年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022年最新强化训练沪教版七年级数学第二学期第十四章三角形专题训练试题(含详细解析)

    2022年最新强化训练沪教版七年级数学第二学期第十四章三角形专题训练试题(含详细解析)第1页
    2022年最新强化训练沪教版七年级数学第二学期第十四章三角形专题训练试题(含详细解析)第2页
    2022年最新强化训练沪教版七年级数学第二学期第十四章三角形专题训练试题(含详细解析)第3页
    还剩26页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试习题

    展开

    这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试习题,共29页。试卷主要包含了如图,直线l1l2,被直线l3,如图,AB=AC,点D等内容,欢迎下载使用。
    沪教版七年级数学第二学期第十四章三角形专题训练
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、已知三条线段的长分别是4,4,m,若它们能构成三角形,则整数m的最大值是( )
    A.10 B.8 C.7 D.4
    2、一个三角形三个内角的度数分别是x,y,z.若,则这个三角形是( )
    A.等腰三角形 B.等边三角形 C.等腰直角三角形 D.不存在
    3、已知三角形的两边长分别为和,则下列长度的四条线段中能作为第三边的是( )
    A. B. C. D.
    4、如图,是等边三角形,点在边上,,则的度数为( ).

    A.25° B.60° C.90° D.100°
    5、如图,工人师傅在安装木制门框时,为防止变形,常常钉上两条斜拉的木条,这样做的数学依据是( )

    A.两点确定一条直线
    B.两点之间,线段最短
    C.三角形具有稳定性
    D.三角形的任意两边之和大于第三边
    6、如图,直线l1l2,被直线l3、l4所截,并且l3⊥l4,∠1=46°,则∠2等于(  )

    A.56° B.34° C.44° D.46°
    7、如图,AB=AC,点D、E分别在AB、AC上,补充一个条件后,仍不能判定△ABE≌△ACD的是( )

    A.∠B=∠C B.AD=AE C.BE=CD D.∠AEB=∠ADC
    8、若三条线段中a=3,b=5,c为奇数,那么以a、b、c为边组成的三角形共有( )
    A.1个 B.2个 C.3个 D.4个
    9、已知等腰三角形两边的长分别为3和7,则此等腰三角形的周长为( )
    A.10 B.15 C.17 D.19
    10、如图,点F,C在BE上,AC=DF,BF=EC,AB=DE,AC与DF相交于点G,则与2∠DFE相等的是(  )

    A.∠A+∠D B.3∠B C.180°﹣∠FGC D.∠ACE+∠B
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、若等腰三角形两底角平分线相交所形成的钝角是128°,则这个等腰三角形的顶角的度数是_____.
    2、如图,是等腰直角三角形,AB是斜边,以BC为一边在右侧作等边三角形BCD,连接AD与BC交于点E,则的度数为______度.

    3、已知a,b,c是的三边长,满足,c为奇数,则______.
    4、如图,为△ABC的中线,为△的中线,为△的中线,……按此规律,为△的中线.若△ABC的面积为8,则△的面积为_______________.

    5、如图,在△ABC中,CA=CB,∠ACB=120°,E为AB上一点,∠DCE=∠DAE=60°,AD=2.4,BE=7,则DE=_____.

    三、解答题(10小题,每小题5分,共计50分)
    1、如图,在中,是的平分线,点在边上,且.
    (Ⅰ)求证:;
    (Ⅱ)若,,求的大小.

    2、如图,在等腰△ABC和等腰△ADE中,AB=AC,AD=AE,∠BAC=∠DAE且C、E、D三点共线,作AM⊥CD于M.若BD=5,DE=4,求CM.

    3、如图,点D,E在△ABC的边BC上,AB=AC,AD=AE,求证:BD=CE.

    4、已知:如图,∠ABC=∠DCB,∠1=∠2.求证AB=DC.

    5、已知:
    (1)O是∠BAC内部的一点.
    ①如图1,求证:∠BOC>∠A;
    ②如图2,若OA=OB=OC,试探究∠BOC与∠BAC的数量关系,给出证明.
    (2)如图3,当点O在∠BAC的外部,且OA=OB=OC,继续探究∠BOC与∠BAC的数量关系,给出证明.

