开学活动
搜索
    上传资料 赚现金

    2022年沪教版(上海)七年级数学第二学期第十二章实数必考点解析练习题(精选含解析)

    2022年沪教版(上海)七年级数学第二学期第十二章实数必考点解析练习题(精选含解析)第1页
    2022年沪教版(上海)七年级数学第二学期第十二章实数必考点解析练习题(精选含解析)第2页
    2022年沪教版(上海)七年级数学第二学期第十二章实数必考点解析练习题(精选含解析)第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2020-2021学年第十二章 实数综合与测试课后测评

    展开

    这是一份2020-2021学年第十二章 实数综合与测试课后测评,共20页。试卷主要包含了下列等式正确的是,在下列四个实数中,最大的数是,下列语句正确的是,下列说法正确的是,100的算术平方根是等内容,欢迎下载使用。
    沪教版(上海)七年级数学第二学期第十二章实数必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、4的平方根是(  )A.2 B.﹣2 C.±2 D.没有平方根2、9的平方根是(  )A.±3 B.-3 C.3 D.3、平方根和立方根都等于它本身的数是(    A.±1 B.1 C.0 D.﹣14、下列等式正确的是(   )A. B. C. D.5、在下列四个实数中,最大的数是(  )A.0 B.﹣2 C.2 D.6、下列语句正确的是(  )A.8的立方根是2 B.﹣3是27的立方根C.的立方根是± D.(﹣1)2的立方根是﹣17、下列说法正确的是(    A.5是25的算术平方根 B.的平方根是±6C.(﹣6)2的算术平方根是±6 D.25的立方根是±58、下列说法正确的是(  A.0.01是0.1的平方根 B.小于0.5C.的小数部分是D.任意找一个数,利用计算器对它开立方,再对得到的立方根进行开立方……如此进行下去,得到的数会越来越趋近19、100的算术平方根是(    A.10 B. C. D.10、下列各组数中相等的是(    A.和3.14 B.25%和 C.和0.625 D.13.2%和1.32第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、的算术平方根是_____,的立方根是_____,的倒数是_____.2、如果,那么=_____.3、引入新数i,新数i满足分配律、结合律、交换律,已知,则_____.4、如果一个正数的平方根为2a-1和4-a,这个正数为_______.5、计算:______.三、解答题(10小题,每小题5分,共计50分)1、阅读材料,回答问题.下框中是小马同学的作业,老师看了后,找来小马.问道:“小马同学,你标在数轴上的两个点对应题中两个无理数,是吗?”小马点点头.老师又说:“你这两个无理数对应的点找得非常准确,遗憾的是没有完成全部解答.”请把实数|﹣|,﹣π,﹣4,,2表示在数轴上,并比较它们的大小(用<号连接).解:请你帮小马同学将上面的作业做完.2、计算:3、(1)计算:(2)求下列各式中的x②(x+3)3=﹣27.4、小明打算用一块面积为900cm2的正方形木板,沿着边的方向裁出一个长方形面积为588cm2的桌面,并且长宽之比为4∶3,你认为能做到吗?如果能,计算出桌面的长和宽;如果不能,请说明理由.5、已知的平方根是的立方根是2,的整数部分,求的算术平方根.6、众所周知,所有实数都可以用数轴上的点来表示.其中,我们将数轴上表示正整数的点称为“正点”.取任意一个“正点”P,该数轴上到点P距离为1的点所对应的数分别记为abab).定义:若数mb3a3,则称数m为“复合数”.例如:若“正点”P所表示的数为3,则a=2,b=4,那么m=43﹣23=56,所以56是“复合数”.(提示:b3a3=(ba)(b2+ab+a2).)(1)请直接判断12是不是“复合数”,并且证明所有的“复合数”与2的差一定能被6整除;(2)已知两个“复合数”的差是42,求这两个“复合数”.7、计算:(1)(2)﹣16÷(﹣2)28、阅读下面的文字,解答问题.