年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    精品试卷沪教版七年级数学第二学期第十四章三角形定向测评试题(含解析)

    立即下载
    加入资料篮
    精品试卷沪教版七年级数学第二学期第十四章三角形定向测评试题(含解析)第1页
    精品试卷沪教版七年级数学第二学期第十四章三角形定向测评试题(含解析)第2页
    精品试卷沪教版七年级数学第二学期第十四章三角形定向测评试题(含解析)第3页
    还剩32页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试同步达标检测题

    展开

    这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试同步达标检测题,共35页。试卷主要包含了如图,点A等内容,欢迎下载使用。
    沪教版七年级数学第二学期第十四章三角形定向测评
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、已知等腰三角形两边的长分别为3和7,则此等腰三角形的周长为( )
    A.10 B.15 C.17 D.19
    2、如图,在中,AD是角平分线,且,若,则的度数是( )

    A.45° B.50° C.52° D.58°
    3、如图,AC=BC,∠C=α,DE⊥AC于E,FD⊥AB于D,则∠EDF等于(  ).

    A.α B.90°-α C.90°-α D.180°-2α
    4、如图,AD∥BC,∠C=30°,∠ADB:∠BDC=1:2,∠EAB=72°,以下四个说法:
    ①∠CDF=30°;②∠ADB=50°;
    ③∠ABD=22°;④∠CBN=108°
    其中正确说法的个数是(  )

    A.1个 B.2个 C.3个 D.4个
    5、如图,E为线段BC上一点,∠ABE=∠AED=∠ECD=90°,AE=ED,BC=20,AB=8,则BE的长度为( )

    A.12 B.10 C.8 D.6
    6、如图,ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,DH⊥BC于H,交BE于G,下列结论中正确的是( )
    ①BCD为等腰三角形;②BF=AC;③CE=BF;④BH=CE.

    A.①② B.①③ C.①②③ D.①②③④
    7、如图,点A、B、C、D在一条直线上,点E、F在AD两侧,,,添加下列条件不能判定的是( )

    A. B. C. D.
    8、下列各组线段中,能构成三角形的是( )
    A.2、4、7 B.4、5、9 C.5、8、10 D.1、3、6
    9、如图,BD是的角平分线,,交AB于点E.若,,则的度数是( )

    A.10° B.20° C.30° D.50°
    10、以下列各组线段为边,能组成三角形的是( )
    A.3cm,4cm,5cm B.3cm,3cm,6cm C.5cm,10cm,4cm D.1cm,2cm,3cm
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,四边形中,,连接,平分,E是直线上一点,,,则的长为________.

    2、在新年联欢会上,老师设计了“你说我画”的游戏.游戏规则如下:甲同学需要根据乙同学提供的三个条件画出形状和大小都确定的三角形.已知乙同学说出的前两个条件是“,”.现仅存下列三个条件:①;②;③.为了甲同学画出形状和大小都确定的,乙同学可以选择的条件有: ______.(填写序号,写出所有正确答案)
    3、如图,是等腰直角三角形,AB是斜边,以BC为一边在右侧作等边三角形BCD,连接AD与BC交于点E,则的度数为______度.

    4、如图,已知AB=3,AC=CD=1,∠D=∠BAC=90°,则△ACE的面积是 _____.

    5、中,比大10°,,则______.
    三、解答题(10小题,每小题5分,共计50分)
    1、已知:如图,AD,BE相交于点O,AB⊥BE,DE⊥AD,垂足分别为B,D,OA=OE.求证:△ABO≌△EDO.

    2、已知:如图,在ABC中,AB=AC,点D、E分别在边BC,AC上,AD=AE.
    (1)若∠BAD=30°,则∠EDC= °;若∠EDC=20°,则∠BAD= °.
    (2)设∠BAD=x,∠EDC=y,写出y与x之间的关系式,并给出证明.

