年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    精品试卷沪教版七年级数学第二学期第十四章三角形难点解析试卷(含答案详解)

    立即下载
    加入资料篮
    精品试卷沪教版七年级数学第二学期第十四章三角形难点解析试卷(含答案详解)第1页
    精品试卷沪教版七年级数学第二学期第十四章三角形难点解析试卷(含答案详解)第2页
    精品试卷沪教版七年级数学第二学期第十四章三角形难点解析试卷(含答案详解)第3页
    还剩30页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪教版 (五四制)七年级下册第十四章 三角形综合与测试课时练习

    展开

    这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试课时练习,共33页。试卷主要包含了下列说法不正确的是,下列三角形与下图全等的三角形是等内容,欢迎下载使用。
    沪教版七年级数学第二学期第十四章三角形难点解析
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、在平面直角坐标系xOy中,点A(0,2),B(a,0),C(m,n)().若ABC是等腰直角三角形,且,当时,点C的横坐标m的取值范围是( )
    A. B. C. D.
    2、根据下列已知条件,不能画出唯一的是( )
    A.,, B.,,
    C.,, D.,,
    3、已知长方形纸片ABCD,点E、F分别在边AB、CD上,连接EF,将∠BEF对折,点B落在直线EF上的点B′处,得折痕EM,将∠AEF对折,点A落在直线EF上的点A′处,得折痕EN,则图中与∠B′ME互余的角有(  )

    A.2个 B.3个 C.4个 D.5个
    4、等腰三角形的一个角是80°,则它的一个底角的度数是( )
    A.50° B.80° C.50°或80° D.100°或80°
    5、下列各条件中,不能作出唯一的的是( )
    A.,, B.,,
    C.,, D.,,
    6、如图,在中,,,,将绕点顺时针旋转得到,当点的对应点恰好落在边上时,的长为( )

    A.3 B.4 C.5 D.6
    7、已知的三边长分别为a,b,c,则a,b,c的值可能分别是( )
    A.1,2,3 B.3,4,7
    C.2,3,4 D.4,5,10
    8、下列说法不正确的是( )
    A.有两边对应相等的两个直角三角形全等;
    B.等边三角形的底角与顶角相等;
    C.有一个角是的直角三角形是等腰直角三角形;
    D.如果点与点到直线的距离相等,那么点与点关于直线对称.
    9、下列三角形与下图全等的三角形是( )

    A. B. C. D.
    10、如图,E为线段BC上一点,∠ABE=∠AED=∠ECD=90°,AE=ED,BC=20,AB=8,则BE的长度为( )

    A.12 B.10 C.8 D.6
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、在等腰△ABC中,∠A=40°,则∠B=_____°.
    2、如图,在△ABC中,∠ACB=90°,点D在AB上,将△ABC沿CD折叠,点A落在BC边上的点处,若∠B=35°,则的度数为___________.

    3、如图,已知∠A=60°,∠B=20°,∠C=30°,则∠BDC的度数为_____.

    4、等腰三角形中,一条边长是2cm,另一条边长是3cm,这个等腰三角形的周长是________.
    5、如图,在中,,一条线段,P,Q两点分别在线段和的垂线上移动,若以A、B、C为顶点的三角形与以A、P、Q为顶点的三角形全等,则的长为_________.

    三、解答题(10小题,每小题5分,共计50分)
    1、已知,在△ABC中,∠BAC=30°,点D在射线BC上,连接AD,∠CAD=,点D关于直线AC的对称点为E,点E关于直线AB的对称点为F,直线EF分别交直线AC,AB于点M,N,连接AF,AE,CE.
    (1)如图1,点D在线段BC上.
    ①根据题意补全图1;
    ②∠AEF = (用含有的代数式表示),∠AMF= °;
    ③用等式表示线段MA,ME,MF之间的数量关系,并证明.
    (2)点D在线段BC的延长线上,且∠CAD<60°,直接用等式表示线段MA,ME,MF之间的数量关系,不证明.

    2、在四边形ABCD中,,点E在直线AB上,且.
    (1)如图1,若,,,求AB的长;
    (2)如图2,若DE交BC于点F,,求证:.

    3、如图,是的中线,分别过点、作及其延长线的垂线,垂足分别为、.

