搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年沪教版(上海)七年级数学第二学期第十二章实数同步训练试题(含详解)

    2021-2022学年沪教版(上海)七年级数学第二学期第十二章实数同步训练试题(含详解)第1页
    2021-2022学年沪教版(上海)七年级数学第二学期第十二章实数同步训练试题(含详解)第2页
    2021-2022学年沪教版(上海)七年级数学第二学期第十二章实数同步训练试题(含详解)第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试测试题

    展开

    这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试测试题,共1页。试卷主要包含了下列整数中,与-1最接近的是,实数﹣2的倒数是,的值等于,可以表示等内容,欢迎下载使用。
    沪教版(上海)七年级数学第二学期第十二章实数同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、若一个数的算术平方根与它的立方根的值相同,则这个数是(   )A.1 B.0和1 C.0 D.非负数2、下列说法不正确的是(    A.0的平方根是0 B.一个负数的立方根是一个负数C.﹣8的立方根是﹣2 D.8的算术平方根是23、下列说法正确的是(    A.5是25的算术平方根 B.的平方根是±6C.(﹣6)2的算术平方根是±6 D.25的立方根是±54、在实数,1.12112111211112…(每两 个2之间依次多一个1)中,无理数有(    )个A.2 B.3 C.4 D.55、下列整数中,与-1最接近的是(    A.2 B.3 C.4 D.56、实数﹣2的倒数是(  )A.2 B.﹣2 C. D.﹣7、的值等于(    A. B.-2 C. D.28、可以表示(    A.0.2的平方根 B.的算术平方根C.0.2的负的平方根 D.的立方根9、下列各数,其中无理数的个数有(  )A.4个 B.3个 C.2个 D.1个10、已知2m﹣1和5﹣ma的平方根,a是(    A.9 B.81 C.9或81 D.2第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、比较大小:______3(填“>”、“<”或“=”).2、的平方根是__.3、已知xy是实数,且+(y-3)2=0,则xy的立方根是__________.4、对于实数ab,定义运算“*”如下:a*b=(a+b2﹣(ab2.若(m+2)*(m﹣3)=24,则m的值为______.5、若ab为实数,且满足|a-3|+=0,则a-b的值为_____三、解答题(10小题,每小题5分,共计50分)1、对于一个三位自然数m,若m的百位数字等于两个一位正整数ab的和m的个位数字等于两个一位正整数ab的差,m的十位数字等于b,则称m是“和差数”,规定.例如:723是“和差数”,因为,所以723是“和差数”,即(1)填空:______.(2)请判断311是否是“和差数”?并说明理由;(3)若一个三位自然数xy是整数,即n的百位数字是9,十位数字是x,个位数字是y)为“和差数”,求所有满足条件的“和差数”n2、如图1,依次连接2×2方格四条边的中点,得到一个阴影正方形,设每一方格的边长为1个单位,则这个阴影正方形的边长为(1)图1中阴影正方形的边长为      ;点P表示的实数为      (2)如图2,在4×4方格中阴影正方形的边长为a.①写出边长a的值.②请仿照(1)中的作图在数轴上表示实数﹣a+1.3、(1)计算:﹣32﹣(2021)0+|﹣2|﹣(﹣2×(﹣);(2)解方程:=﹣1.4、已知xy满足,求xy的值.5、阅读下面材料,并按要求完成相应问题:定义:如果一个数的平方等于-1,记为,这个数叫做虚数单位,把形如的数叫做复数,其中是这个复数的实部,是这个复数的虚部.它的加﹑减﹑乘法运算与整式的加﹑减﹑乘法运算类似.例如:应用:(1)计算(2)如果正整数ab满足,求ab的值.(3)将化为均为实数)的形式,(即化为分母中不含的形式).6、计算:(1)(2)﹣16÷(﹣2)27、求下列各数的算术平方根:(1)0.64            (2)8、先化简:,再从中选取一个合适的整数代入求值.9、直接写出结果:(1)____________;(2)____________;(3)的立方根=____________;(4)若x2=(﹣7)2,则x=____________.10、(1)计算:(2)求式中的x:(x+4)2=81. -参考答案-一、单选题1、B【分析】根据立方根和算术平方根的性质可知,立方根等于它本身的实数0、1或-1,算术平方根等于它本身的实数是0或1,由此即可解决问题.【详解】解:∵立方根等于它本身的实数0、1或−1,算术平方根等于它本身的数是0和1,∴一个数的算术平方根与它的立方根的值相同的是0和1,故选B.【点睛】主要考查了立方根,算术平方根的性质.牢牢掌握立方根和算术平方根等于它本身的实数是解答本题的关键点.2、D【分析】直接利用算术平方根、平方根、立方根的定义分析得出答案.