    3、已知,在△ABC中,∠BAC=30°,点D在射线BC上,连接AD,∠CAD=,点D关于直线AC的对称点为E,点E关于直线AB的对称点为F,直线EF分别交直线AC,AB于点M,N,连接AF,AE,CE.
    (1)如图1,点D在线段BC上.
    ①根据题意补全图1;
    ②∠AEF = (用含有的代数式表示),∠AMF= °;
    ③用等式表示线段MA,ME,MF之间的数量关系,并证明.
    (2)点D在线段BC的延长线上,且∠CAD<60°,直接用等式表示线段MA,ME,MF之间的数量关系,不证明.

    4、探究与发现:如图①,在△ABC中,∠B=∠C=45°,点D在BC边上,点E在AC边上,且∠ADE=∠AED,连接DE.
    (1)当∠BAD=60°时,求∠CDE的度数;
    (2)当点D在BC(点B、C除外)边上运动时,试猜想∠BAD与∠CDE的数量关系,并说明理由.
    (3)深入探究:如图②,若∠B=∠C,但∠C≠45°,其他条件不变,试探究∠BAD与∠CDE的数量关系.

    5、如图,AB=AD,AC=AE,BC=DE,点E在BC上.

    (1)求证:∠EAC=∠BAD;
    (2)若∠EAC=42°,求∠DEB的度数.
    6、已知:直线AB、CR被直线UV所截,直线UV交直线AB于点B,交直线CR于点D,∠ABU+∠CDV=180°.
    (1)如图1,求证:AB∥CD;
    (2)如图2,BE∥DF,∠MEB=∠ABE+5°,∠FDR=35°,求∠MEB的度数;
    (3)如图3,在(2)的条件下,点N在直线AB上,分别连接EN、ED,MG∥EN,连接ME,∠GME=∠GEM,∠EBD=2∠NEG,EB平分∠DEN,MH⊥UV于点H,若∠EDC=∠CDB,求∠GMH的度数.

    7、如图,点D,E在△ABC的边BC上,AB=AC,AD=AE,求证:BD=CE.

    8、如图,在中,是角平分线,,.

    (1)求的度数;
    (2)若,求的度数.
    9、如图,在中,,,点D在边AC上,且线段BD绕着点B按逆时针方向旋转120°能与BE重合,点F是ED与AB的交点.

    (1)求证:;
    (2)若,求的度数.
    10、在中,,,点D是直线AC上一动点,连接BD并延长至点E,使.过点E作于点F.

    (1)如图1,当点D在线段AC上(点D不与点A和点C重合)时,此时DF与DC的数量关系是______.
    (2)如图2,当点D在线段AC的延长线上时,依题意补全图形,并证明:.
    (3)当点D在线段CA的延长线上时,直接用等式表示线段AD,AF,EF之间的数量关系是______.


    -参考答案-
    一、单选题
    1、C
    【分析】
    等腰三角形两边的长为3和7,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.
    【详解】
    解:①当腰是3,底边是7时,3+3<7,不满足三角形的三边关系,因此舍去.
    ②当底边是3,腰长是7时,3+7>7,能构成三角形,则其周长=3+7+7=17.
    故选:C.
    【点睛】
    本题考查了等腰三角形的性质和三角形的三边关系,解题时注意:若没有明确腰和底边,则一定要分类进行讨论,还应验证各种情况是否能构成三角形,这是解题的关键.
    2、A
    【分析】
    根据角平分线性质求出∠DCA,再根据等腰三角形的性质和三角形的内角和定理求解∠C和∠B即可.
    【详解】
    解:∵AD是角平分线,,
    ∴∠DCA==30°,
    ∵AD=AC,
    ∴∠C=(180°-∠DCA)÷2=75°,
    ∴∠B=180°-∠BAC-∠C=180°-60°-75°=45°,
    故选:A.
    【点睛】
    本题考查角平分线的性质、等腰三角形的性质、三角形的内角和定理,熟练掌握等腰三角形的性质是解答的关键.
    3、B
    【分析】
    AC=BC,∠C=α,DE⊥AC于E,FD⊥AB于D,有,,,即可求得角度.
    【详解】
    解:由题意知:,