    (1)求证:;
    (2)若的面积为8,的面积为6,求的面积.
    4、如图,将△ABC绕点A逆时针旋转得到△ADE,点D在BC上,已知∠B=70°,求∠CDE的大小.

    5、如图,在△ABC中,∠BAC=90°,AB=AC,射线AE交BC于点P,∠BAE=15°;过点C作CD⊥AE于点D,连接BE,过点E作EF∥BC交DC的延长线于点F.
    (1)求∠F的度数;
    (2)若∠ABE=75°,求证:BE∥CF.

    6、如图,,,E为BC中点,DE平分.

    (1)求证:平分;
    (2)求证:;
    (3)求证:.
    7、如图,是等边三角形,D点是BC上一点,,于点E,CE交AD于点P.求的度数.

    8、如图,在中,AD是BC边上的高,CE平分,若,,求的度数.

    9、一个零件形状如图所示,按规定应等于75°,和应分别是18°和22°,某质检员测得,就断定这个零件不合格,请你运用三角形的有关知识说明零件不合格的理由.

    10、在等腰中,,点D是BC边上的一个动点(点D不与点B,C重合),连接AD,作等腰,使,,点D,E在直线AC两旁,连接CE.

    (1)如图1,当时,直接写出BC与CE的位置关系;
    (2)如图2,当时,过点A作于点F,请你在图2中补全图形,用等式表示线段BD,CD,之间的数量关系,并证明.

    -参考答案-
    一、单选题
    1、B
    【分析】
    过点作轴于,由“”可证,可得,,即可求解.
    【详解】
    解:如图,过点作轴于,

    点,

    是等腰直角三角形,且,



    在和中,


    ,,



    故选:B.
    【点睛】
    本题考查了全等三角形的判定和性质,等腰直角三角形的性质,解题的关键是画图及添加恰当辅助线构造全等三角形.
    2、B
    【分析】
    根据三角形存在的条件去判断.
    【详解】
    ∵,,,满足ASA的要求,
    ∴可以画出唯一的三角形,A不符合题意;
    ∵,,,∠A不是AB,BC的夹角,
    ∴可以画出多个三角形,B符合题意;
    ∵,,,满足SAS的要求,
    ∴可以画出唯一的三角形,C不符合题意;
    ∵,,,AB最大,
    ∴可以画出唯一的三角形,D不符合题意;
    故选B.
    【点睛】
    本题考查了三角形的存在性,熟练掌握三角形全等的判定方法是解题的关键.
    3、C
    【分析】
    先由翻折的性质得到∠AEN=∠A′EN,∠BEM=∠B′EM,从而可知∠NEM=×180°=90°,然后根据余角的定义找出∠B′ME的余角即可.
    【详解】
    解:由翻折的性质可知:∠AEN=∠A′EN,∠BEM=∠B′EM.
    ∠NEM=∠A′EN+∠B′EM=∠AEA′+∠B′EB=×180°=90°.
    由翻折的性质可知:∠MB′E=∠B=90°.
    由直角三角形两锐角互余可知:∠B′ME的一个余角是∠B′EM.
    ∵∠BEM=∠B′EM,
    ∴∠BEM也是∠B′ME的一个余角.
    ∵∠NBF+∠B′EM=90°,
    ∴∠NEF=∠B′ME.
    ∴∠ANE、∠A′NE是∠B′ME的余角.
    综上所述,∠B′ME的余角有∠ANE、∠A′NE、∠B′EM、∠BEM.
    故选:C.
    【点睛】
    本题主要考查的是翻折的性质、余角的定义,掌握翻折的性质是解题的关键.
    4、C
    【分析】
    已知给出一个角的的度数为80º,没有明确是顶角还是底角,要分类讨论,联合内角和求出底角即可.
    【详解】
    解:等腰三角形的一个角是80°,
    当80º为底角时,它的一个底角是80º,
    当80º为顶角时,它的一个底角是,
    则它的一个底角是50º或80º.
    故选:C.
    【点睛】
    本题考查等腰三角形的性质,内角和定理,掌握分类讨论的思想是解决问题的关键.
    5、B
    【分析】
    根据三角形全等的判定及三角形三边关系即可得出结果.
    【详解】
    解:A、,不能组成三角形;
    B、根据不可以确定选项中条件能作出唯一三角形;
    C、根据可以确定选项中条件能作出唯一三角形;
    D、根据可以确定选项中条件能作出唯一三角形;
    故答案为:B.
    【点睛】
    本题考查确定唯一三角形所需要的条件及三角形三边关系,解题关键在于对全等判定条件的理解.
    6、A
    【分析】
    先根据旋转的性质可得,再根据等边三角形的判定与性质可得,然后根据线段的和差即可得.
    【详解】
    由旋转的性质得:,

