开学活动
搜索
    上传资料 赚现金

    2022年最新强化训练沪教版七年级数学第二学期第十四章三角形专项攻克试题(含答案及详细解析)

    2022年最新强化训练沪教版七年级数学第二学期第十四章三角形专项攻克试题(含答案及详细解析)第1页
    2022年最新强化训练沪教版七年级数学第二学期第十四章三角形专项攻克试题(含答案及详细解析)第2页
    2022年最新强化训练沪教版七年级数学第二学期第十四章三角形专项攻克试题(含答案及详细解析)第3页
    还剩33页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试课后练习题

    展开

    这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试课后练习题,共36页。试卷主要包含了已知长方形纸片ABCD,点E等内容,欢迎下载使用。
    沪教版七年级数学第二学期第十四章三角形专项攻克
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,∠A=α,∠DBC=3∠DBA,∠DCB=3∠DCA,则∠BDC的大小为( )

    A. B. C. D.
    2、有下列说法:①轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线;②等腰三角形一腰上的高与底边的夹角与顶角互余;③等腰三角形顶角的平分线是它的对称轴;④等腰三角形两腰上的中线相等.其中正确的说法有( )个.
    A.1 B.2 C.3 D.4
    3、如图,已知Rt△ABC中,∠C=90°,∠A=30°,在直线BC上取一点P,使得△PAB是等腰三角形,则符合条件的点P有( )

    A.1个 B.2个 C.3个 D.4个
    4、一副三角板如图放置,点A在DF的延长线上,∠D=∠BAC=90°,∠E=30°,∠C=45°,若BC//DA,则∠ABF的度数为(  )

    A.15° B.20° C.25° D.30°
    5、已知,,,的相关数据如图所示,则下列选项正确的是( )

    A. B. C. D.
    6、以下列各组线段为边,能组成三角形的是( )
    A.3cm,4cm,5cm B.3cm,3cm,6cm C.5cm,10cm,4cm D.1cm,2cm,3cm
    7、已知长方形纸片ABCD,点E、F分别在边AB、CD上,连接EF,将∠BEF对折,点B落在直线EF上的点B′处,得折痕EM,将∠AEF对折,点A落在直线EF上的点A′处,得折痕EN,则图中与∠B′ME互余的角有(  )

    A.2个 B.3个 C.4个 D.5个
    8、在△ABC中,∠A=∠B=∠C,则∠C=(  )
    A.70° B.80° C.100° D.120°
    9、如图,在ABC中,AB=AC,D是BC的中点,∠B=35°,则∠BAD=( )

    A.110° B.70° C.55° D.35°
    10、如图,≌,和是对应角,和是对应边,则下列结论中一定成立的是( )

    A. B.
    C. D.
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,两根旗杆CA,DB相距20米,且CA⊥AB,DB⊥AB,某人从旗杆DB的底部B点沿BA走向旗杆CA底部A点.一段时间后到达点M,此时他分别仰望旗杆的顶点C和D,两次视线的夹角∠CMD=90°,且CM=DM.已知旗杆BD的高为12米,该人的运动速度为每秒2米,则这个人从点B到点M所用时间是 _____秒.

    2、如图,在△中,已知点分别为的中点,若△的面积为,则阴影部分的面积为 _________

    3、在平面直角坐标系中,,,,,则点的坐标为__________.
    4、在新年联欢会上,老师设计了“你说我画”的游戏.游戏规则如下:甲同学需要根据乙同学提供的三个条件画出形状和大小都确定的三角形.已知乙同学说出的前两个条件是“,”.现仅存下列三个条件:①;②;③.为了甲同学画出形状和大小都确定的,乙同学可以选择的条件有: ______.(填写序号,写出所有正确答案)
    5、如图,在等边△ABC中,E为AC边的中点,AD垂直平分BC,P是AD上的动点.若AD=6,则EP+CP的最小值为_______________.

    三、解答题(10小题,每小题5分,共计50分)
    1、(1)我们把两个面积相等但不全等的三角形叫做“偏等积三角形”,如图1,中,,P为上一点,当_______时,与是偏等积三角形;

    (2)如图2,四边形是一片绿色花园,、是等腰直角三角形,.
    ①与是偏等积三角形吗?请说明理由;
    ②已知的面积为.如图3,计划修建一条经过点C的笔直的小路,F在边上,的延长线经过中点G.若小路每米造价600元,请计算修建小路的总造价.
    2、如图,在等边三角形ABC中,点P为△ABC内一点,连接AP,BP,CP,将线段AP绕点A 顺时针旋转60°得到 ,连接 .
    (1)用等式表示 与CP的数量关系,并证明;
    (2)当∠BPC=120°时,
    ①直接写出 的度数为 ;
    ②若M为BC的中点,连接PM,请用等式表示PM与AP的数量关系,并证明.