    故选B.
    【点睛】
    本题考查了等腰三角形的性质,几何图形中角度的计算.解题的关键在于确定各角度之间的数量关系.
    4、D
    【分析】
    根据AD∥BC,∠C=30°,利用内错角相等得出∠FDC=∠C=30°,可判断①正确;根据邻补角性质可求∠ADC=180°-∠FDC=180°-30°=150°,根据∠ADB:∠BDC=1:2,得出方程3∠ADB=150°,解方程可判断②正确;根据∠EAB=72°,可求邻补角∠DAN=180°-∠EAB=180°-72°=108°,利用三角形内角和可求∠ABD=180°-∠NAD-∠ADB=180°-108°-50°=22°可判断③正确,利用AD∥BC,同位角相等的∠CBN=∠DAN=108°可判断④正确即可.
    【详解】
    解:∵AD∥BC,∠C=30°,
    ∴∠FDC=∠C=30°,故①正确;
    ∴∠ADC=180°-∠FDC=180°-30°=150°,
    ∵∠ADB:∠BDC=1:2,
    ∴∠BDC=2∠ADB,
    ∵∠ADC=∠ADB+∠BDC=∠ADB+2∠ADB=3∠ADB=150°,
    解得∠ADB=50°,故②正确
    ∵∠EAB=72°,
    ∴∠DAN=180°-∠EAB=180°-72°=108°,
    ∴∠ABD=180°-∠NAD-∠ADB=180°-108°-50°=22°,故③正确
    ∵AD∥BC,
    ∴∠CBN=∠DAN=108°,故④正确
    其中正确说法的个数是4个.
    故选择D.
    【点睛】
    本题考查平行线性质,角的倍分,邻补角性质,三角形内角和,一元一次方程,掌握平行线性质,邻补角性质,三角形内角和,一元一次方程地解题关键.
    5、A
    【分析】
    利用角相等和边相等证明,利用全等三角形的性质以及边的关系,即可求出BE的长度.
    【详解】
    解:由题意可知:∠ABE=∠AED=∠ECD=90°,
    ,,

    在和中,




    故选:A.
    【点睛】
    本题主要是考查了全等三角形的判定和性质,熟练通过已知条件证明三角形全等,利用全等性质及边的关系,来求解未知边的长度,这是解决本题的主要思路.
    6、C
    【分析】
    根据∠ABC=45°,CD⊥AB可得出BD=CD;利用AAS判定Rt△DFB≌Rt△DAC,从而得出BF=AC;再利用AAS判定Rt△BEA≌Rt△BEC,即可得到CE=BF;由CE=BF,BH=BC,在三角形BCF中,比较BF、BC的长度即可得到CE<BH.
    【详解】
    解:∵CD⊥AB,∠ABC=45°,
    ∴△BCD是等腰直角三角形.
    ∴BD=CD,故①正确;
    在Rt△DFB和Rt△DAC中,
    ∵∠DBF=90°﹣∠BFD,∠DCA=90°﹣∠EFC,且∠BFD=∠EFC,
    ∴∠DBF=∠DCA.
    又∵∠BDF=∠CDA=90°,BD=CD,
    ∴△DFB≌△DAC.
    ∴BF=AC,故②正确;
    在Rt△BEA和Rt△BEC中
    ∵BE平分∠ABC,
    ∴∠ABE=∠CBE.
    又∵BE=BE,∠BEA=∠BEC=90°,
    ∴Rt△BEA≌Rt△BEC.
    ∴CE=AC=BF,故③正确;
    ∵CE=AC=BF,BH=BC,
    在△BCF中,∠CBE=∠ABC=22.5°,∠DCB=∠ABC=45°,
    ∴∠BFC=112.5°,
    ∴BF<BC,
    ∴CE<BH,故④错误;
    故选:C.
    【点睛】
    本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.在复杂的图形中有45°的角,有垂直,往往要用到等腰直角三角形,要注意掌握并应用此点.
    7、A
    【分析】
    根据题意,可得,结合选项根据三角形全等的性质与判定逐项分析即可.
    【详解】
    解:

    A. ,,不能根据SSA证明三角形全等,故该选项符合题意;
    B.


    ,

    故能判定,不符合题意;
    C. ,,
    ,故能判定,不符合题意;
    D.