    是等边三角形,



    故选:A.
    【点睛】
    本题考查了旋转的性质、等边三角形的判定与性质等知识点,熟练掌握旋转的性质是解题关键.
    7、C
    【分析】
    三角形的三边应满足两边之和大于第三边,两边之差小于第三边,据此求解.
    【详解】
    解:A、1+2=3,不能组成三角形,不符合题意;
    B、3+4=7,不能组成三角形,不符合题意;
    C、2+3>4,能组成三角形,符合题意;
    D、4+5<10,不能组成三角形,不符合题意;
    故选:C.
    【点睛】
    本题考查了三角形的三边关系,满足两条较小边的和大于最大边即可.
    8、D
    【分析】
    利用全等三角形的判定、等边三角形的判定及轴对称的性质分别判断后即可确定不正确的选项.
    【详解】
    解:A、有两边对应相等的两个直角三角形全等,正确;
    B、等边三角形的三个内角都是60°,所以等边三角形的底角与顶角相等,正确;
    C、有一个角是的直角三角形是等腰直角三角形,正确;
    D、当点与点在直线的同侧时,点与点关于直线不对称,错误,
    故选:D.
    【点睛】
    本题考查了命题与定理的知识,解题的关键是了解全等三角形的判定、等边三角形的判定及轴对称的性质等知识,属于基础定理,难度不大.
    9、C
    【分析】
    根据已知的三角形求第三个内角的度数,由全等三角形的判定定理即可得出答案.
    【详解】
    由题可知,第三个内角的度数为,
    A.只有两边,故不能判断三角形全等,故此选项错误;
    B.两边夹的角度数不相等,故两三角形不全等,故此选项错误;
    C.两边相等且夹角相等,故能判断两三角形全等,故此选项正确;
    D. 两边夹的角度数不相等,故两三角形不全等,故此选项错误.
    故选:C.
    【点睛】
    本题考查全等三角形的判定,掌握全等三角形的判定定理是解题的关键.
    10、A
    【分析】
    利用角相等和边相等证明,利用全等三角形的性质以及边的关系,即可求出BE的长度.
    【详解】
    解:由题意可知:∠ABE=∠AED=∠ECD=90°,
    ,,

    在和中,




    故选:A.
    【点睛】
    本题主要是考查了全等三角形的判定和性质,熟练通过已知条件证明三角形全等,利用全等性质及边的关系,来求解未知边的长度,这是解决本题的主要思路.
    二、填空题
    1、40°或70°或100°
    【分析】
    本题要分两种情况讨论:当∠A=40°为顶角;当∠A=40°为底角时,则∠B为底角时或顶角.然后求出∠B.
    【详解】
    分两种情况讨论:
    当∠A=40°为顶角时,;
    当∠A=40°为底角时,∠B为底角时∠B=∠A=40°;∠B为顶角时∠B=180°−∠A−∠C=180°−40°−40°=100°.
    故答案为:40°或70°或100°.
    【点睛】
    本题考查等腰三角形的性质,解题的关键是掌握等腰三角形的性质,分情况讨论问题.
    2、20°度
    【分析】
    先根据三角形内角和求出∠A,利用翻折不变性得出,再根据三角形外角的性质即可解决问题.
    【详解】
    解:,∠B=35°,

    是由翻折得到,



    故答案为:20°.