    3、如图,在△ABC中,AB=AC,CD⊥AB于点D,∠A=50°,求∠BCD的度数.

    4、中,,以点为中心,分别将线段,逆时针旋转得到线段,,连接,延长交于点.
    (1)如图1,若,的度数为________;

    (2)如图2,当吋,
    ①依题意补全图2;
    ②猜想与的数量关系,并加以证明.

    5、如图,在△ABC中,AD⊥BE,∠DAC=10°,AE是∠BAC的外角∠MAC的平分线,BF平分∠ABC交AE于点F,求∠AFB的度数.

    6、已知:在△ABC中,AD平分∠BAC,AE=AC.求证:AD∥CE.

    7、在等腰中,,点D是BC边上的一个动点(点D不与点B,C重合),连接AD,作等腰,使,,点D,E在直线AC两旁,连接CE.

    (1)如图1,当时,直接写出BC与CE的位置关系;
    (2)如图2,当时,过点A作于点F,请你在图2中补全图形,用等式表示线段BD,CD,之间的数量关系,并证明.
    8、如图,已知△ABC≌△DEB,点E在AB上,AC与BD交于点F,AB=6,BC=3,∠C=55°,∠D=25°.
    (1)求AE的长度;
    (2)求∠AED的度数.

    9、如图,是的角平分线,于点.

    (1)用尺规完成以下基本作图:过点作于点,连接交于点.(不写作法,保留作图痕迹)
    (2)在(1)中所作的图形中,求证:.
    10、如图,在中,是角平分线,,.

    (1)求的度数;
    (2)若,求的度数.

    -参考答案-
    一、单选题
    1、A
    【分析】
    根据题意设,根据三角形内角和公式定理,进而表示出,进而根据三角形内角和定理根据即可求解
    【详解】
    解:∵∠A=α,∠DBC=3∠DBA,∠DCB=3∠DCA,设,





    故选A
    【点睛】
    本题考查了三角形内角和定理,掌握三角形内角和定理是解题的关键.
    2、B
    【分析】
    根据轴对称的性质,轴对称图形的概念,等腰三角形的性质判断即可.
    【详解】
    解:①轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线,说法正确;
    ②等腰三角形一腰上的高与底边的夹角与底角互余,原说法错误;
    ③等腰三角形的顶角平分线在它的对称轴上,原说法错误;
    ④等腰三角形两腰上的中线相等,说法正确.
    综上,正确的有①④,共2个,
    故选:B.
    【点睛】
    本题考查了轴对称的性质及等腰三角形的性质,掌握轴对称的性质,轴对称图形的概念,等腰三角形的性质是解题的关键.
    3、B
    【分析】
    根据等腰三角形的判定定理,结合图形即可得到结论.
    【详解】
    解:以点A、B为圆心,AB长为半径画弧,交直线BC于两个点,然后作AB的垂直平分线交直线BC于点,如图所示:

    ∵∠C=90°,∠A=30°,
    ∴,
    ∵,
    ∴是等边三角形,
    ∴点重合,
    ∴符合条件的点P有2个;
    故选B.
    【点睛】
    本题主要考查等腰三角形的性质及等边三角形的性质与判定,熟练掌握等腰三角形的性质是解题的关键.
    4、A
    【分析】
    先求出∠EFD=60°,∠ABC=45°,由BC∥AD,得到∠EFD=∠FBC=60°,则∠ABF=∠FBC-∠ABC=15°.
    【详解】
    解:∵∠D=∠BAC=90°,∠E=30°,∠C=45°,
    ∴∠EFD=60°,∠ABC=45°,
    ∵BC∥AD,
    ∴∠EFD=∠FBC=60°,
    ∴∠ABF=∠FBC-∠ABC=15°,
    故选A.