    ,故能判定,不符合题意;
    故选A
    【点睛】
    本题考查了平行线的性质,三角形全等的性质与判定,掌握三角形全等的性质与判定是解题的关键.
    8、C
    【分析】
    根据三角形的三边关系定理逐项判断即可得.
    【详解】
    解:三角形的三边关系定理:任意两边之和大于第三边.
    A、,不能构成三角形,此项不符题意;
    B、,不能构成三角形,此项不符题意;
    C、,能构成三角形,此项符合题意;
    D、,不能构成三角形,此项不符题意;
    故选:C.
    【点睛】
    本题考查了三角形的三边关系定理,熟练掌握三角形的三边关系定理是解题关键.
    9、B
    【分析】
    由外角的性质可得∠ABD=20°,由角平分线的性质可得∠DBC=20°,由平行线的性质即可求解.
    【详解】
    解:(1)∵∠A=30°,∠BDC=50°,∠BDC=∠A+∠ABD,
    ∴∠ABD=∠BDC−∠A=50°−30°=20°,
    ∵BD是△ABC的角平分线,
    ∴∠DBC=∠ABD=20°,
    ∵DE∥BC,
    ∴∠EDB=∠DBC=20°,
    故选:B.
    【点睛】
    本题考查了平行线的性质,三角形外角的性质,角平分线的定义,灵活应用这些性质解决问题是解决本题的关键.
    10、A
    【分析】
    三角形的任意两条之和大于第三边,任意两边之差小于第三边,根据原理再分别计算每组线段当中较短的两条线段之和,再与最长的线段进行比较,若和大于最长的线段的长度,则三条线段能构成三角形,否则,不能构成三角形,从而可得答案.
    【详解】
    解: 所以以3cm,4cm,5cm为边能构成三角形,故A符合题意;
    所以以3cm,3cm,6cm为边不能构成三角形,故B不符合题意;
    所以以5cm,10cm,4cm为边不能构成三角形,故C不符合题意;
    所以以1cm,2cm,3cm为边不能构成三角形,故D不符合题意;
    故选A
    【点睛】
    本题考查的是三角形的三边之间的关系,掌握“利用三角形三边之间的关系判定三条线段能否组成三角形”是解本题的关键.
    二、填空题
    1、6或10
    【分析】
    先利用平行线的性质和等角对等边的性质得到AB=AD,再根据点E在D的左边和右边分别求解即可;
    【详解】
    ∵平分,
    ∴,
    ∵,
    ∴,
    ∴,
    ∴是等腰三角形,
    ∴,
    当点E在线段AD上时,
    ∵,,
    ∴,
    当点E在线段AD延长线上时,
    ∵,,
    ∴;
    故答案是:6或10.
    【点睛】
    本题主要考查了平行线的性质,角平分线的定义,等角对等边,先证出AB=AD是解题的关键.
    2、②
    【分析】
    根据两边及其夹角对应相等的两个三角形全等,即可求解.
    【详解】
    解:①若选,是边边角,不能得到形状和大小都确定的;
    ②若选,是边角边,能得到形状和大小都确定的;
    ③若选,是边边角,不能得到形状和大小都确定的;
    所以乙同学可以选择的条件有②.
    故答案为:②
    【点睛】
    本题主要考查了全等三角形的判定,熟练掌握两边及其夹角对应相等的两个三角形全等是解题的关键.
    3、75
    【分析】
    由题意,是等腰三角形,然后求出的度数,再根据三角形的外角性质,即可求出的度数.
    【详解】
    解:∵是等腰直角三角形,
    ∴AC=BC,∠ABC=∠BAC=45°,∠ACB=90°,
    ∵△BCD是等边三角形,
    ∴BC=CD,∠BCD=60°,
    ∴AC=CD,∠ACD=90°+60°=150°,
    ∴是等腰三角形,
    ∴,
    ∴,
    ∴;
    故答案为:75.
    【点睛】
    本题考查了等边三角形的性质,等腰直角三角形的性质,三角形的外角性质,三角形的内角和定理,解题的关键是掌握所学的知识,正确的求出.
    4、##
    【分析】
    先根据三角形全等的判定定理证出,再根据全等三角形的性质可得,然后利用三角形的面积公式即可得.
    【详解】
    解:在和中,,