    【点睛】
    本题考查三角形内角和定理和三角形外角的性质,翻折变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
    3、110°
    【分析】
    延长BD交AC于点E,根据三角形的外角性质计算,得到答案.
    【详解】
    延长BD交AC于点E,
    ∵∠DEC是△ABE的外角,∠A=60°,∠B=20°,
    ∴∠DEC=∠A+∠B=80°,
    则∠BDC=∠DEC+∠C=110°,

    故答案为:110°.
    【点睛】
    本题考查了三角形外角的性质,三角形的一个外角等于与它不相邻的两个内角的和,作辅助线DE是解题的关键.
    4、或
    【分析】
    因为已知长度为和两边,没有明确是底边还是腰,所以有两种情况,需要分类讨论.
    【详解】
    解:①当为底时,其它两边都为,
    、、可以构成三角形,
    周长为;
    ②当为底时,其它两边都为,
    、、可以构成三角形,
    周长为;
    故答案为:或.
    【点睛】
    本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,解题的关键是利用分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要.
    5、6cm或12cm
    【分析】
    先根据题意得到∠BCA=∠PAQ=90°,则以A、B、C为顶点的三角形与以A、P、Q为顶点的三角形全等,只有△ACB≌△QAP和△ACB≌△PAQ两种情况,由此利用全等三角形的性质求解即可.
    【详解】
    解:∵AX是AC的垂线,
    ∴∠BCA=∠PAQ=90°,
    ∴以A、B、C为顶点的三角形与以A、P、Q为顶点的三角形全等,只有△ACB≌△QAP和△ACB≌△PAQ两种情况,
    当△ACB≌△QAP,
    ∴;
    当△ACB≌△PAQ,
    ∴,
    故答案为:6cm或12cm.

    【点睛】
    本题主要考查了全等三角形的性质,熟知全等三角形的性质是解题的关键.
    三、解答题
    1、(1)①见解析; ②,;③MF=MA+ME,证明见解析;(2)
    【分析】
    (1)①按照要求旋转作图即可;②由旋转和等腰三角形性质解出∠AEF;再由三角形外角定理求出∠AMF; ③在FE上截取GF=ME,连接AG,证明△AFG ≌△AEM且△AGM为等边三角形后即可证得MF=MA+ME;
    (2)根据题意画出图形,根据含30°的直角三角形的性质,即可得到结论.
    【详解】
    解:(1)①补全图形如下图:

    ②∵∠CAE=∠DAC=,
    ∴∠BAE=30°+
    ∴∠FAE=2×(30°+)
    ∴∠AEF==60°-;
    ∵∠AMF=∠CAE+∠AEF=+60°-=60°,
    故答案是:60°-,60°;
    ③MF=MA+ME.
    证明:在FE上截取GF=ME,连接AG .

    ∵点D关于直线AC的对称点为E,
    ∴△ADC ≌△AEC.
    ∴∠CAE =∠CAD =.
    ∵∠BAC=30°,
    ∴∠EAN=30°+.
    又∵点E关于直线AB的对称点为F,
    ∴AB垂直平分EF.
    ∴AF=AE,∠FAN=∠EAN =30°+,
    ∴∠F=∠AEF=.
    ∴∠AMG =.
    ∵AF=AE,∠F=∠AEF, GF=ME,
    ∴△AFG ≌△AEM.
    ∴AG =AM.
    又∵∠AMG=,
    ∴△AGM为等边三角形.
    ∴MA=MG.
    ∴MF=MG+GF=MA+ME.
    (2),理由如下:
    如图1所示,
    ∵点E与点F关于直线AB对称,
    ∴∠ANM=90°,NE=NF,
    又∵∠NAM=30°,
    ∴AM=2MN,
    ∴AM=2NE+2EM =MF+ME,
    ∴MF=AM-ME;

    如图2所示,
    ∵点E与点F关于直线AB对称,
    ∴∠ANM=90°,NE=NF,
    ∵∠NAM=30°,
    ∴AM=2NM,
    ∴AM=2MF+2NF=2MF+NE+NF=ME+MF,
    ∴MF=MA-ME;