    【点睛】
    本题主要考查了直角三角形两锐角互余,平行线的性质,熟知直角三角形两锐角互余是解题的关键.
    5、D
    【分析】
    根据三角形内角和定理分别求出三个三角形中未知角的度数,然后依据全等三角形的判定定理,从三个三角形中寻找条件证明全等,即可得出选项.
    【详解】
    解:,

    在与ΔFED中,

    ∴≅ΔFED,
    ∴,
    A、B、C三个选项均不能证明,
    故选:D.
    【点睛】
    题目主要考查三角形内角和定理、全等三角形的判定和性质,理解题意,熟练运用全等三角形的判定定理是解题关键.
    6、A
    【分析】
    三角形的任意两条之和大于第三边,任意两边之差小于第三边,根据原理再分别计算每组线段当中较短的两条线段之和,再与最长的线段进行比较,若和大于最长的线段的长度,则三条线段能构成三角形,否则,不能构成三角形,从而可得答案.
    【详解】
    解: 所以以3cm,4cm,5cm为边能构成三角形,故A符合题意;
    所以以3cm,3cm,6cm为边不能构成三角形,故B不符合题意;
    所以以5cm,10cm,4cm为边不能构成三角形,故C不符合题意;
    所以以1cm,2cm,3cm为边不能构成三角形,故D不符合题意;
    故选A
    【点睛】
    本题考查的是三角形的三边之间的关系,掌握“利用三角形三边之间的关系判定三条线段能否组成三角形”是解本题的关键.
    7、C
    【分析】
    先由翻折的性质得到∠AEN=∠A′EN,∠BEM=∠B′EM,从而可知∠NEM=×180°=90°,然后根据余角的定义找出∠B′ME的余角即可.
    【详解】
    解:由翻折的性质可知:∠AEN=∠A′EN,∠BEM=∠B′EM.
    ∠NEM=∠A′EN+∠B′EM=∠AEA′+∠B′EB=×180°=90°.
    由翻折的性质可知:∠MB′E=∠B=90°.
    由直角三角形两锐角互余可知:∠B′ME的一个余角是∠B′EM.
    ∵∠BEM=∠B′EM,
    ∴∠BEM也是∠B′ME的一个余角.
    ∵∠NBF+∠B′EM=90°,
    ∴∠NEF=∠B′ME.
    ∴∠ANE、∠A′NE是∠B′ME的余角.
    综上所述,∠B′ME的余角有∠ANE、∠A′NE、∠B′EM、∠BEM.
    故选:C.
    【点睛】
    本题主要考查的是翻折的性质、余角的定义,掌握翻折的性质是解题的关键.
    8、D
    【分析】
    根据三角形的内角和,①,进而根据已知条件,将代入①即可求得
    【详解】
    解:∵在△ABC中,,∠A=∠B=∠C,

    解得
    故选D
    【点睛】
    本题考查了三角形内角和定理,掌握三角形内角和定理是解题的关键.
    9、C
    【分析】
    根据等腰三角形三线合一的性质可得AD⊥BC,然后利用直角三角形两锐角互余的性质解答.
    【详解】
    解:∵AB=AC,D是BC的中点,
    ∴AD⊥BC,
    ∵∠B=35°,
    ∴∠BAD=90°−35°=55°.
    故选:C.
    【点睛】
    本题主要考查了等腰三角形三线合一的性质,直角三角形两锐角互余的性质,是基础题,熟记性质是解题的关键.
    10、D
    【分析】
    根据全等三角形的性质求解即可.
    【详解】
    解:∵≌,和是对应角,和是对应边,
    ∴,,
    ∴,
    ∴选项A、B、C错误,D正确,
    故选:D.
    【点睛】
    本题考查全等三角形的性质,熟练掌握全等三角形的性质是解答的关键.
    二、填空题
    1、4
    【分析】
    先说明,再利用证明,然后根据全等三角形的性质可得米,再根据线段的和差求得BM的长,最后利用时间=路程÷速度计算即可.
    【详解】
    解:∵,
    ∴,
    又∵,
    ∴,
    ∴,
    在和中,

    ∴,
    ∴米,
    (米),
    ∵该人的运动速度,
    他到达点M时,运动时间为s.
    故答案为:4.
    【点睛】
    本题主要考查了全等三角形的判定与性质,根据题意证得是解答本题的关键.
    2、1
    【分析】
    根据三角形的中线把三角形分成两个面积相等的三角形解答.
    【详解】
    解:∵点E是AD的中点,
    ∴S△ABE=S△ABD,S△ACE=S△ADC,
    ∴S△ABE+S△ACE=S△ABC=×4=2cm2,
    ∴S△BCE=S△ABC=×4=2cm2,
    ∵点F是CE的中点,
    ∴S△BEF=S△BCE=×2=1cm2.
    故答案为:1.
    【点睛】
    本题考查了三角形的面积,主要利用了三角形的中线把三角形分成两个面积相等的三角形,原理为等底等高的三角形的面积相等.
    3、
    【分析】
    按照在x轴的上下方,分成两类情况讨论,如解析中的图像所示,分别利用边和角证明和成立,然后根据对应边相等,即可求出两种情况对应的点B的坐标.
    【详解】
    解:如下图所示:

    由,可知:,.
    当B点在x轴下方时,过点B1向x轴作垂线,垂足为E.