    则的面积是,
    故答案为:.
    【点睛】
    本题考查了三角形全等的判定定理与性质,熟练掌握三角形全等的判定方法是解题关键.
    5、70°
    【分析】
    根据三角形内角和定理可得,由题意比大,可得,组成方程组求解即可.
    【详解】
    解:∵,
    ∴,
    ∵比大,
    ∴,
    ∴,
    解得:,
    故答案为:.
    【点睛】
    题目主要考查三角形内角和定理及二元一次方程组的应用,理解题意,列出代数式组成方程组是解题关键.
    三、解答题
    1、见解析
    【分析】
    利用AAS即可证明△ABO≌△EDO.
    【详解】
    证明:∵AB⊥BE,DE⊥AD,
    ∴∠B=∠D=90°.
    在△ABO和△EDO中

    ∴△ABO≌△EDO.
    【点睛】
    本题考查了全等三角形的判定,熟练掌握三角形全等的判定方法是解题的关键.
    2、(1)15,40;(2)y=x,见解析
    【分析】
    (1)设∠EDC=m,则∠B=∠C=n,根据∠ADE=∠AED=m+n,∠ADC=∠B+∠BAD即可列出方程,从而求解.
    (2)设∠BAD=x,∠EDC=y,根据等腰三角形的性质可得∠B=∠C,∠ADE=∠AED=∠C+∠EDC=∠B+y,由∠ADC=∠B+∠BAD=∠ADE+∠EDC即可得∠B+x=∠B+y+y,从而求解.
    【详解】
    解:(1)设∠EDC=m,∠B=∠C=n,
    ∵∠AED=∠EDC+∠C=m+n,
    又∵AD=AE,
    ∴∠ADE=∠AED=m+n,
    则∠ADC=∠ADE+∠EDC=2m+n,
    又∵∠ADC=∠B+∠BAD,
    ∴∠BAD=2m,
    ∴2m+n=n+30,解得m=15°,
    ∴∠EDC的度数是15°;
    若∠EDC=20°,则∠BAD=2m=2×20°=40°.
    故答案是:15;40;
    (2)y与x之间的关系式为y=x,
    证明:设∠BAD=x,∠EDC=y,
    ∵AB=AC,AD=AE,
    ∴∠B=∠C,∠ADE=∠AED,
    ∵∠AED=∠C+∠EDC=∠B+y,
    ∴∠ADC=∠B+∠BAD=∠ADE+∠EDC,
    ∴∠B+x=∠B+y+y,
    ∴2y=x,
    ∴y=x.
    【点睛】
    本题主要考查了等腰三角形的性质、三角形外角的性质以及一元一次方程的应用,灵活运用等腰三角形的性质成为解答本题的关键.
    3、(1)①见解析; ②,;③MF=MA+ME,证明见解析;(2)
    【分析】
    (1)①按照要求旋转作图即可;②由旋转和等腰三角形性质解出∠AEF;再由三角形外角定理求出∠AMF; ③在FE上截取GF=ME,连接AG,证明△AFG ≌△AEM且△AGM为等边三角形后即可证得MF=MA+ME;
    (2)根据题意画出图形,根据含30°的直角三角形的性质,即可得到结论.
    【详解】
    解:(1)①补全图形如下图:

    ②∵∠CAE=∠DAC=,
    ∴∠BAE=30°+
    ∴∠FAE=2×(30°+)
    ∴∠AEF==60°-;
    ∵∠AMF=∠CAE+∠AEF=+60°-=60°,
    故答案是:60°-,60°;
    ③MF=MA+ME.
    证明:在FE上截取GF=ME,连接AG .

    ∵点D关于直线AC的对称点为E,
    ∴△ADC ≌△AEC.
    ∴∠CAE =∠CAD =.
    ∵∠BAC=30°,
    ∴∠EAN=30°+.
    又∵点E关于直线AB的对称点为F,
    ∴AB垂直平分EF.
    ∴AF=AE,∠FAN=∠EAN =30°+,
    ∴∠F=∠AEF=.
    ∴∠AMG =.
    ∵AF=AE,∠F=∠AEF, GF=ME,
    ∴△AFG ≌△AEM.
    ∴AG =AM.
    又∵∠AMG=,
    ∴△AGM为等边三角形.
    ∴MA=MG.
    ∴MF=MG+GF=MA+ME.
    (2),理由如下:
    如图1所示,
    ∵点E与点F关于直线AB对称,
    ∴∠ANM=90°,NE=NF,
    又∵∠NAM=30°,
    ∴AM=2MN,
    ∴AM=2NE+2EM =MF+ME,
    ∴MF=AM-ME;

    如图2所示,
    ∵点E与点F关于直线AB对称,
    ∴∠ANM=90°,NE=NF,
    ∵∠NAM=30°,
    ∴AM=2NM,
    ∴AM=2MF+2NF=2MF+NE+NF=ME+MF,
    ∴MF=MA-ME;