    综上所述:MF=MA-ME.
    【点睛】
    本题考查轴对称、三角形全等判定与性质、等边三角形判定与性质,掌握这些是本题关键.
    2、(1)5;(2)证明见解析
    【分析】
    (1)推出∠ADE=∠BEC,根据AAS证△AED≌△CEB,推出AE=BC,BE=AD,代入求出即可;
    (2)推出∠A=∠EBC,∠AED=∠BCE,根据AAS证△AED≌△BCE,推出AD=BE,AE=BC,即可得出结论.
    【详解】
    (1)解:∵∠DEC=∠A=90°,
    ∴∠ADE+∠AED=90°,∠AED+∠BEC=90°,
    ∴∠ADE=∠BEC,
    ∵,∠A=90°,
    ∴∠B+∠A=180°,
    ∴∠B=∠A=90°,
    在△AED和△CEB中

    ∴△AED≌△BCE(AAS),
    ∴AE=BC=3,BE=AD=2,
    ∴AB=AE+BE=2+3=5.
    (2)证明:∵,
    ∴∠A=∠EBC,
    ∵∠DFC=∠AEC,
    ∠DFC=∠BCE+∠DEC,∠AEC=∠AED+∠DEC,
    ∴∠AED=∠BCE,
    在△AED和△BCE中

    ∴△AED≌△BCE(AAS),
    ∴AD=BE,AE=BC,
    ∵BC=AE=AB+BE=AB+AD,
    即AB+AD=BC.
    【点睛】
    本题考查了三角形的外角的性质,全等三角形的性质和判定,平行线的性质等知识点的运用,掌握“利用证明两个三角形全等”是解本题的关键.
    3、
    (1)见解析
    (2)的面积为20.
    【分析】
    (1)根据已知条件得到、,然后利用全等三角形的判定,进行证明即可.
    (2)分别根据和的面积,用CF表示AF、DF,通过,得到,,用CF表示出AE的长,最后利用面积公式求解即可.
    (1)
    (1)解:由题意可知:
    是的中线

    在与中


    (2)
    解:的面积为8,的面积为6.
    ,即
    ,即
    由(1)可知:



    【点睛】
    本题主要是考查了全等三角形的判定和性质,熟练根据条件证明三角形全等,利用其性质,证明对应边相等,这是解决本题的关键.
    4、
    【分析】
    先由旋转的性质证明再利用等边对等角证明从而可得答案.
    【详解】
    解: 把△ABC绕点A逆时针旋转得到△ADE,∠B=70°,



    【点睛】
    本题考查的是旋转的性质,等腰三角形的性质,掌握“旋转前后的对应角相等与等边对等角”是解本题的关键.
    5、(1);(2)证明见详解.

    【分析】
    (1)根据三角形内角和及等腰三角形的性质可得,,由各角之间的关系及三角形内角和定理可得,,最后由平行线的性质即可得出;
    (2)由题意及各角之间的关系可得,得出,利用平行线的判定定理即可证明.
    【详解】
    解:(1)∵,,,
    ∴,,
    ∵,
    ∴,,
    ∴,
    ∴,
    ∵,
    ∴,,
    ∴;
    (2)∵,,
    ∴,
    由(1)可得,
    ∴,
    ∴(内错角相等,两直线平行).
    【点睛】
    题目主要考查平行线的判定与性质,三角形内角和定理等,熟练掌握平行线的判定与性质是解题关键.
    6、(1)见解析;(2)见解析;(3)见解析
    【分析】
    (1)延长DE交AB延长线于F,由∠B=∠C=90°,推出AB∥CD,则∠CDE=∠F,再由DE平分∠ADC,即可推出∠ADF=∠F,得到AD=AF,即△ADF是等腰三角形,然后证明△CDE≌△BFE得到DE=FE,即E是DF的中点,即可证明AE平分∠BAD;
    (2)由(1)即可用三线合一定理证明;
    (3)由△CDE≌△BFE,得到CD=BF,则AD=AF=AB+BF=AB+CD.
    【详解】
    解:(1)如图所示,延长DE交AB延长线于F,
    ∵∠B=∠C=90°,
    ∴AB∥CD,
    ∴∠CDE=∠F,
    ∵DE平分∠ADC,
    ∴∠CDE=∠ADE,
    ∴∠ADF=∠F,
    ∴AD=AF,
    ∴△ADF是等腰三角形,
    ∵E是BC的中点,
    ∴CE=BE,
    ∴△CDE≌△BFE(AAS),
    ∴DE=FE,
    ∴E是DF的中点,
    ∴AE平分∠BAD;