【详解】解:A、0的平方根是0,原说法正确,故此选项不符合题意;B、一个负数的立方根是一个负数,原说法正确,故此选项不符合题意;C、﹣8的立方根是﹣2,原说法正确,故此选项不符合题意;D、8的算术平方根是2,原说法不正确,故此选项符合题意;故选:D.【点睛】此题主要考查了算术平方根、平方根、立方根,熟练掌握算术平方根、平方根、立方根的定义是解题的关键.3、A【分析】如果一个数的平方等于a,那么这个数叫做a的平方根;如果一个非负数x的平方等于a,那么这个非负数x叫做a的算术平方根;如果一个数的立方等于a,那么这个数叫做a的立方根;据此判断即可.【详解】解:A、5是25的算术平方根,正确,符合题意;B、,6的平方根是±,错误,不符合题意;C、(﹣6)2的算术平方根是6,错误,不符合题意;D、25的平方根是±5,错误,不符合题意;故选:A.【点睛】本题考查了平方根、算术平方根、立方根,熟练掌握相关定义是解本题的关键.4、C【分析】利用无理数的定义:无限不循环小数称为无理数,进行判断即可,但同时也要掌握有理数的定义:整数和分数统称为有理数.【详解】有理数有:,一共四个.无理数有:,1.12112111211112…(每两 个2之间依次多一个1),一共四个.故选:C.【点睛】此题主要是考察了无理数的定义,初中数学中常见的无理数主要是:等;开方开不尽的数;以及像1.12112111211112…,等有规律的数.5、A【分析】先由无理数估算,得到,且接近3,即可得到答案.【详解】解:由题意,,且接近3,最接近的是整数2;故选:A.【点睛】本题考查了无理数的估算,解题的关键是掌握无理数的概念,正确的得到接近3.6、D【分析】根据倒数的定义即可求解.【详解】解:-2的倒数是﹣故选:D【点睛】本题考查了倒数的定义,熟知倒数的定义“乘积等于1的两个数互为倒数”是解题关键.7、D【分析】由于表示4的算术平方根,由此即可得到结果.【详解】解:∵4的算术平方根为2,的值为2.故选D.【点睛】此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.弄清概念是解决本题的关键.8、C【分析】根据平方根和算术平方根的定义解答即可.【详解】解:可以表示0.2的负的平方根,故选:C【点睛】此题考查了算术平方根和平方根.解题的关键是掌握平方根和算术平方根的定义,要注意:平方根和算术平方根的区别:一个正数的平方根有两个,互为相反数.9、C【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:,是整数,属于有理数;是分数,属于有理数;无理数有,共2个故选:C.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001……,等有这样规律的数.10、C【分析】分两种情况讨论求解:当2m﹣1与5﹣ma的两个不同的平方根和当2m﹣1与5﹣ma的同一个平方根.【详解】解:若2m﹣1与5﹣m互为相反数,则2m﹣1+5﹣m=0,m=﹣4,∴5﹣m=5﹣(﹣4)=9,a=92=81,若2m﹣1=5﹣mm=2,∴5﹣m=5﹣2=3,a=32=9,故选C.【点睛】本题主要考查了平方根的定义,解题的关键在于能够利用分类讨论的思想求解.二、填空题1、<【分析】,再利用不等式的基本性质可得,从而可得答案.【详解】解:∵故答案为:<.【点睛】本题考查的是实数的大小比较,掌握实数的大小比较的方法是解题的关键.2、【分析】根据平方的运算,可得,即可求解【详解】解:∵的平方根是故答案为:【点睛】本题主要考查了平方和平方根的性质,熟练掌握一个正数有两个平方根,且互为相反数是解题的关键.3、【分析】根据二次根式和平方的非负性,可得 ,即可求解.【详解】解:根据题意得:解得:故答案为:【点睛】本题主要考查了二次根式和平方的非负性,立方根的性质,熟练掌握二次根式和平方的非负性,立方根的性质是解题的关键.4、或4【分析】先根据新运算的定义可得一个关于的方程,再利用平方根解方程即可得.【详解】解:由题意得:,即解得故答案为:或4.【点睛】本题考查了利用平方根解方程,掌握理解新运算的定义是解题关键.5、2【分析】根据非负性的性质解答,当两个非负数相加,和为0时,必须满足其中的每一项都等于0.【详解】解:∵|a-3|+=0,a-3=0,b-1=0,a=3,b=1,a-b=3-1=2.故答案为2.【点睛】本题考查了非负数的性质,涉及绝对值的性质,算术平方根的性质,有理数的减法.掌握几个非负数的和为0时,这几个非负数都为0是解题的关键.三、解答题1、(1)412(2)是,理由见解析(3)941或933或925或917【分析】(1)根据定义可知,百位上数字为:3+1=4,个位数字为:3-1=2,即可得解;(2)根据定义即可判断311是“和差数”;(3)由题意得到,解得,再结合ab为正整数且,即可得解.(1)解:根据定义可知,百位上数字为:3+1=4,个位数字为:3-1=2,故412.