    综上所述:MF=MA-ME.
    【点睛】
    本题考查轴对称、三角形全等判定与性质、等边三角形判定与性质,掌握这些是本题关键.
    4、(1)30°;(2)∠BAD=2∠CDE,理由见解析;(3)∠BAD=2∠CDE.
    【分析】
    (1)根据三角形的外角的性质求出∠ADC,结合图形计算即可;
    (2)设∠BAD=x,根据三角形的外角的性质求出∠ADC,结合图形计算即可;
    (3)设∠BAD=x,仿照(2)的解法计算.
    【详解】
    解:(1)∵∠ADC是△ABD的外角,
    ∴∠ADC=∠BAD+∠B=105°,
    ∠DAE=∠BAC﹣∠BAD=30°,
    ∴∠ADE=∠AED=75°,
    ∴∠CDE=105°﹣75°=30°;
    (2)∠BAD=2∠CDE,
    理由如下:设∠BAD=x,
    ∴∠ADC=∠BAD+∠B=45°+x,
    ∠DAE=∠BAC﹣∠BAD=90°﹣x,
    ∴∠ADE=∠AED=,
    ∴∠CDE=45°+x﹣=x,
    ∴∠BAD=2∠CDE;
    (3)设∠BAD=x,
    ∴∠ADC=∠BAD+∠B=∠B+x,
    ∠DAE=∠BAC﹣∠BAD=180°﹣2∠C﹣x,
    ∴∠ADE=∠AED=∠C+x,
    ∴∠CDE=∠B+x﹣(∠C+x)=x,
    ∴∠BAD=2∠CDE.
    【点睛】
    本题考查了三角形内角和和外角的性质,解题关键是熟练掌握三角形内角和和外角性质,通过设参数计算,发现角之间的关系
    5、(1)见解析;(2)42°
    【分析】
    (1)利用边边边证得△ABC≌△ADE,可得∠BAC=∠DAE,即可求证;
    (2)根据等腰三角形的性质,可得∠AEC=∠C=69°,再由△ABC≌△ADE,可得∠AED=∠C=69°, 即可求解.
    【详解】
    (1)证明:∵AB=AD,AC=AE,BC=DE,
    ∴△ABC≌△ADE.
    ∴∠BAC=∠DAE.
    ∴∠BAC-∠BAE=∠DAE-∠BAE.
    即∠EAC=∠BAD;
    (2)解:∵AC=AE,∠EAC=42°,
    ∴∠AEC=∠C= ×(180°-∠EAC)= ×(180°-42°)=69°.
    ∵△ABC≌△ADE,
    ∴∠AED=∠C=69°,
    ∴∠DEB=180°-∠AED-∠C=180°-69°-69°=42°.
    【点睛】
    本题主要考查了全等三角形的判定和性质,等腰三角形的性质,熟练掌握全等三角形的判定和性质定理,等腰三角形的性质定理是解题的关键.
    6、(1)见详解;(2)∠MEB=40°,(3)∠GMH=80°
    【分析】
    (1)根据等角的补角性质得出∠ABD=∠CDV,根据同位角相等两直线平行可得AB∥CD;
    (2)根据AB∥CD;利用内错角相等得出∠ABD=∠RDB,根据BE∥DF,得出∠EBD=∠FDB,利用等量减等量差相等得出∠ABE=∠FDR,根据∠FDR=35°,可得∠ABE=∠FDR=35°即可;
    (3)设ME交AB于S,根据MG∥EN,得出∠NES=∠GMS=∠GES,设∠NES=y°,可得∠NEG=∠NES+∠GES=2∠NES=2y°,根据∠EBD=2∠NEG,得出∠EBD =4∠NES=4y°,根据∠EDC=∠CDB,设∠EDC=x°,得出∠CDB=7x°,根据AB∥CD,得出∠GBE+∠EBD+∠CDB=180°,可得35+4y+7x=180根据三角形内角和∠BDE=∠BDC-∠EDC=7x-x=6x,∠BED=180°-∠EBD-∠EDB=180°-4y°-6x°,利用EB平分∠DEN,得出y°+40°=180°-4y°-6x°,解方程组,解得,可证ME∥UV,根据MH⊥UV,可求∠SMH=90°,∠SMG=∠NES=10°即可.
    【详解】
    (1)证明:∵∠ABU+∠ABD=180°,∠ABU+∠CDV=180°.
    ∴∠ABU=180°-∠ABD,∠CDV=180°-∠ABU,
    ∴∠ABD=∠CDV,
    ∴AB∥CD;
    (2)解:∵AB∥CD;
    ∴∠ABD=∠RDB,
    ∴∠ABE+∠EBD=∠FDB+∠FDR,
    ∵BE∥DF,
    ∴∠EBD=∠FDB,
    ∴∠ABE=∠FDR,
    ∵∠FDR=35°,
    ∴∠ABE=∠FDR=35°,
    ∴∠MEB=∠ABE+5°=35°+5°=40°,
    (3)解:设ME交AB于S,
    ∵MG∥EN,
    ∴∠NES=∠GMS=∠GES,
    设∠NES=y°,
    ∵∠EBD=2∠NEG
    ∴∠NEG=∠NES+∠GES=2∠NES=2y°,
    ∴∠EBD =4∠NES=4y°,
    ∵∠EDC=∠CDB,
    设∠EDC=x°
    ∴∠CDB=7x°,
    ∵AB∥CD,
    ∴∠ABD+∠CDB=180°,即∠GBE+∠EBD+∠CDB=180°,
    ∴35+4y+7x=180,
    ∵∠BDE=∠BDC-∠EDC=7x-x=6x,
    ∴∠BED=180°-∠EBD-∠EDB=180°-4y°-6x°,
    ∵EB平分∠DEN,
    ∴∠NEB=∠BED,
    ∵∠NEB=∠NES+∠SEB=y°+40°,
    ∴y°+40°=180°-4y°-6x°,
    ∴,
    解得,
    ∴∠EBD=4y°=40°=∠MEB,
    ∴ME∥UV,
    ∵MH⊥UV,
    ∴MH⊥ME,
    ∴∠SMH=90°,,
    ∵∠SMG=∠NES=10°,
    ∴∠GMH=90°-∠SMG=90°-10°=80°.

