANM,根据等角对等边即可证得结论;
    (2)①由角平分线的定义得到∠PBM=∠PBC,由平行线的性质得到∠MPB=∠PBC,于是得到∠PBM=∠MPB,根据等角对等边即可证得结论;
    ②由①知MB=MP,同理可得:NC=NP,故△AMN的周长=AB+AC,再根据已知条件即可求出结果.
    (1)
    解:△AMN是是等腰三角形,
    理由如下:
    ∵AB=AC,
    ∴∠ABC=∠ACB,
    ∵MN∥BC,
    ∴∠AMN=∠ABC,∠ANM=∠ACB,
    ∴∠AMN=∠ANM,
    ∴AM=AN,
    ∴△AMN是等腰三角形;
    (2)
    ①证明:∵BP平分∠ABC,
    ∴∠PBM=∠PBC,
    ∵MN∥BC,
    ∴∠MPB=∠PBC
    ∴∠PBM=∠MPB,
    ∴MB=MP,
    ∴△BPM是等腰三角形;
    ②由①知MB=MP,
    同理可得:NC=NP,
    ∴△AMN的周长=AM+MP+NP+AN=AM+MB+NC+AN=AB+AC,
    ∵△ABC的周长为a,BC=b,
    ∴AB+AC+b=a,
    ∴AB+AC=a﹣b
    ∴△AMN的周长=a﹣b.
    【点睛】
    本题考查了等腰三角形的性质和判定,平行线的性质,列代数式,能够灵活应用这些性质是解决问题的关键.
    9、(1)△DEF是等边三角形,理由见解析(2)等边△ABC的周长为
    【分析】
    (1)利用△DEF是等边三角形的性质以及三点的运动情况,求证和,进而证明,最后即可说明△DEF是等边三角形.
    (2)利用题(1)的条件即∠DEC=150°,得出是含角的直角三角形,求出,最后求解出等边△ABC的长,最后即可求出等边△ABC的周长.
    【详解】
    (1)解:△DEF是等边三角形,
    证明:由点D、E、F的运动情况可知:,
    △ABC是等边三角形,
    ,,
    ,

    在与中,



    同理可证,进而有,

    故△DEF是等边三角形.
    (2)解:由(1)可知△DEF是等边三角形,且,
    ,,,


    在中,,



    等边△ABC的周长为.
    【点睛】
    本题主要是考查了全等三角形的性质及判定、等边三角形的判定及性质和含角直角三角形的性质,熟练利用等边三角形的性质,找到相等条件,进而证明全等三角形,综合利用全等三角形以及含角直角三角形的性质,求出对应边长,是解决该题的关键.
    10、(1)①见解析; ②,;③MF=MA+ME,证明见解析;(2)
    【分析】
    (1)①按照要求旋转作图即可;②由旋转和等腰三角形性质解出∠AEF;再由三角形外角定理求出∠AMF; ③在FE上截取GF=ME,连接AG,证明△AFG ≌△AEM且△AGM为等边三角形后即可证得MF=MA+ME;
    (2)根据题意画出图形,根据含30°的直角三角形的性质,即可得到结论.
    【详解】
    解:(1)①补全图形如下图:

    ②∵∠CAE=∠DAC=,
    ∴∠BAE=30°+
    ∴∠FAE=2×(30°+)
    ∴∠AEF==60°-;
    ∵∠AMF=∠CAE+∠AEF=+60°-=60°,
    故答案是:60°-,60°;
    ③MF=MA+ME.
    证明:在FE上截取GF=ME,连接AG .

    ∵点D关于直线AC的对称点为E,
    ∴△ADC ≌△AEC.
    ∴∠CAE =∠CAD =.
    ∵∠BAC=30°,
    ∴∠EAN=30°+.
    又∵点E关于直线AB的对称点为F,
    ∴AB垂直平分EF.
    ∴AF=AE,∠FAN=∠EAN =30°+,
    ∴∠F=∠AEF=.
    ∴∠AMG =.
    ∵AF=AE,∠F=∠AEF, GF=ME,
    ∴△AFG ≌△AEM.
    ∴AG =AM.
    又∵∠AMG=,
    ∴△AGM为等边三角形.
    ∴MA=MG.
    ∴MF=MG+GF=MA+ME.
    (2),理由如下:
    如图1所示,
    ∵点E与点F关于直线AB对称,
    ∴∠ANM=90°,NE=NF,
    又∵∠NAM=30°,
    ∴AM=2MN,
    ∴AM=2NE+2EM =MF+ME,
    ∴MF=AM-ME;

    如图2所示,
    ∵点E与点F关于直线AB对称,
    ∴∠ANM=90°,NE=NF,
    ∵∠NAM=30°,
    ∴AM=2NM,
    ∴AM=2MF+2NF=2MF+NE+NF=ME+MF,
    ∴MF=MA-ME;

    综上所述:MF=MA-ME.
    【点睛】
    本题考查轴对称、三角形全等判定与性质、等边三角形判定与性质,掌握这些是本题关键.

    相关试卷

    初中第十四章 三角形综合与测试练习题:

    这是一份初中第十四章 三角形综合与测试练习题,共36页。试卷主要包含了下列叙述正确的是,定理,下列说法错误的是等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试同步训练题:

    这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试同步训练题,共32页。试卷主要包含了有下列说法等内容,欢迎下载使用。

    沪教版 (五四制)七年级下册第十四章 三角形综合与测试随堂练习题:

    这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试随堂练习题,共36页。试卷主要包含了尺规作图等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map