    6、△ABC中,AB=AC,BD平分∠ABC交AC于点D,从点A作AE∥BC交BD的延长线于点E.

    (1)若∠BAC=40°,求∠E的度数;
    (2)点F是BE上一点,且FE=BD.取DF的中点H,请问AH⊥BE吗?试说明理由.
    7、如图,是的角平分线,于点.

    (1)用尺规完成以下基本作图:过点作于点,连接交于点.(不写作法,保留作图痕迹)
    (2)在(1)中所作的图形中,求证:.
    8、探究与发现:如图①,在△ABC中,∠B=∠C=45°,点D在BC边上,点E在AC边上,且∠ADE=∠AED,连接DE.
    (1)当∠BAD=60°时,求∠CDE的度数;
    (2)当点D在BC(点B、C除外)边上运动时,试猜想∠BAD与∠CDE的数量关系,并说明理由.
    (3)深入探究:如图②,若∠B=∠C,但∠C≠45°,其他条件不变,试探究∠BAD与∠CDE的数量关系.

    9、如图,AD为△ABC的角平分线.

    (1)如图1,若BE⊥AD于点E,交AC于点F,AB=4,AC=7.则CF=   ;
    (2)如图2,CG⊥AD于点G,连接BG,若△ABG的面积是6,求△ABC的面积;
    (3)如图3,若∠B=2∠C,AB=m,AC=n,则CD的长为    .(用含m,n的式子表示)
    10、已知:在△ABC中,AD平分∠BAC,AE=AC.求证:AD∥CE.


    -参考答案-
    一、单选题
    1、C
    【分析】
    根据三角形三边关系列出不等式,根据不等式的解集求整数m的最大值.
    【详解】
    解:条线段的长分别是4,4,m,若它们能构成三角形,则
    ,即
    又为整数,则整数m的最大值是7
    故选C
    【点睛】
    本题考查了求不等式的整数解,三角形三边关系,根据三角形的三边关系列出不等式是解题的关键.
    2、C
    【分析】
    根据绝对值及平方的非负性可得,,再由三角形内角和定理将两个式子代入求解可得,,即可确定三角形的形状.
    【详解】
    解:,
    ∴且,
    ∴,,
    ∴,
    ∵,
    ∴,
    解得:,,
    ∴三角形为等腰直角三角形,
    故选:C.
    【点睛】
    题目主要考查绝对值及平方的非负性,三角形内角和定理,等腰三角形的判定等,理解题意,列出式子求解是解题关键.
    3、C
    【分析】
    根据三角形的三边关系可得,再解不等式可得答案.
    【详解】
    解:设三角形的第三边为,由题意可得:

    即,
    故选:C.
    【点睛】
    本题主要考查了三角形的三边关系,解题的关键是掌握三角形两边之和大于第三边;三角形的两边差小于第三边.
    4、D
    【分析】
    由等边三角形的性质及三角形外角定理即可求得结果.
    【详解】
    ∵是等边三角形
    ∴∠C=60°
    ∴∠ADB=∠DBC+∠C=40°+60°=100°
    故选:D
    【点睛】
    本题考查了等边三角形的性质、三角形外角的性质,掌握这两个性质是关键.
    5、C
    【分析】
    根据三角形具有稳定性进行求解即可.
    【详解】
    解:工人师傅在安装木制门框时,为防止变形,常常钉上两条斜拉的木条,这样做的数学依据是三角形具有稳定性,
    故选C.
    【点睛】
    本题主要考查了三角形的稳定性,熟知三角形具有稳定性是解题的关键.
    6、C
    【分析】
    依据l1∥l2,即可得到∠3=∠1=46°,再根据l3⊥l4,可得∠2=90°﹣46°=44°.
    【详解】
    解:如图:

    ∵l1∥l2,∠1=46°,
    ∴∠3=∠1=46°,
    又∵l3⊥l4,
    ∴∠2=90°﹣46°=44°,
    故选:C.
    【点睛】
    本题考查了平行线性质以及三角形内角和,平行线的性质:两直线平行,同位角相等以及三角形内角和是180°.
    7、C
    【分析】
    根据全等三角形的判定定理进行判断即可.
    【详解】
    解:根据题意可知:AB=AC,,
    若,则根据可以证明△ABE≌△ACD,故A不符合题意;
    若AD=AE,则根据可以证明△ABE≌△ACD,故B不符合题意;
    若BE=CD,则根据不可以证明△ABE≌△ACD,故C符合题意;
    若∠AEB=∠ADC,则根据可以证明△ABE≌△ACD,故D不符合题意;
    故选:C.
    【点睛】
    本题考查了全等三角形的判定,熟练掌握全等三角形的判定定理是解本题的关键.
    8、C
    【分析】
    根据三角形的三边关系,得到合题意的边,进而求得三角形的个数.
    【详解】
    解:c的范围是:5﹣3<c<5+3,即2<c<8.
    ∵c是奇数,
    ∴c=3或5或7,有3个值.
    则对应的三角形有3个.
    故选:C.
    【点睛】
    本题主要考查了三角形三边关系,准确分析判断是解题的关键.
    9、C
    【分析】
    等腰三角形两边的长为3和7,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.
    【详解】
    解:①当腰是3,底边是7时,3+3<7,不满足三角形的三边关系,因此舍去.
    ②当底边是3,腰长是7时,3+7>7,能构成三角形,则其周长=3+7+7=17.
    故选:C.
    【点睛】
    本题考查了等腰三角形的性质和三角形的三边关系,解题时注意:若没有明确腰和底边,则一定要分类进行讨论,还应验证各种情况是否能构成三角形,这是解题的关键.
    10、C
    【详解】
    由题意根据等式的性质得出BC=EF,进而利用SSS证明△ABC与△DEF全等,利用全等三角形的性质得出∠ACB=∠DFE,最后利用三角形内角和进行分析解答.
    【分析】
    解:∵BF=EC,
    ∴BF+FC=EC+FC,
    ∴BC=EF,
    在△ABC与△DEF中,

    ∴△ABC≌△DEF(SSS),
    ∴∠ACB=∠DFE,
    ∴2∠DFE=180°﹣∠FGC,
    故选:C.
    【点睛】
    本题考查全等三角形的判定与性质,其中全等三角形的判定方法有:SSS;SAS;ASA;AAS;以及HL(直角三角形的判定方法).
    二、填空题
    1、
    【分析】
    先根据角平分线的定义、三角形的内角和定理求出等腰三角形两底角的度数和,再根据三角形内角和求出顶角的度数即可.
    【详解】
    解:

    ∵∠BOC=128°,
    ∴∠OBC+∠OCB=180°﹣∠BOC=180°﹣128°=52°,
    ∵BO平分∠ABC,CO平分∠ACB,
    ∴∠ABC+∠ACB=2(∠OBC+∠OCB)=104°,
    ∴∠A=180°﹣(∠ABC+∠ACB)=180°﹣104°=76°.
    故答案为:76°.
    【点睛】
    本题主要考查角平分线的定义和三角形内角和定理,牢记角平分线分得的两个角相等,三角形内角和是是解决本题的关键.
    2、75
    【分析】
    由题意,是等腰三角形,然后求出的度数,再根据三角形的外角性质,即可求出的度数.
    【详解】
    解:∵是等腰直角三角形,
    ∴AC=BC,∠ABC=∠BAC=45°,∠ACB=90°,
    ∵△BCD是等边三角形,
    ∴BC=CD,∠BCD=60°,
    ∴AC=CD,∠ACD=90°+60°=150°,
    ∴是等腰三角形,
    ∴,
    ∴,
    ∴;
    故答案为:75.
    【点睛】
    本题考查了等边三角形的性质,等腰直角三角形的性质,三角形的外角性质,三角形的内角和定理,解题的关键是掌握所学的知识,正确的求出.
    3、7
    【分析】
    绝对值与平方的取值均0,可知,,可得a、b的值,根据三角形三边关系求出c的取值范围,进而得到c的值.
    【详解】
    解:


    由三角形三边关系可得

    为奇数

    故答案为:7.
    【点睛】
    本题考查了绝对值、平方的非负性,三角形的三边关系等知识点.解题的关键是确定所求边长的取值范围.
    4、
    【分析】
    根据三角形的中线性质,可得△的面积=,△的面积=,……,进而即可得到答案.
    【详解】
    由题意得:△的面积=,△的面积=,……,△的面积==.
    故答案是:.
    【点睛】
    本题主要考查三角形的中线的性质,掌握三角形的中线把三角形的面积平分,是解题的关键.
    5、4.6
    【分析】
    在AB上截取BF=AD,连接CF,通过证明△ADC≌△BFC,可得∠ACD=∠BCF,CD=CF,由“SAS”可得△DCE≌△FCE,可得DE=EF,即可求得结果.
    【详解】
    解:如图,在AB上截取BF=AD,连接CF,

    ∵CA=CB,∠ACB=120°,
    ∴∠CAB=∠CBA=30°,
    ∵∠DAE=60°
    ∴∠DAC=∠DAE﹣∠CAB=30°
    ∴∠DAC=∠CBA,且AD=BF,AC=BC
    ∴△ADC≌△BFC(SAS)
    ∴∠ACD=∠BCF,CD=CF,
    ∵∠ACB=∠ACE+∠ECF+∠BCF=∠ACE+∠ECF+∠ACD=∠DCE+∠ECF=120°
    ∴∠ECF=60°=∠DCE,且CE=CE,DC=CF
    ∴△DCE≌△FCE(SAS)
    ∴DE=EF
    ∴DE=BE﹣BF=BE﹣AD=7﹣2.4=4.6,
    故答案为4.6
    【点睛】
    本题考查了全等三角形的判定和性质,等腰三角形的性质,添加恰当的辅助线构造全等三角形是本题的关键.
    三、解答题
    1、(Ⅰ)见解析;(Ⅱ)
    【分析】
    (Ⅰ)由CD是的平分线得出,由得出
    从而得出,由平行线的判断即可得证;
    (Ⅱ)由三角形内角和求出,由角平分线得出,由三角形内角和求出即可得出答案.
    【详解】
    (Ⅰ)∵CD是的平分线,
    ∴,
    ∵,
    ∴,
    ∴,
    ∴;
    (Ⅱ)∵,,
    ∴,
    ∴,
    ∴.
    【点睛】
    本题考查平行线的判定以及三角形内角和定理,掌握相关知识是解题的关键
    2、CM=7.
    【分析】
    根据题意由“SAS”可证△AEC≌△ADB,可得BD=CE,由等腰三角形的性质可得DM=ME=2进行分析计算即可得出答案.
    【详解】
    解:∵∠BAC=∠DAE,
    ∴∠BAC﹣∠BAE=∠DAE﹣∠BAE,
    ∴∠BAD=∠CAE,
    在△AEC和△ADB中,

    ∴△AEC≌△ADB(SAS),
    又∵BD=5,
    ∴CE=BD=5,
    ∵AD=AE,AM⊥CD,DE=4,
    ∴,
    ∴CM=CE+EM=5+2=7.
    【点睛】
    本题考查全等三角形的判定和性质以及等腰三角形的性质,熟练掌握全等三角形的判定定理是解答本题的关键.
    3、见解析
    【分析】
    过A作AF⊥BC于F,根据等腰三角形的性质得出BF=CF,DF=EF,即可求出答案.
    【详解】
    证明:如图,过A作AF⊥BC于F,

    ∵AB=AC,AD=AE,
    ∴BF=CF,DF=EF,
    ∴BF-DF=CF-EF,
    ∴BD=CE.
    【点睛】
    本题考查了等腰三角形的性质的应用,注意:等腰三角形的底边上的高,底边上的中线,顶角的平分线互相重合.
    4、见解析
    【分析】
    由“ASA”可证△ABO≌△DCO,可得结论.
    【详解】
    证明:如图,记的交点为