    (2)由(1)得△ADF是等腰三角形,AD=AF,E是DF的中点,
    ∴AE⊥DE;
    (3)∵△CDE≌△BFE,
    ∴CD=BF,
    ∴AD=AF=AB+BF=AB+CD.
    【点睛】
    本题主要考查了平行线的性质与判定,全等三角形的性质与判定,等腰三角形的性质与判定,熟知相关知识是解题的关键.
    7、
    【分析】
    由题意易得,,则有,然后可得,进而可证,则有,最后问题可求解.
    【详解】
    解:∵是等边三角形,
    ∴,,
    ∵,
    ∴,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴(SAS),
    ∴,
    ∵,
    ∴.
    【点睛】
    本题主要考查等边三角形的性质、含30度直角三角形的性质及全等三角形的性质与判定,熟练掌握等边三角形的性质、含30度直角三角形的性质及全等三角形的性质与判定是解题的关键.
    8、85°
    【分析】
    由高的定义可得出∠ADB=∠ADC=90,在△ACD中利用三角形内角和定理可求出∠ACB的度数,结合CE平分∠ACB可求出∠ECB的度数.由三角形外角的性质可求出∠AEC的度数,
    【详解】
    解:∵AD是BC边上的高,
    ∴∠ADB=∠ADC=90.
    在△ACD中,∠ACB=180°﹣∠ADC﹣∠CAD=180°﹣90°﹣20°=70°.
    ∵CE平分∠ACB,
    ∴∠ECB=∠ACB=35°.
    ∵∠AEC是△BEC的外角,,
    ∴∠AEC=∠B+∠ECB=50°+35°=85°.
    答:∠AEC的度数是85°.
    【点睛】
    本题考查了三角形内角和定理、角平分线的定义以及三角形外角的性质,利用三角形内角和定理及角平分线的性质,求出∠ECB的度数是解题的关键.
    9、不合格,理由见解析
    【分析】
    延长BD与AC相交于点E.利用三角形的外角性质,可得,,即可求解.
    【详解】
    解:如图,延长BD与AC相交于点E.

    ∵是的一个外角,,,
    ∴,
    同理可得
    ∵李师傅量得,不是115°,
    ∴这个零件不合格.
    【点睛】
    本题主要考查了三角形的外角性质,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.
    10、
    (1)
    (2)或,见解析
    【分析】
    (1)根据已知条件求出∠B=∠ACB=45°,证明△BAD≌△CAE,得到∠ACE=∠B=45°,求出∠BCE=∠ACB+∠ACE=90°,即可得到结论;
    (2)根据题意作图即可,证明≌.得到,,,推出.延长EF到点G,使,证明≌,推出.由此得到.同理可证.
    (1)
    解:,,
    ∴∠B=∠ACB=45°,
    ∵,
    ∴,即∠BAD=∠CAE,
    ∵,,
    ∴△BAD≌△CAE,
    ∴∠ACE=∠B=45°,
    ∴∠BCE=∠ACB+∠ACE=90°,
    ∴;
    (2)
    解:如图,补全图形;


    证明:∵,
    ∴.
    又∵,,
    ∴≌.
    ∴,,.
    ∵,
    ∴.
    ∴.
    延长EF到点G,使.
    ∵,
    ∴.
    ∴.
    ∵,
    ∴.
    ∴.
    ∵,
    ∴≌.
    ∴.
    ∵,
    ∴.
    如图,同理可证.

    【点睛】
    此题考查了全等三角形的判定及性质,等腰三角形的性质,熟记全等三角形的判定及性质是解题的关键.掌握分类思想解题是难点.

    相关试卷

    数学第十四章 三角形综合与测试精练:

    这是一份数学第十四章 三角形综合与测试精练,共33页。试卷主要包含了若一个三角形的三个外角之比为3,已知等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试练习:

    这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试练习,共30页。试卷主要包含了如图,AB=AC,点D,如图,ABC≌DEF,点B等内容,欢迎下载使用。

    七年级下册第十四章 三角形综合与测试达标测试:

    这是一份七年级下册第十四章 三角形综合与测试达标测试,共30页。试卷主要包含了如图,点D,三角形的外角和是,下列命题是真命题的是等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map