现规定:分别用表示实数x的整数部分和小数部分,如实数3.14的整数部分是,小数部分是;实数的整数部分是,小数部分是无限不循环小数,无法写完整,但是把它的整数部分减去,就等于它的小数部分,即就是的小数部分,所以(1)                                    (2)如果,求的立方根.9、解方程:(1)4(x﹣1)2=36;(2)8x3=27.10、求下列各式中x的值.(1)x-3)3=4(2)9(x+2)2=16 -参考答案-一、单选题1、C【分析】根据平方根的定义(如果一个数x的平方等于a,那么这个数x就叫做a的平方根)和性质(一个正数有两个实平方根,它们互为相反数)直接得出即可.【详解】解:4的平方根,即:故选:C.【点睛】题目主要考查平方根的定义和性质,熟练掌握其性质及求法是解题关键.2、A【分析】根据平方根的定义进行判断即可.【详解】解:∵(±3)2=9∴9的平方根是±3故选:A【点睛】本题考查的是平方根的定义,即如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.3、C【分析】根据平方根和立方根的定义,可以求出平方根和立方根都是本身数是0.【详解】解:平方根是本身的数有0,立方根是本身的数有1,-1,0;∴平方根和立方根都是本身的数是0.故选C.【点睛】本题主要考查了平方根和立方根的定义,熟知定义是解题的关键:如果有两个数abb≥0),满足,那么a就叫做b的平方根;如果有两个数cd满足,那么c就叫做d的立方根.4、C【分析】根据算术平方根的定义和性质,立方根的定义逐项分析判断即可【详解】A. ,故该选项不正确,不符合题意;B. 无意义,故该选项不正确,不符合题意;    C. ,故该选项正确,符合题意;D. ,故该选项不正确,不符合题意;故选C【点睛】本题考查了平方根和立方根的概念和求法,理解、记忆平方根和立方根的概念是解题关键.平方根:如果x2=a,则x叫做a的平方根,记作“±”(a称为被开方数) 其中属于非负数的平方根称之为算术平方根;立方根:如果x3=a,则x叫做a的立方根,记作“”(a称为被开方数).5、C【分析】先根据正数大于0,0大于负数,排除,然后再用平方法比较2与即可.【详解】解:正数负数,排除最大的数是2,故选:【点睛】本题考查了实数的大小比较,算术平方根,熟练掌握用平方法来比较大小是解题的关键.6、A【分析】利用立方根的运算法则,进行判断分析即可.【详解】解:A、8的立方根是2,故A正确.B、3是27的立方根,故B错误.C、的立方根是,故C错误.D、(﹣1)2的立方根是1,故D错误.故选:A.【点睛】本题主要是考查了立方根的运算,注意一个数的立方根只有一个,不是以相反数形式存在的.7、A【分析】如果一个数的平方等于a,那么这个数叫做a的平方根;如果一个非负数x的平方等于a,那么这个非负数x叫做a的算术平方根;如果一个数的立方等于a,那么这个数叫做a的立方根;据此判断即可.【详解】解:A、5是25的算术平方根,正确,符合题意;B、,6的平方根是±,错误,不符合题意;C、(﹣6)2的算术平方根是6,错误,不符合题意;D、25的平方根是±5,错误,不符合题意;故选:A.【点睛】本题考查了平方根、算术平方根、立方根,熟练掌握相关定义是解本题的关键.8、C【分析】根据平方根的定义,以及无理数的估算等知识点进行逐项分析判断即可.【详解】解:A、0.1是0.01的平方根,原说法错误,不符合题意;B、由,得,原说法错误,不符合题意;C、由,得,即的整数部分为4,则小数部分为,原说法正确,符合题意;D、例如0和-1按此方法无限计算,结果仍为0和-1,并不是趋近于1,原说法错误,不符合题意;故选:C.【点睛】本题考查平方根的定义,无理数的估算等,掌握实数的相关基本定义是解题关键.9、A【分析】根据算术平方根的概念:一个正数x的平方等于a,即,那么这个正数x就叫做a的算术平方根,即可解答.【详解】解:∵(舍去)∴100的算术平方根是10,故选A.