    ∵∠ABC=∠DCB,∠1=∠2,
    又∵∠OBC=∠ABC−∠1,∠OCB=∠DCB−∠2,
    ∴∠OBC=∠OCB,
    ∴OB=OC,
    在△ABO和△DCO中,,
    ∴△ABO≌△DCO(ASA),
    ∴AB=DC.
    【点睛】
    本题考查了全等三角形的判定和性质,掌握全等三角形的判定定理是本题的关键.
    5、(1)①见解析;②∠BOC=2∠A,见解析;(2)∠BOC=2∠BAC,见解析
    【分析】
    (1)①连接AO并延长AO至点E,根据三角形外角性质解答即可;
    ②延长AO至点E,根据三角形外角性质解答即可;
    (2)根据三角形外角性质和三角形内角和定理解答即可.
    【详解】
    证明:(1)①如图所示:连接AO并延长AO至点E,则∠BOE>∠BAO,∠COE>∠CAO,
    ∴∠BOC>∠A;

    ②∠BOC与∠BAC的数量关系:∠BOC=2∠A;
    证明:如图所示,延长AO至点E,则∠BOE=∠BAO+∠B,∠COE=∠CAO+∠C,
    ∵OA=OB=OC,
    ∴∠BAO=∠B,∠CAO=∠C,
    ∴∠BOC=∠COE+∠COE=∠BAO+∠B+∠CAO+∠C=2(∠BAO+∠CAO)=2∠BAC;

    (2)∠BOC与∠BAC的数量关系:∠BOC=2∠BAC;
    证明:如图所示,设∠B=x,

    ∵OA=OB=OC,
    ∴∠B=∠BAO=x,∠C=∠OAC=∠BAC+x;
    在△BEO和△AEC中,有:∠B+∠BOC=∠C+∠CAE;
    即x+∠BOC=∠CAE+x+∠CAE=2∠BAC+x;
    即∠BOC=2∠BAC.
    【点睛】
    此题考查三角形综合题,关键是根据三角形外角性质和三角形内角和定理解答.
    6、(1)∠E=35°;(2)AH⊥BE.理由见解析.
    【分析】
    (1)根据等腰三角形两底角相等,已知顶角,可以求出底角,再根据角平分线的定义求出∠CBD的度数,最后根据两直线平行,内错角相等求出;
    (2)由“SAS”可证△ABD≌△AEF,可得AD=AF,由等腰三角形的性质可求解.
    【详解】
    解:(1)∵AB=AC,
    ∴∠ABC=∠ACB,
    ∵∠BAC=40°,
    ∴∠ABC=(180°-∠BAC)=70°,
    ∵BD平分∠ABC,
    ∴∠CBD=∠ABC=35°,
    ∵AE∥BC,
    ∴∠E=∠CBD=35°;
    (2)∵BD平分∠ABC,∠E=∠CBD,
    ∴∠CBD=∠ABD=∠E,
    ∴AB=AE,
    在△ABD和△AEF中,

    ∴△ABD≌△AEF(SAS),
    ∴AD=AF,
    ∵点H是DF的中点,
    ∴AH⊥BE.
    【点睛】
    本题考查了全等三角形的判定和性质,等腰三角形的性质,证明三角形全等是解题的关键.
    7、(1)见解析;(2)见解析.
    【分析】
    (1)以点D为圆心,适当长为半径,作弧,交AC于两点,再分别以这两点为圆心,适当长为半径作弧,连接两条弧的交点所在的直线,该直线与AC的交点即为点F,连接交于点;
    (2)利用角平分线性质可得,由此证明,得到,继而证明,证得即可解题.
    【详解】
    解:(1)如图,点F、G即为所求作的点;