    在与中:




    点坐标为
    当B点在x轴上方时,过点B2向x轴作垂线,垂足为D.
    由题意可知:


    在与中




    点坐标为
    故答案为:或.
    【点睛】
    本题主要是考查了全等三角形的判定和性质以及坐标点的求解,熟练利用全等三角形证明边相等,进而利用边长求解点的坐标,这是解决该题的关键.
    4、②
    【分析】
    根据两边及其夹角对应相等的两个三角形全等,即可求解.
    【详解】
    解:①若选,是边边角,不能得到形状和大小都确定的;
    ②若选,是边角边,能得到形状和大小都确定的;
    ③若选,是边边角,不能得到形状和大小都确定的;
    所以乙同学可以选择的条件有②.
    故答案为:②
    【点睛】
    本题主要考查了全等三角形的判定,熟练掌握两边及其夹角对应相等的两个三角形全等是解题的关键.
    5、6
    【分析】
    要求EP+CP的最小值,需考虑通过作辅助线转化EP,CP的值,从而找出其最小值求解.
    【详解】
    解:作点E关于AD的对称点F,连接CF,

    ∵△ABC是等边三角形,AD是BC边上的中垂线,
    ∴点E关于AD的对应点为点F,
    ∴CF就是EP+CP的最小值.
    ∵△ABC是等边三角形,E是AC边的中点,
    ∴F是AB的中点,
    ∴CF=AD=6,
    即EP+CP的最小值为6,
    故答案为6.
    【点睛】
    本题考查了等边三角形的性质和轴对称等知识,熟练掌握等边三角形和轴对称的性质是本题的关键.
    三、解答题
    1、(1);(2)①与是偏等积三角形,理由见详解;②修建小路的总造价为元
    【分析】
    (1)当时,则,证,再证与不全等,即可得出结论;
    (2)①过作于,过作于,证,得,则,再证与不全等,即可得出结论;②过点作,交的延长线于,证得,得到,再证,得,由余角的性质可证,然后由三角形面积和偏等积三角形的定义得,,求出,即可求解.
    【详解】
    解:(1)当时,与是偏等积三角形,理由如下:
    设点到的距离为,则,,

    ,,

    、,
    与不全等,
    与是偏等积三角形,
    故答案为:;
    (3)①与是偏等积三角形,理由如下:
    过作于,过作于,如图3所示:

    则,
    、是等腰直角三角形,
    ,,,



    在和中,



    ,,

    ,,

    ,,
    与不全等,
    与是偏等积三角形;
    ②如图4,过点作,交的延长线于,

    则,
    点为的中点,

    在和中,










    在和中,







    由①得:与是偏等积三角形,
    ,,

    修建小路的总造价为:(元.
    【点睛】
    本题是四边形综合题目,考查了新定义“偏等积三角形”的定义、全等三角形的判定与性质、等腰直角三角形的性质、三角形面积等知识;本题综合性强,熟练掌握“偏等积三角形”的定义,证明和是解题的关键,属于中考常考题型.
    2、(1),理由见解析;(2)①60°;②PM=,见解析
    【分析】
    (1)根据等边三角形的性质,可得AB=AC,∠BAC=60°,再由由旋转可知:从而得到,可证得,即可求解 ;
    (2)①由∠BPC=120°,可得∠PBC+∠PCB=60°.根据等边三角形的性质,可得∠BAC=60°,从而得到∠ABC+∠ACB=120°,进而得到∠ABP+∠ACP=60°.再由,可得 ,即可求解;
    ②延长PM到N,使得NM=PM,连接BN.可先证得△PCM≌△NBM.从而得到CP=BN,∠PCM=∠NBM.进而得到 .根据①可得,可证得,从而得到 .再由 为等边三角形,可得 .从而得到 ,即可求解.
    【详解】
    解:(1) .理由如下:
    在等边三角形ABC中,AB=AC,∠BAC=60°,
    由旋转可知:


    在和△ACP中

    ∴ .
    ∴ .
    (2)①∵∠BPC=120°,
    ∴∠PBC+∠PCB=60°.
    ∵在等边三角形ABC中,∠BAC=60°,
    ∴∠ABC+∠ACB=120°,
    ∴∠ABP+∠ACP=60°.
    ∵ .
    ∴ ,
    ∴∠ABP+∠ABP'=60°.
    即 ;
    ②PM= .理由如下:
    如图,延长PM到N,使得NM=PM,连接BN.