    【点睛】
    本题考查平行线判定与性质,三角形内角和,垂直性质,角平分线定义,角的倍分,二元一次方程组,掌握平行线判定与性质,三角形内角和,垂直性质,角平分线定义,角的倍分,二元一次方程组是解题关键.
    7、见解析
    【分析】
    过A作AF⊥BC于F,根据等腰三角形的性质得出BF=CF,DF=EF,即可求出答案.
    【详解】
    证明:如图,过A作AF⊥BC于F,

    ∵AB=AC,AD=AE,
    ∴BF=CF,DF=EF,
    ∴BF-DF=CF-EF,
    ∴BD=CE.
    【点睛】
    本题考查了等腰三角形的性质的应用,注意:等腰三角形的底边上的高,底边上的中线,顶角的平分线互相重合.
    8、
    (1);
    (2).
    【分析】
    (1)根据三角形内角和定理可求出,然后利用角平分线进行计算即可得;
    (2)根据垂直得出,然后根据三角形内角和定理即可得.
    (1)
    解:∵,,
    ∴,
    ∵AD是角平分线,
    ∴,
    ∴;
    (2)
    ∵,
    ∴,
    ∴,
    ∴.
    【点睛】
    题目主要考查三角形内角和定理,角平分线的计算等,熟练运用三角形内角和定理是解题关键.
    9、(1)见解析;(2)
    【分析】
    (1)由旋转的性质可得,,再证明,结合 从而可得结论;
    (2)由可得,再利用等腰三角形的性质求解,再利用三角形的内角和定理可得答案.
    【详解】
    证明:(1)∵线段BD绕着点B按逆时针方向旋转120°能与BE重合,
    ∴,,
    ∵,,
    ∴,
    ∴,
    ∴(SAS),
    ∴.
    (2)解:由(1)知
    ,,,
    ∴,
    ∴.
    【点睛】
    本题考查的是全等三角形的判定与性质,旋转的性质,等腰三角形的性质,掌握“旋转前后的对应边相等,对应角相等”是解本题的关键.
    10、(1)(2)见解析(3)
    【分析】
    (1)利用边相等和角相等,直接证明,即可得到结论.
    (2)利用边相等和角相等,直接证明,得到和,最后通过边与边之间的关系,即可证明结论成立.
    (3)要证明,先利用边相等和角相等,直接证明,得到和,最后通过边与边之间的关系,即可证明结论成立.
    【详解】
    (1)解:
    ,,

    在和中,



    (2)解:当点D在线段AC的延长线上时,如下图所示:

    ,,

    在和中,


    ,,

    (3)解:,如下图所示:

    ,,

    在和中,


    ,,

    【点睛】
    本题主要是考查了三角形全等的判定和性质,熟练利用条件证明三角形全等,然后利用边相等以及边与边之间关系,即可证明结论成立,这是解决该题的关键.

    相关试卷

    沪教版 (五四制)七年级下册第十四章 三角形综合与测试课后练习题:

    这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试课后练习题,共33页。

    数学七年级下册第十四章 三角形综合与测试课堂检测:

    这是一份数学七年级下册第十四章 三角形综合与测试课堂检测,共33页。试卷主要包含了如图,在中,,定理等内容,欢迎下载使用。

    初中沪教版 (五四制)第十四章 三角形综合与测试当堂达标检测题:

    这是一份初中沪教版 (五四制)第十四章 三角形综合与测试当堂达标检测题,共36页。试卷主要包含了下列三个说法,定理等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map