故答案为:412;(2)解:311是“和差数”,是“和差数”;(3)解:∵是整数)2、(1),1+;(2)①;②见解析【分析】(1)先利用大正方形的面积减去四个三角形的面积可得正方形ABCD的面积,再求其算术平方根即可得;(2)①先利用大正方形的面积减去四个三角形的面积可得阴影部分正方形的面积,再求其算术平方根即可得;②由数轴上表示1的点为圆心画弧,与数轴负半轴的交点表示的数即为【详解】解:(1)正方形ABCD的面积为:正方形ABCD的边长为:由题意得:点表示的实数为:故答案为:(2)①阴影部分正方形面积为:求其算术平方根可得:②如图所示:表示的数即为【点睛】本题考查了割补法求面积以及实数与数轴等知识,熟练掌握割补法求面积是解题的关键.3、(1)-7;(2)x=9.【分析】(1)直接利用绝对值的性质、零指数幂的性质、负整数指数幂的性质分别化简得出答案;(2)直接去分母,移项合并同类项解方程即可.【详解】解:(1)原式=﹣9﹣1+2﹣9×(﹣=﹣9﹣1+2+1=﹣7;(2)去分母得:2x﹣3(1+x)=﹣12,去括号得:2x﹣3﹣3x=﹣12,移项得:2x﹣3x=﹣12+3,合并同类项得:﹣x=﹣9,系数化1得:x=9.【点睛】此题主要考查了实数运算以及一元一次方程的解法,正确掌握相关运算法则是解题关键.4、x=5;y=2【分析】根据非负数的性质可得关于xy的方程组,求解可得其值;【详解】解:由题意可得联立得解方程组得:xy的值分别为5、2.【点睛】此题考查的是非负数的性质,解二元一次方程组,掌握绝对值及算术平方根的非负性是解决此题的关键.5、(1);(2);(3)【分析】(1)原式利用多项式乘以多项式法则,完全平方公式以及题中的新定义计算即可求出值;(2)利用平方差公式计算得出答案;(3)分子分母同乘以(2-i)后,把分母化为不含i的数后计算.【详解】(1)∴原式(2)ab是正整数(3)【点睛】本题考查了实数的运算,以及完全平方公式的运用,能读懂题意是解此题的关键,解题步骤为:阅读理解,发现信息;提炼信息,发现规律;运用规律,联想迁移;类比推理,解答问题.6、(1)(2)【分析】(1)根据有理数的混合运算进行计算即可;(2)先根据求一个数的立方根求得,进而根据有理数的混合运算进行计算即可【详解】(1)原式(2)原式【点睛】本题考查了求一个数的立方根,有理数的混合运算,正确的计算是解题的关键.7、 (1) 0.8; (2) 【分析】根据算术平方根的定义求解即可.【详解】解:(1)因为0.82=0.64,所以0.64的算术平方根是0.8,即=0.8.(2)因为所以的算术平方根是,即【点睛】本题考查了算术平方根,熟练掌握算术平方根的定义是解答本题的关键, 正数有一个正的算术平方根,0的平方根是0,负数没有算术平方根.8、∴或933或925或91【点睛】本题是一道以新定义为背景的阅读题目,能够根据定义列出代数式,根据各数的取值范围求出aby的值是解答的关键.7.2x-2,2.【分析】根据分式的加法和除法可以化简题目中的式子,然后在中选取一个使得原分式有意义的整数代入化简后的式子即可解答本题.【详解】解:原式=x取整数,x可取2,x=2时,原式=2×2-2=2.【点睛】本题考查了分式的化简求值,解答本题的关键是明确分式化简求值的方法.9、(1)8;(2)0;(3)2;(4)【分析】(1)根据算术平方根的计算法则求解即可;(2)根据算术平方根的计算法则求解即可;(3)根据立方根的求解方法求解即可;(4)根据求平方根的方法解方程即可.【详解】解:(1)故答案为:8;(2)故答案为:0;(3)∵的立方根是2,故答案为:2;(4)∵x2=(﹣7)2x2=49,x=±7.故答案为:±7.【点睛】本题主要考查了实数的运算,立方根,算术平方根,利用平方根解方程等等,熟知相关计算法则是解题的关键.10、(1);(2)【分析】(1)分别计算算术平方根、立方根、绝对值,再进行加减即可;(2)根据平方根的意义,计算出x的值.【详解】解:(1)原式(2)由平方根的意义得:【点睛】本题考查了平方根意义和实数的运算.题目难度不大,掌握平方根、立方根、绝对值的意义是解决本题的关键. 

    相关试卷

    初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课后作业题:

    这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课后作业题,共1页。试卷主要包含了下列判断,若,则的值为,在实数中,无理数的个数是,下列各式中正确的是,三个实数,2,之间的大小关系等内容,欢迎下载使用。

    数学七年级下册第十二章 实数综合与测试巩固练习:

    这是一份数学七年级下册第十二章 实数综合与测试巩固练习,共1页。试卷主要包含了3的算术平方根为,在下列四个实数中,最大的数是,下列计算正确的是.,﹣π,﹣3,,的大小顺序是等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试测试题:

    这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试测试题,共1页。试卷主要包含了在下列各数,下列说法中错误的是,的算术平方根是,实数在哪两个连续整数之间等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map