    ∵M为BC的中点,
    ∴BM=CM.
    在△PCM和△NBM中

    ∴△PCM≌△NBM(SAS).
    ∴CP=BN,∠PCM=∠NBM.
    ∴ .
    ∵∠BPC=120°,
    ∴∠PBC+∠PCB=60°.
    ∴∠PBC+∠NBM=60°.
    即∠NBP=60°.
    ∵∠ABC+∠ACB=120°,
    ∴∠ABP+∠ACP=60°.
    ∴∠ABP+∠ABP'=60°.
    即 .
    ∴ .
    在△PNB和 中

    ∴ (SAS).
    ∴ .

    ∴ 为等边三角形,
    ∴ .
    ∴ ,
    ∴PM= .
    【点睛】
    本题主要考查了等边三角形判定和性质,全等三角形的判定和性质,图形的旋转,熟练掌握等边三角形判定和性质定理,全等三角形的判定和性质定理,图形的旋转的性质是解题的关键.
    3、25°
    【分析】
    直接利用等腰三角形的性质得出∠ABC=∠ACB=65°,进而利用三角形内角和定理得出答案.
    【详解】
    ∵AB=AC,∠A=50°,
    ∴∠ABC=∠ACB=65°,
    ∵CD⊥BC于点D,
    ∴∠BCD的度数为:180°−90°−65°=25°.
    【点睛】
    此题主要考查了等腰三角形的性质,正确得出∠B的度数是解题关键.
    4、
    (1)120°
    (2)①图形见解析;②
    【分析】
    (1)根据进而判断出点E在边AB上,得出△ADE≌△ABC(SAS),进而得出∠AED=∠ACB=90°最后用三角形的外角的性质即可得出结论;
    (2)①依题意补全图形即可;②先判断出△ADE≌△ABC(SAS),进而得出∠AEF=90°,即可判断出Rt△AEF≌Rt△ACF,进而求出∠CAF=∠CAE=30°,即可得出结论.
    (1)
    (1)如图1,

    在Rt△ABC中,∠B=30°,
    ∴∠BAC=60°,
    由旋转知,∠CAE=60°=∠CAB,
    ∴点E在边AB上,
    ∵AD=AB,AE=AC,
    ∴△ADE≌△ABC(SAS),
    ∴∠AED=∠ACB=90°,
    ∴∠CFE=∠B+∠BEF=30°+90°=120°,
    故答案为120°;
    (2)
    (2)①依题意补全图形如图2所示,

    ②如图2,连接AF,
    ∵∠BAD=∠CAE,
    ∴∠EAD=∠CAB,
    ∵AD=AB,AE=AC,
    ∴△ADE≌△ABC(SAS),
    ∴∠AED=∠C=90°,
    ∴∠AEF=90°,
    ∴Rt△AEF≌Rt△ACF(HL),
    ∴∠EAF=∠CAF,
    ∴∠CAF=∠CAE=30°,
    在Rt△ACF中,CF=AF,且AC2+CF2=AF2,