    (2)是的角平分线,,,










    【点睛】
    本题考查角平分线的性质、全等三角形的判定与性质等知识,是重要考点,难度一般,掌握相关知识是解题关键.
    8、(1)30°;(2)∠BAD=2∠CDE,理由见解析;(3)∠BAD=2∠CDE.
    【分析】
    (1)根据三角形的外角的性质求出∠ADC,结合图形计算即可;
    (2)设∠BAD=x,根据三角形的外角的性质求出∠ADC,结合图形计算即可;
    (3)设∠BAD=x,仿照(2)的解法计算.
    【详解】
    解:(1)∵∠ADC是△ABD的外角,
    ∴∠ADC=∠BAD+∠B=105°,
    ∠DAE=∠BAC﹣∠BAD=30°,
    ∴∠ADE=∠AED=75°,
    ∴∠CDE=105°﹣75°=30°;
    (2)∠BAD=2∠CDE,
    理由如下:设∠BAD=x,
    ∴∠ADC=∠BAD+∠B=45°+x,
    ∠DAE=∠BAC﹣∠BAD=90°﹣x,
    ∴∠ADE=∠AED=,
    ∴∠CDE=45°+x﹣=x,
    ∴∠BAD=2∠CDE;
    (3)设∠BAD=x,
    ∴∠ADC=∠BAD+∠B=∠B+x,
    ∠DAE=∠BAC﹣∠BAD=180°﹣2∠C﹣x,
    ∴∠ADE=∠AED=∠C+x,
    ∴∠CDE=∠B+x﹣(∠C+x)=x,
    ∴∠BAD=2∠CDE.
    【点睛】
    本题考查了三角形内角和和外角的性质,解题关键是熟练掌握三角形内角和和外角性质,通过设参数计算,发现角之间的关系
    9、
    (1)3
    (2)12
    (3)
    【分析】
    (1)利用ASA证明△AEF≌△ABE,得AE=AB=4,得出答案;
    (2)延长CG、AB交于点H,设S△BGC=S△HGB=a,用两种方法表示△ACH的面积即可;
    (3)在AC上取AN=AB,可得CD=DN=n-m,根据△ABD和△ACD的高相等,面积比等于底之比可求出CD的长.
    (1)
    ∵AD是△ABC的平分线,
    ∴∠BAD=∠CAD,
    ∵BE⊥AD,
    ∴∠BEA=∠FEA,
    在△AEF和△AEB中,

    ∴△AEF≌△AEB(ASA),
    ∴AF=AB=4,
    ∵AC=7
    ∴CF=AC-AF=7-4=3,
    故答案为:3;
    (2)
    延长CG、AB交于点H,如图,

    由(1)知AC=AH,点G为CH的中点,
    设S△BGC=S△HGB=a,
    根据△ACH的面积可得:
    S△ABC+2a=2(6+a),
    ∴S△ABC=12;
    (3)
    在AC上取AN=AB,如图,

    ∵AD是△ABC的平分线,
    ∴∠NAD=∠BAD,
    在△ADN与△ADB中,

    ∴△ADN≌△ADB(SAS),
    ∴∠AND=∠B,DN=BD,
    ∵∠B=2∠C,
    ∴∠AND=2∠C,
    ∴∠C=∠CDN,
    ∴CN=DN=AC-AB=n-m,
    ∴BD=DN=n-m,
    根据△ABD和△ACD的高相等,面积比等于底之比可得:

    ∴,
    ∴,
    故答案为:.
    【点睛】
    本题主要考查了全等三角形的判定与性质,角平分线的定义,三角形的面积等知识,利用角的轴对称性构造全等三角形是解题的关键.
    10、见解析.
    【分析】
    先根据角平分线的定义得到∠BAD=∠BAC,再根据等腰三角形的性质和三角形外角定理得到∠E=∠BAC,从而得到∠BAD=∠E,即可证明AD∥CE.
    【详解】
    解:∵AD平分∠BAC,
    ∴∠BAD=∠BAC,
    ∵AE=AC,
    ∴∠E=∠ACE,
    ∵∠E+∠ACE=∠BAC,
    ∴∠E=∠BAC,
    ∴∠BAD=∠E,
    ∴AD∥CE.
    【点睛】
    本题考查了角平分线的定义,等腰三角形的性质,平行线的判定,三角形外角定理,熟知相关定理并灵活应用是解题关键.

    相关试卷

    初中第十四章 三角形综合与测试练习题:

    这是一份初中第十四章 三角形综合与测试练习题,共36页。试卷主要包含了下列叙述正确的是,定理,下列说法错误的是等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试课后练习题:

    这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试课后练习题,共36页。试卷主要包含了已知长方形纸片ABCD,点E等内容,欢迎下载使用。

    沪教版 (五四制)七年级下册第十四章 三角形综合与测试随堂练习题:

    这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试随堂练习题,共36页。试卷主要包含了尺规作图等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map