【点睛】本题考查了算术平方根,解题的关键是熟练掌握算术平方根的概念.10、B【分析】是一个无限不循环小数,约等于3.142,3.142>3.14,即>3.14;=1÷4=0.25,把0.25的小数点向右移动两位添上百分号就是25%;即25%==3÷8=0.375,0.375<0.625,即<0.625;把13.2%小数点向左移动两位去掉百分号就是0.132,0.132<1.32,即13.2%<1.32.【详解】解:A≈3.142,3.142>3.14,即>3.14;B=1÷4=0.25=25%=C=3÷8=0.375,0.375<0.625,即<0.625;D 、13.2%=0.132,0.132<1.32,即13.2%<1.32.故选:B.【点睛】此题主要是考查小数、分数、百分数的互化及圆周率的限值.小数、分数、百分数、无限小数(循环小数)的大小比较,通常都化成保留一定位数的小数,再根据小数的大小比较方法进行比较,这样可以省去通分的麻烦.二、填空题1、9【分析】根据相反数,算术平方根,立方根,平方根,倒数,绝对值的定义求出即可.【详解】解:=81的算术平方根是9,=的立方根是的倒数是故答案为:-9,【点睛】本题考查了算术平方根,立方根,平方根,倒数等知识点的应用,主要考查学生的理解能力和计算能力.2、【分析】本题可利用立方根的定义直接求解.【详解】故填:【点睛】本题考查立方根的定义:如果一个数的立方等于a,则这个数称为a的立方根使用时和平方根定义对比记忆.3、2【分析】先根据平方差公式化简,再把代入计算即可.【详解】解:故答案为2.【点睛】本题考查了新定义运算及平方差公式,熟练掌握平方差公式是解答本题的关键.4、49【分析】根据平方根的定义得到互为相反数,列出关于的方程,求出方程的解得到的值,即可确定出这个正数.【详解】根据题意得:解得:则这个正数为49故答案为:49.【点睛】此题考查了平方根,熟练掌握平方根的定义是解本题的关键.5、-5【分析】由题意直接根据立方根的性质即可进行分析求值.【详解】解:.故答案为:.【点睛】本题考查立方根求值,熟练掌握立方根的性质是解题的关键.三、解答题1、图见解析,﹣4<﹣π<|﹣|<2<【分析】根据确定原点,根据数轴上的点左边小于右边的排序依次表示即可.【详解】把实数||,,2表示在数轴上如图所示,<||<2<【点睛】本题考查用数轴比较点的大小,根据题意先确定原点是解题的关键.2、【分析】根据求一个数的算术平方根,负整数指数幂,0次幂进行计算即可【详解】原式=  =.【点睛】本题考查了求一个数的算术平方根,负整数指数幂,0次幂,正确的计算是解题的关键.3、(1);(2)①;②【分析】(1)利用去绝对值符号的方法,立方根定义,平方根的定义对式子进行运算即可;(2)①对等式进行开平方运算,再把x的系数转化为1即可;②对等式进行开立方运算,再移项即可.【详解】解:(1)=2(﹣2)﹣3=﹣3(2)①±3x=±6;②(x+3)3=﹣27x+3=﹣3x=﹣6.【点睛】本题主要考查实数的运算,立方根,平方根,解答的关键是对相应的运算法则的掌握与应用.4、能,桌面长宽分别为28cm和21cm【分析】本题可设它的长为4x,则它的宽为3x,根据面积公式列出方程解答即可求出x的值,再代入长宽的表达式,看是否符合条件即可.【详解】能做到,理由如下:设桌面的长和宽分别为4x(cm)和3x(cm),根据题意得,4x×3x=588.12x2=588.(cm)3x=3×7=21(cm).∵面积为900cm2的正方形木板的边长为30cm,28cm<30cm∴能够裁出一个长方形面积为588cm2并且长宽之比为4∶3的桌面,答:桌面长宽分别为28cm和21cm【点睛】本题考察了算术平方根及列方程解应用题的知识点,读懂题意,找出等量关系列出方程是本题的关键点.5、【分析】直接利用平方根以及立方根和估算无理数的大小得出abc的值进而得出答案.【详解】解:∵2a-1的平方根是±3,∴2a-1=9,解得:a=5,∵3a+b-9的立方根是2,∴15+b-9=8,解得:b=2,∵4<<5,c的整数部分,c=4,a+2b+c=5+4+4=13,a+2b+c的算术平方根为【点睛】此题主要考查了平方根以及立方根和估算无理数的大小,正确得出abc的值是解题关键.6、(1)12不是复合数;证明见解析;(2)98和56.