    【点睛】
    此题是三角形综合题,主要考查了旋转的性质,全等三角形的判定和性质,三角形的外角的性质,含30度角的直角三角形的性质,勾股定理,判断出△ADE≌△ABC是解本题的关键.
    5、∠AFB=40°.
    【分析】
    由题意易得∠ADC=90°,∠ACB=80°,然后可得,进而根据三角形外角的性质可求解.
    【详解】
    解:∵AD⊥BE,
    ∴∠ADC=90°,
    ∵∠DAC=10°,
    ∴∠ACB=90°﹣∠DAC=90°﹣10°=80°,
    ∵AE是∠MAC的平分线,BF平分∠ABC,
    ∴,
    又∵∠MAE=∠ABF+∠AFB,∠MAC=∠ABC+∠ACB,
    ∴∠AFB=∠MAE﹣∠ABF=.
    【点睛】
    本题主要考查三角形外角的性质及角平分线的定义,熟练掌握三角形外角的性质及角平分线的定义是解题的关键.
    6、见解析.
    【分析】
    先根据角平分线的定义得到∠BAD=∠BAC,再根据等腰三角形的性质和三角形外角定理得到∠E=∠BAC,从而得到∠BAD=∠E,即可证明AD∥CE.
    【详解】
    解:∵AD平分∠BAC,
    ∴∠BAD=∠BAC,
    ∵AE=AC,
    ∴∠E=∠ACE,
    ∵∠E+∠ACE=∠BAC,
    ∴∠E=∠BAC,
    ∴∠BAD=∠E,
    ∴AD∥CE.
    【点睛】
    本题考查了角平分线的定义,等腰三角形的性质,平行线的判定,三角形外角定理,熟知相关定理并灵活应用是解题关键.
    7、
    (1)
    (2)或,见解析
    【分析】
    (1)根据已知条件求出∠B=∠ACB=45°,证明△BAD≌△CAE,得到∠ACE=∠B=45°,求出∠BCE=∠ACB+∠ACE=90°,即可得到结论;
    (2)根据题意作图即可,证明≌.得到,,,推出.延长EF到点G,使,证明≌,推出.由此得到.同理可证.
    (1)
    解:,,
    ∴∠B=∠ACB=45°,
    ∵,
    ∴,即∠BAD=∠CAE,
    ∵,,
    ∴△BAD≌△CAE,
    ∴∠ACE=∠B=45°,
    ∴∠BCE=∠ACB+∠ACE=90°,
    ∴;
    (2)
    解:如图,补全图形;


    证明:∵,
    ∴.
    又∵,,
    ∴≌.
    ∴,,.
    ∵,
    ∴.
    ∴.
    延长EF到点G,使.
    ∵,
    ∴.
    ∴.
    ∵,
    ∴.
    ∴.
    ∵,
    ∴≌.
    ∴.
    ∵,
    ∴.
    如图,同理可证.

    【点睛】
    此题考查了全等三角形的判定及性质,等腰三角形的性质,熟记全等三角形的判定及性质是解题的关键.掌握分类思想解题是难点.
    8、(1);(2).
    【分析】
    (1)先根据全等三角形的性质可得,再根据线段的和差即可得;
    (2)先根据全等三角形的性质可得,再根据三角形的外角性质即可得.
    【详解】
    解:(1)∵,
    ∴,
    ∵,
    ∴;
    (2)∵,
    ∴,
    ∵,
    ∴.
    【点睛】
    本题考查全等三角形的性质等知识点,熟练掌握全等三角形的对应角和对应边相等是解题关键.
    9、(1)见解析;(2)见解析.
    【分析】
    (1)以点D为圆心,适当长为半径,作弧,交AC于两点,再分别以这两点为圆心,适当长为半径作弧,连接两条弧的交点所在的直线,该直线与AC的交点即为点F,连接交于点;
    (2)利用角平分线性质可得,由此证明,得到,继而证明,证得即可解题.
    【详解】
    解:(1)如图,点F、G即为所求作的点;

    (2)是的角平分线,,,










    【点睛】
    本题考查角平分线的性质、全等三角形的判定与性质等知识,是重要考点,难度一般,掌握相关知识是解题关键.
    10、
    (1);
    (2).
    【分析】
    (1)根据三角形内角和定理可求出,然后利用角平分线进行计算即可得;
    (2)根据垂直得出,然后根据三角形内角和定理即可得.
    (1)
    解:∵,,
    ∴,
    ∵AD是角平分线,
    ∴,
    ∴;
    (2)
    ∵,
    ∴,
    ∴,
    ∴.
    【点睛】
    题目主要考查三角形内角和定理,角平分线的计算等,熟练运用三角形内角和定理是解题关键.

    相关试卷

    沪教版 (五四制)七年级下册第十四章 三角形综合与测试当堂达标检测题:

    这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试当堂达标检测题,共34页。试卷主要包含了定理等内容,欢迎下载使用。

    初中第十四章 三角形综合与测试练习题:

    这是一份初中第十四章 三角形综合与测试练习题,共36页。试卷主要包含了下列叙述正确的是,定理,下列说法错误的是等内容,欢迎下载使用。

    七年级下册第十四章 三角形综合与测试一课一练:

    这是一份七年级下册第十四章 三角形综合与测试一课一练,共28页。试卷主要包含了有下列说法,下列三个说法,定理等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map