【分析】(1)直接利用定义进行判断12不是复合数,利用定义对复合数进行变形即可证明;(2)借助(1)的证明,所有的复合数都可以写成6x2+2,设出两个复合数进行转化.【详解】(1)12不是复合数,∵找不到两个整数ab,使a3b3=12,故12不是复合数,设“正点”P所表示的数为xx为正整数),ax﹣1,bx+1,∴(x+1)3﹣(x﹣1)3 =(x+1﹣x+1)(x2+2x+1+x2﹣1+x2﹣2x+1)=2(3x2+1)=6x2+2,∴6x2+2﹣2=6x2一定能被6整除;(2)设两个复合数为6m2+2和6n2+2(mn都是正整数),∵两个“复合数”的差是42,∴(6m2+2)﹣(6n2+2)=42,m2n2=7,mn都是正整数,∴6m2+2=98,6n2+2=56,这两个“复合数”为98和56.【点睛】本题考查关于实数的新定义题型,理解新定义是解题的关键.7、(1)(2)【分析】(1)根据有理数的混合运算进行计算即可;(2)先根据求一个数的立方根求得,进而根据有理数的混合运算进行计算即可【详解】(1)原式(2)原式【点睛】本题考查了求一个数的立方根,有理数的混合运算,正确的计算是解题的关键.8、(1)1,,3,;(2)2【分析】(1)先估算出的范围,再根据题目规定的表示方法写出答案即可;(2)先估算出的范围,即可求出ab的值,进一步即可求出结果.【详解】(1)∵1<<2,3<<4,∴[]=1,<>=−1,[]=3,<>=−3,故答案为:1,,3,(2)∵2<<3,10<<11,∴<>=a=−2,[]=b=10,的立方根是2.【点睛】本题考查了估算无理数的大小和平方根的意义,能够估算出无理数的范围是解决问题的关键.9、(1)x=4或﹣2;(2)x【分析】(1)先变形为(x﹣1)2=9,然后求9的平方根即可;(2)先变形为x3,再利用立方根的定义得到答案.【详解】解:(1)方程两边除以4得,(x﹣1)2=9,x﹣1=±3,x=4或﹣2;(2)方程两边除以8得,x3所以x【点睛】本题考查了平方根、立方根的运算,熟练掌握运算法则是解本题的关键.10、(1)x=5;(2)x=-x=【分析】(1)把x-3可做一个整体求出其立方根,进而求出x的值;(2)把x+2可做一个整体求出其平方根,进而求出x的值.【详解】解:(1) (x−3)3=4,x-3)3=8,x-3=2,x=5;(2)9(x+2)2=16,x+2)2=x+2=x=-x=【点睛】本题考查了立方根和平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根. 

    相关试卷

    初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试练习题:

    这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试练习题,共20页。试卷主要包含了9的平方根是,计算2﹣1+30=,的算术平方根是,64的立方根为.等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试当堂检测题:

    这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试当堂检测题,共19页。试卷主要包含了下列说法,若,那么,观察下列算式等内容,欢迎下载使用。

    沪教版 (五四制)七年级下册第十二章 实数综合与测试巩固练习:

    这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试巩固练习,共1页。试卷主要包含了﹣π,﹣3,,的大小顺序是,在以下实数,下列等式正确的是,的值等于,下列说法中,正确的是等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map